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FUZZY TOPOLOGY BASED ON
THE CONSENSUS SPACE

ABSTRACT: By the use of the theory of a consensus space presented by
Hisakichi Suzuki, concept of C-fuzzy topology is acquired. It is proved that a
Ying’s fuzzifying topology is a C-fuzzy topology and each C-fuzzy topology
is homeomorphic a special of fuzzy topology. These discussions have built
up a new theoretical approach for the fuzzifying topology.
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1. INTRODUCTION

Since Chang introduced the concept of fuzzy topology[1], Wong, Lowen, Hutton, Pu
and Liu, Ying, etc, discussed respectively various aspects of fuzzy topology[4-6,8-9]. In
these author’s papers, a fuzzy topology is defined as a classical subset of the fuzzy
power set of a non-empty classical set or as a fuzzy subset of the power set of a
nonempty classical set. In [9], Ying gave a definition of fuzzifying topology by the
use of the semantics of fuzzy logic and developed a new approach to study fuzzy
topology. In [2-3], Hisakichi Suzuki gave concepts of consensus set and consensus
space and discussed the operation of fuzzy sets by the use of the theory of consensus
space.

In this paper, based on the theory of the consensus space, a theoretical approach
is established by defining C-fuzzy topology over s set X. It is proved that a Ying’s
fuzzy topology is a C-fuzzy topology and each C-fuzzy topology is homeomorphic
to a special of C-fuzzy topology. By these discussions, we try to build up a connection
between Ying’s fuzzifying topology and consensus space.
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2. PRELIMINARY

Let X be a set, �(X) be a power set of set X and �  be a fuzzy subset of �(X), Ying
gave the following definition:

Definition 2.1[9] If for any A, B, A
t
 ��� (X) (t � T),

(1) � (X) = � (�) = 1;

(2) � (A�B) � min {� (A), � (B)};

(3) � ( ) inft t T
t T

A �
�

��  ��(At).

Then �  is called a fuzzifying topology over X.

Clearly, �  is a fuzzifying topology over X if and only if �� = {A | A � �(X),
� (A) ���} is a topology over X for any ��� [0, 1].

Definition 2.2[2,3] Let U be a set and (�, �, P) be a probability space. Let

�(U × � ) = {E | E � × ���E(u) � �, u � U}

Where E(u) = {� | �����, (u, �) � E}.

Then �(U × �) is called a consensus space induced by (����) and an element of
�(U × � ) is called a consensus set.

Let E be a consensus set and (�, �, P) be a probability space, then we have a
fuzzy subset µ

E
 of U defined by

µ
E
(u) = P(E(u)), u � U

Definition 2.3[6,7] Let L be a complete lattice with maximal element 1 and minimal
element 0. Let ��� L, if

(1) 0, 1 ���;

(2) �
1
, �

2
 �������

1
 � �

2
 ���;

(3) For any index set T, �
t
 ��� (t � T) � 

t T�
� �

t
 ���.

Then is called a lattice-topology over L.
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3. C-FUZZY TOPOLOGY BASED ON
THE CONSENSUS SPACE

Let X be a set, L = �(X) be a power set of X and (�, �, P) be a probability space. Let
�(L × �) be a consensus space induced by (�,��) and E � �(L × � ) be a consensus
set and

E(�) = {A � L, (A, �) � E}

E(A) = {����� | (A, �) � E}

Definition 3.1 If E(�) is a lattice-topology over L for any ��� �, then

µ
E
(A) = P(E(A)), A � L.

is called a C-fuzzy topology over L.

Theorem 3.1 A Ying’s fuzzifying topology is a C-fuzzy topology.

Proof. Let X be a set and �  be a Ying fuzzifying topology, then

�� = {A � �(X) | � (A) ���}, ��� [0, 1]

is a topology over X.

Let = � [0, 1], � be a Borel field on [0, 1] and P be the usual Lebesgue measure.
Let L = �(X) and E = {(A,�) | ��� [0, 1], A � ��}. Then E � L × � and

E(A) = {����[0, 1] | A � ��} = [0, � (A)] � �, A � L

E(�) = {A � L | (A, �) � E} = {A | A � ��} = ��, ��� [0, 1].

Then E(�) is a lattice-topology over L for any ��� [0, 1] and E � �(L × �), then

µ
E
(A) = P(E(A)) = P([0, � (A)]) = � (A),

and consequently � is a C-fuzzy topology over L.

Example 3.1 Let X be a set, �  be a topology over X and (�, �, P) be a probability
space. Let

L
1
 = �(X) = {f | f  : ��� �(X) is a mapping}

For {f
t
 | t � T} � L

1
, we define lattice operations in L

1
 as follows
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( ) ( ) ( ); ( )( ) ( )t t t t
t T t Tt T t T

f f w f f
� �� �

� � � � �� � �

Then L
1
 is a complete lattice. Let � satisfy:

{����� | f(�) � �} � �, f � L
1

and

E = {(f, �) | f � L
1
, ����� and f(�) � �}

Then

E(f) = {����� | (f, �) � E} = {����� | f(�) � �} � �

E(�) = {f | (f, �) � E} = {f | f(�) � �}.

It follows that E(�) is a lattice-topology over L
1
 and E � �(L

1 
× �). Then �

E
(f) =

P(E(f)) is a C-fuzzy topology over L
1
 and is called a C-fuzzy topology generated by

functions.

Example 3.2 Let (�,��, �) be a probability space, X be a set and L
1
 be a complete

lattice in example 3.1. Let � be a lattice-topology over L
1
 and

W = {(f(�), �) | � ���, f � �},

then W(�) = {f(�) | f � �} is a lattice-topology over L = �(X).

Let � satisfy:

W(A) = {����� | A � W(�)} � �, A � L,

then W is a consensus set and µ
E
(A) = P(W(A)) is a C-fuzzy topology over L.

Example 3.3 Let X be a set and L = �(X). Let

�
X
 = {�  | �  is a lattice-topology over L},

and

� = {(A, �) | �����
X
, A � �},

then �(�) = {� | ��� �} = � is a lattice-topology over L.

Let �
X
 be �-field over �

X
 and
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�(A) = {�  | �����
X
, A � �} � �

X
, A � L.

Let (�
X
, �

X
, P

X
) be a probability space. Then � is a consensus set and �

E
(A) =

P
X
({� | A � �}) is a C-fuzzy topology over L.

Example 3.4 Let X be a set and L
1
 be a complete lattice in example 3.1. Let

�
1
 = {�  | �  is a lattice-topology over L

1
}

�
1
 = {(f, �) | ��� �����

1
, f � �}.

Let (�
1
, �

1
, P

1
) be a probability space and

�
1
(f) = {�  | f � ��� �

1
}, f � L

1
.

Then �
1
 is a consensus set and ��1

(f) = P
1
(�

1
(f)) is a C-fuzzy topology over L

1
 and is

called a C-fuzzy topology generated by topologies.

Theorem 3.2: Let L
1
 be a complete lattice in Example 3.1, then a C-fuzzy topology

generated by functions must be a C-fuzzy topology generated by topologies.

Proof. Let X, �, (�, �, P) and L
1
 be the same as Example 3.1; let �

1
 and E

1
 be

the same as Example 3.4.

Let E � �(L
1
 × �) be a consensus set and E(�) is a lattice-topology for any ���

�, and �
E
(f) = P(E(f)) be a C-fuzzy topology generated by functions.

Let �
1
 be a �-field over �

1
 and �

1
(f) = {� | f � �} � �

1
 for any f � L

1
.

Let P
1
 be a probability over �

1
 and P

1
(�) = P({� | E(�) � �}), � � �

1
. then

��1
(f) = P

1
(�(f)) is a C-fuzzy topology generated by topologies and

��1
(f) = P({� | E(�) � �

1
(f)}) = P({� | f � E(�)})

= P({� | f(�) � �}) = P(E(f)) = �
E
(f)

Therefore, a C-fuzzy topology �
E
 generated by functions is a C-fuzzy topology

��1 
generated by topologies.

Definition 3.2 Let S
i
(i = 1, 2) be complete lattices, (�

i
, �

i
, P

i
) (i = 1, 2)

be probability spaces, E
i
(i = 1, 2) be consensus sets of �(S

i
 × �

i
) and �Ei

(i = 1, 2)
be C-fuzzy topologies. If there is a bijection � : S

1
 � S

2
 such that �E2

(�(�)) = �E1
(�),

��� S
1
. Then we say that �E2

 and �E2
 are homeomorphic.
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Theorem 3.3 Each C-fuzzy topology over X is homeomorphic to a C-fuzzy
topology over a complete lattice S generated by functions.

Proof. Let L = �(X), (�, �, �) be a probability space, E � �(L × �) be a
consensus space and E(�) = {A | (A, �) � E} be a lattice-topology for any ��� �. Let
� = {f | f : ��� L is a mapping} and � = {f | f � �, f(�) � E(�), � ���}.

Then � is a lattice-topology over �. For A � L, let

f
A
 : ��� �, ��� f�

A

Where ( )Af
A

� �� � � ���� �� �����

Let S = {f
A
 | A � �}, then

� �

� �

� ��

� � � � � � �� ��( ) ( ) ( )
t t t t t

t T t T

A A A A At T t T
t T

f f f f f 

� �

� �

� ��

� � � � � � �� ��( ) ( ) ( )
t t t t t

t T t T

A A A A At T t T
t T

f f f f f� �

It follows that S is a complete lattice.

Let �: L � S, A � f
A
, then

f
A
 = f

B
 � f

A
(�) = f

B
(�), � ����� , .A Bf f� �� ����

It follows that A = ( ) ( )A Bf f� �� � � = B and consequently is a isomorphism.

Let � = {(f
A
, �) | Af � ����} = {(f

A
, �) | A ��E(��},

Then

( ) { | } { | ( )} ( )A AE f f A E E A�� � � � � � � � �� �

( ) { | ( , ) } { | } { | ( )}A A A A Af f f f f A E�� � � � �� � � � � ��

is a lattice-topology over S. Then we have a C-fuzzy topology �� over S generated
by functions and
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��(fA
) = P(E(f

A
)) = P(E(A)) = �

E
(A), A � L.

Then �
E
(A) = ��(�(A)), A � L. Therefore, the C-fuzzy topology �

E
 is

homeomorphic to the C-fuzzy topology ��.

4. CONCLUSION

We have given a definition of C-fuzzy topology by the use of the theory of consensus
space. We have proved that a Ying’s fuzzifying topology is a C-fuzzy topology
generated by functions. These discussions have built up a the theoretical foundation
for fuzzifying topology.
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