International Review of Fuzzy Mathematics Vol. 3 No. 1 (June, 2018)

Received: 03rd June 2017 Revised: 14th August 2017 Accepted: 01st November 2017

Surajit Borkotokey

RΓ-SUBMODULES IN FUZZY SETTING

ABSTRACT: In this paper we introduce the notion of a fuzzy $R\Gamma$ -submodule and investigate some of its properties. Also, we give the idea of a faithful and regular fuzzy $R\Gamma$ -submodule and establish a relation between the two properties therein. Further, an existence and uniqueness theorem of a left (right) quasi-faithful fuzzy ideal of the corresponding Γ -ring with the help of an isomorphism defined on its $R\Gamma$ -module is obtained. We derive $R\Gamma$ submodules, which are characterized by some functional equation. The notion of a R-normal fuzzy $R\Gamma$ -submodule is given in the end and we investigate some related properties.

Key words: Fuzzy $R\Gamma$ -submodule, faithfull fuzzy $R\Gamma$ -submodule, Fuzzy regular $R\Gamma$ -submodule, R-normal fuzzy $R\Gamma$ - submodule. 2000 MCS: 13C99.

1. INTRODUCTION

In 1964, Nobusawa [4] in his premier work on generalization of ring theory developed the notion of Γ -ring which was later termed as Γ -ring of Nobusawa. The notion of Γ rings and R Γ -modules was discussed by Ravishankar and Shukhla [7] in 1979. They investigated the properties of a faithful and regular R Γ -module and its annihilator ideal pertaining to the development of Jacobson-radical for a Γ -ring via modules. Ravisankar et al. [7] also have shown that the Jacobson radical of a Γ -ring behaves in a similar fashion as its corresponding object in rings. Jun and Hong [6] discussed fuzzy Γ -ideals in 1995. They showed that their results in fuzzy sense adhered to the most generalized version of their counterparts in ordinary ring theory. Banerjee and Borkotokey [1] introduced the concept of a fuzzy Γ -semigroup and discussed its various properties. In this paper we introduce the notion of a fuzzy R Γ -submodule. We have defined a regular and faithful fuzzy R Γ -submodule and discussed its various characteristics. We have also introduced the notion of a finitely generated fuzzy R Γ - submodule and obtained few existence theorems of faithful fuzzy Γ -ideal and faithful fuzzy R Γ -submodule. In the end, the concept of R-normal fuzzy R Γ -submodule is introduced and some related properties are discussed. The process of fuzzyfication we apply here is more general than that taken up by Jun et al. [6].

2. PRELIMINARIES

In this section we give the needed definitions and results from [1-8], which are used in this paper.

Definition 2.1 [7]: Let $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be an additive abelian group. A Γ -ring is an additive group R={x,y,z,...} together with a composition x α y in R defined for x, y in R and α in Γ satisfying the following conditions:

- (i) $(x+y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha+\beta)y = x\alpha y + x\beta y$, $x\alpha(y+z) = x\alpha y + x\alpha z$
- (ii) $x\alpha(y\beta z) = (x\alpha y)\beta z$.

Remark 2.2: Through out the paper we assume R to be a Γ -ring.

Definition 2.3 [6]: An additive subgroup I of R is called a left (right) ideal of R if I Γ R \subseteq I (R Γ I \subseteq I).

Definition 2.4 [7] A Γ -ring R is simple if $R\Gamma R \neq 0$ and the only ideals of R are 0 and R.

Definition 2.5 [7]: Let R be a Γ -ring. An additive abelian group M will be called an R Γ -module, if there exists a map $\phi : M \times G \times R \to M$ satisfying ($\phi(m, \alpha, x)$ is denoted by m αx in short)

(1) $(m+n)\alpha x = m\alpha x + n\alpha x$.

- (2) $m\alpha(x+y) = m\alpha x + m\alpha y$.
- (3) $m\alpha(x\beta y) = (m\alpha x)\beta y$. for all x, y in R, α,β in Γ and m,n in M.

Definition 2.6 [7]: A subset N of M is said to be an $R\Gamma$ - submodule of M if N is itself an $R\Gamma$ -module under the operations of M.

Definition 2.7 [7]: An R Γ -module M is said to be simple if M Γ R \neq 0 and M has no proper sub-modules.

Remark 2.8: Through out the paper we denote M as an $R\Gamma$ -module.

Definition 2.9 [8]: A Γ -near ring is a triple (R,+, Γ), where

- (i) (R,+) is a (not necessarily abelian) group;
- (ii) Γ is a non empty set of binary operations on R such that for each $\gamma \in \Gamma$, $(R, +, \gamma)$ is a near ring, i.e (R, γ) is a semi group with the right (left) distributive property.
- (iii) $x \gamma (y \mu z) = (x \gamma y)\mu z$, for all $x, y, z \in R$ and $\gamma, \mu \in \Gamma$.

Definition 2.10 [8]: Let (G,+) be a group. If, for all $x, y \in R, \gamma, \mu \in \Gamma$ and $g \in G$, it holds

- (i) $x \gamma g \in G (g \gamma x \in G)$
- (ii) $(x+y) \gamma g = x \gamma g + y \gamma g$,
- (iii) $x \gamma (y \mu g) = (x \gamma y) \mu g$.

Then G is called an $R\Gamma$ -group.

Definition 2.11 [8]: Let G be an R Γ -group, H \subseteq G is an R Γ -ideal if

- (i) (H, +) is a normal subgroup of (G, +).
- (ii) $\forall x \in M, \gamma \in \Gamma, h \in H, g \in G, x \gamma (g + h) x \gamma g \in H.$

Definition 2.12 [8]: An R Γ -group homomorphism is a map $f: G \rightarrow H$, where G and H are R Γ -groups such that f satisfies the following conditions:

- (1) f(m + n) = f(m) + f(n).
- (2) $f(m\alpha r) = f(m)\alpha r$, for all m, n in G, α in Γ and r in R.

Remark 2.13: We assume through out this paper, that G satisfies both left and right closure properties, i.e x γ g \in G and also g γ x \in G, \forall x \in R, $\gamma \in \Gamma$, g \in G.

3. FUZZY RΓ-SUBMODULES

We assume that every fuzzy set maps into the lattice ([0,1], \land , \lor), where [0,1] is the set of reals between 0 and 1 and $x \land y = \inf(x,y)$, $x \lor y = \sup(x,y)$.

Definition 3.1: Let μ be a fuzzy subset of M, v, a fuzzy subset of Γ and ξ , a fuzzy subset of R. μ is said to be a fuzzy R Γ -submodule of M with respect to the pair (v, ξ) if the following hold:

- (i) $\mu(m-n) \ge \mu(m) \land \mu(n)$
- (ii) $\mu(m\alpha x) \ge \mu(m) \lor \nu(\alpha) \lor \xi(x)$, for all m,n in M, α in Γ and x in R.

We denote the fuzzy R Γ -submodule μ by the triplet (μ , ν , ξ), to distinguish it from ordinary fuzzy submodules.

Remark 3.2: If μ_1 and μ_2 are two fuzzy R Γ - submodules then $(\mu, \nu, \xi)_1$, $\cap (\mu, \nu, \mu)_2$ and $(\mu, \nu, \xi)_1 + (\mu, \nu, \xi)_2$ are also fuzzy R Γ -submodules, where

$$(\mu, \nu, \xi)_{1} + (\mu, \nu, \xi)_{2}(z) = \mu_{1}(z) \land \mu_{2}(z), (\mu, \nu, \xi)_{1} \cup (\mu, \nu, \xi)_{2}(z) = \mu_{1}(z) \lor \mu_{2}(z) \text{ and}$$
$$(\mu, \nu, \xi)_{1} + (\mu, \nu, \xi)_{2}(z) = \lor \{\mu_{1}(u) \land \mu_{2}(v) \mid u, v \in M, u + v = z\}, \forall x, z \in M.$$

Definition 3.3: M is said to be simple in the fuzzy sense if every fuzzy $R\Gamma$ -submodule of M is constant.

Proposition 3.4: If (μ, ν, ξ) is a fuzzy R Γ -submodule of M then the level subset $(\mu, \nu, \xi)_t = \mu_t = \{x \in M \mid \mu(x) \ge t\}$ is always an R Γ -submodule of M for t in [0,1] called the level submodule of M, but the converse is not true as it is entirely dependent on the choice of ν and ξ . Moreover every R Γ -submodule of M can be expressed as a level submodule of M.

Remark 3.5: Proposition 3.4 provides a deviation to the usual correspondence found trivially between an ordinary fuzzy ideal and its level ideal of the crisp ring. This correspondence can be established between a fuzzy R Γ -submodule μ and its level subset only with a particular choice of (v, ξ).

Lemma 3.6: Every R Γ -submodule of an R Γ -module can be expressed as a level submodule.

Proof: Let N be an R Γ -submodule of an R Γ -module. For t \in [0,1], Define the fuzzy set μ on M as:

$$\mu(m) = \{t, m \in \mathbb{N}\}$$

{0, otherwise. Then $\mu_t = N$.

Theorem 3.7: An R Γ -module M is simple if and only if it is simple in the fuzzy sense.

Proof: Let M be simple in the fuzzy sense, and (μ, ν, ξ) a fuzzy RΓ-submodule of M. Then by definition (μ, ν, ξ) is constant. Thus $\mu(x) = a$, a constant for all x in M. Clearly MΓR $\neq 0$. From 3.4 we can infer that $0 \neq \mu_a = \{x \in M \mid \mu(x) = a\}$ is an RΓsubmodule of M. But then $M = \mu_a$. Since every RΓ-submodule of M can be expressed as a level submodule of M, M has no proper RΓ-submodule other than 0. Conversely, let M be simple. Then M has no proper RΓ-submodule. We show that every (μ, ν, ξ) is constant. Suppose (μ, ν, ξ) takes at least two distinct values t and s, say t > s. We have correspondingly two non zero RΓ-sub modules $(\mu, \nu, \xi)_t$ and $(\mu, \nu, \xi)_s$ such that $(\mu, \nu, \xi)_s \subset (\mu, \nu, \xi)_t$, which is a contradiction to our hypothesis that M is simple. So we have t = s.

Definition 3.8: A fuzzy R Γ -submodule (μ , ν , ξ) is said to be regular if, for all m in M, there exists e in R and α in Γ , we have μ (m-m α e) = μ (m).

Definition 3.9: A fuzzy R Γ -submodule (μ , ν , ξ) is said to be faithful if it satisfies the following conditions:

(1) For all m in M, there exists e in R and α in Γ , we have $\mu(m\alpha e) = \mu(m)$.

(2) $\mu(m-n) = \mu(m) \wedge \mu(n)$, for all m, n in M.

Example 3.10: Let $M = Z_6 = \{0, 1, 2, 3, 4, 5\}$, the ring of integer modulo 6.

 $R = Z_3 = \{0,1,2\}$, the ring of integer modulo 3.

And

 $\Gamma = Z_2 = \{0,1\}$, the ring of integer modulo 2.

We define the fuzzy subsets μ , ν and ξ of M, Γ and R respectively, as follows:

$$\mu$$
 (0) = μ (2) = μ (4) = 0.6 and μ (1) = μ (3) = μ (5) = 0.5.

$$v(0) = v(2) = 0.4$$
 and $v(1) = 0.3$. $\xi(0) = 0.2$ and $\xi(1) = 0.3$.

Then (μ, ν, ξ) is a faithful fuzzy RG-submodule of M.

Theorem 3.11: A faithful fuzzy R Γ -submodule (μ , ν , ξ) is regular. However not every regular fuzzy R Γ -submodule of M is faithful.

Proof: For m in M, there exist e in R and α in Γ , such that $\mu(m\alpha e) = \mu(m)$.

We have $\mu(m-m\alpha e) = \mu(m) \wedge \mu(m\alpha e) = \mu(m)) \wedge \mu(m) = \mu(m)$. For the converse part we present the following counter example.

Example 3.12: Let M = Z, the set of integers, $R = \Gamma = E$, the set of even integers and the composition be the usual product of the integers.

Consider the fuzzy subsets :

 $\mu(m) = \{a_0, \text{ if } x \text{ is even.} \\ \{a_1, \text{ otherwise for all } m \text{ in } M. \}$

$$v(\alpha) = \{b_0, \text{ if } \alpha \ge 20 \qquad \xi(x) = \{b_0, \text{ if } x \ge 20\}$$

 $\{b_1, otherwise$ $\{b_1, otherwise, for all <math>\alpha$ in Γ and x in R.

Wherever $a_0 > a_1 > b_0 > b_1$. It is easily seen that (μ, ν, ξ) is a fuzzy R Γ -submodule of M.

Since : for any m in M, α in Γ and e in R,

Case I: If m is even , then so is (m-m αe), so that μ (m-m αe) = μ (m)= a_0 .

Case II: If m is odd, then so is (m-m αe), so that μ (m-m αe) = μ (m)= a_1 .

Thus in both the cases (μ, ν, ξ) is regular. However for an odd m in M, for each α in Γ and e in R, make is always even so that $\mu(m\alpha e) \neq \mu(m)$.

Corollary 3.13: If M is simple, then every fuzzy $R\Gamma$ -submodule of M, being constant is faithful.

Proposition 3.14: If (μ, ν, ξ)₁ and (μ, ν, ξ)₂ are regular fuzzy RΓ-submodules of M and also (μ, ν, ξ)₂ is faithful, then (μ, ν, ξ)₁ \cap (μ, ν, ξ)₂, (μ, ν, ξ)₁ \cup (μ, ν, ξ)₂ and (μ, ν, ξ)₁ + (μ, ν, ξ)₂ are regular, where \cap and \cup are the usual t-norms and co-norms denoting minimum and maximum respectively.

4. FUZZY ANNIHILATOR, QUASI FAITHFUL IDEAL AND FINITELY GENERATED RΓ-SUBMODULES

Definition 4.1: A fuzzy Γ -ideal ξ of R is a fuzzy subset of R with respect to the fuzzy subset γ of Γ such that

(1) $\xi(r\alpha s) \ge \xi(r) \lor \gamma(\alpha) \lor \xi(s)$.

(2) $\xi(\mathbf{r}-\mathbf{s}) \ge \xi(\mathbf{r}) \land \xi(\mathbf{s})$, for all \mathbf{r} , \mathbf{s} in \mathbf{R} and \mathbf{a} in Γ .

Definition 4.2: A fuzzy Γ -ideal ξ_{μ} of R is said to be the fuzzy annihilator ideal of R with respect to the fuzzy R Γ -submodule μ of M, if $\mu(a\Gamma r) = \xi_{\mu}(r)$, for all a in M and r in R.

Remark 4.3: Let ξ_{μ} be the fuzzy annihilator ideal of R, with respect to (μ,γ,ξ) . If (μ,γ,ξ) is faithful, we have for all a in M, there exists an α in Γ and r in R such that $\mu(\alpha\alpha r) = \mu(\alpha)$. Moreover, for each a in M, r in R and α in Γ , $\mu(\alpha\alpha r) = \xi_{\mu}(r)$ by definition 4.2. Thus we can infer that for each a in M, there is a and r in R, such that $\mu(\alpha\alpha r) = \mu(\alpha) = \xi_{\mu}(r)$. Thus there exists a one to one map $h : M \rightarrow R$ such that $\mu = \xi_{\mu} \circ h$, where the composition $\xi_{\mu} \circ h$ is defined on M as $(\xi_{\mu} \circ h)(m) = \xi_{\mu}(h(m))$, for every m in M. Moreover if h is a surjective homomorphism, then for each s in R, there is an m in M such that h(m) = s. Also for this m, there exists $\alpha \in \Gamma$, $r \in R :$ $\mu(m\alpha r) = \mu(m)$ and $\xi_{\mu}(s\alpha r) = \xi_{\mu}(h(m)\alpha r) = \xi_{\mu}(h(m\alpha r)) = \mu(m\alpha r) = \mu(m\alpha r)$ $\mu(m) = \xi_{\mu}(h(m)) = \xi_{\mu}(s)$. Also $\xi_{\mu}(r-s) = \mu(m\alpha(r-s)) = \mu(m\alpha r-m\alpha s) = \mu(m\alpha r) \land \mu(m\alpha s)$ $= \xi_{\mu}(r) \land \xi_{\mu}(s)$, for all $m \in M$ and $\alpha \in \Gamma$. Thus we can define a quasi faithful fuzzy ideal of R as follows:

Definition 4.4: A fuzzy Γ -ideal ξ of R is said to be fuzzy Γ -left(right) quasi faithful ideal, if

(1) for each s in R, there exist α in Γ & r in R, such that $\xi(s\alpha r) = \xi(s)$. ($\xi(r)$).

(2) for r and s in R, $\xi(r-s) = \xi(r) \wedge \xi(r)$.

Definition 4.5 [7]: A Γ -ring R is commutative if sor = ras, for all r, s in R, α in Γ .

Remark 4.6: If R is commutative then every fuzzy right quasi faithful ideal is also left quasi faithful. Thus we have the following existence theorem:

Proposition 4.7: Every isomorphism $h: M \rightarrow R$, R taken as an R Γ -module determines uniquely a left (right) quasi faithful fuzzy ideal of R, with respect to a faithful fuzzy R Γ -submodule of M.

Proof: Let μ be a faithful fuzzy R Γ -submodule of M. As *h* is a surjection for each r in R there is an m in M, such that *h* (m) = r. We define a fuzzy subset ξ of R as follows:

$$\xi(\mathbf{r}) = \mu(\mathbf{m})$$
, such that $h(\mathbf{m}) = \mathbf{r}$. $\mathbf{m} \in \mathbf{M}$, $\mathbf{r} \in \mathbf{R}$.

Since μ is faithful, for each such m, there exist α in Γ and s in R so that $\mu(m\alpha s) = \mu(m)$. Then for $r \in \mathbb{R}$, $\exists m \in M$: h(m) = r and $\xi(r) = \mu(m)$. Moreover $r\alpha s \in \mathbb{R}$ and we have

$$\xi(\mathbf{r}\alpha \mathbf{s}) = \xi(h(\mathbf{m})\alpha \mathbf{s}) = \xi(h(\mathbf{m}\alpha \mathbf{s})) = \mu(\mathbf{m}\alpha \mathbf{s}) = \mu(\mathbf{m}) = \xi(\mathbf{r}).$$

Also for r, $s \in \mathbb{R}$, $\exists m, n \in \mathbb{M} : h(m) = r$, h(n) = s and $\xi(r) = \mu(m)$, $\xi(s) = \mu(n)$. We have ξ (r-s) = ξ (h(m-n))= $\mu(m-n) = \mu(m) \land \mu(n) = \xi$ (r) $\land \xi$ (s). Hence ξ is left quasi faithful.

Definition 4.8: A fuzzy R Γ -submodule (μ, γ, ξ) of the R Γ -module M is said to be finitely generated if there is a finite set { $x_i \mid i \in N, 0 \le 1 \le n$ }, n being a fixed element of the set N of natural number, of elements of M, such that for every element m \in M, \exists unique $\alpha_i \in \Gamma$ and $r_i \in R, 1 \le i \le n$,

$$\mathbf{m} = \sum_{i=1}^{n} x_{i} \alpha_{i} r_{i}, \sum_{i=1}^{n} \mu(x_{i}) \le 1, \text{ and } \mu(m) = \sum_{i=1}^{n} \mu(x_{i}) \gamma(\alpha_{i}) \xi(r_{i}).$$

Remark 4.9: As $\gamma(\alpha_i) \le 1$ and $\xi(r_i) \le 1$, for all $\alpha_i \le \Gamma$ and $r_i \in \mathbb{R}$, $\mu(m) \le \sum_{i=1}^n \mu(x_i)$.

Therefore, we require the extra condition, namely $\sum_{i=1}^{n} \mu(x_i) \le 1$, in definition 4.8.

Definition 4.10: Let (μ, γ, ξ) be a fuzzy R Γ -submodule of M, and ψ be an R Γ module endomorphism on M. The composition $\mu o \psi$ is defined on M as $(\mu o \psi)(m) = \mu(\psi(m))$ for every m in M.

Proposition 4.11: Let (μ, γ, ξ) be a finitely generated fuzzy R Γ -submodule of M, and ψ be an R Γ -module endomorphism on M. Then $(\mu o \psi, \gamma, \xi)$ is again a fuzzy R Γ -submodule of M, and μ and $\mu o \psi$ are connected by a functional equation of the form:

 $\mu o \psi + A \{\mu \times \mu o \psi\} + B \mu = 0$, where A and B are some real numbers.

Where $\mu \times \mu o \psi$ is another fuzzy R Γ -submodule of M, defined by

$(\mu \times \mu o \psi)(m) = \mu(m) \wedge \mu o \psi(m)$, for all m in M.

Proof: Let for every m in M, there is a finite set $\{x_i \mid 0 \le i \le n\}$, n being a finite natural number, of elements of M, such that \exists unique $\alpha_i \in \Gamma$ and $r_i \in R$, $1 \le i \le n$,

$$\mathbf{m} = \sum_{i=1}^{n} x_i \alpha_i r_i, \sum_{i=1}^{n} \mu(x_i) \le 1, \text{ we have } \mu(\mathbf{m}) = \sum_{i=1}^{n} \mu(x_i) \gamma(\alpha_i) \xi(r_i). \text{ Given that } \psi \text{ is an}$$

R Γ -module endomorphism on M . So by the hypothesis \exists unique $\alpha_i \in \Gamma$, $a_{ij} \in R$: i, j = 1,2,3,...n.

$$\begin{split} \Psi(\mathbf{x}_{j}) &= \sum_{i=1}^{n} a_{ij} \,\alpha_{i} \,x_{j}, \, 1 \leq j \leq n. \\ \\ \mu\left(\Psi(\mathbf{x}_{j})\right) &= \sum_{i=1}^{n} \mu(x_{i}) \,\gamma(\alpha_{i}) \,\xi(a_{ij}), \, 1 \leq j \leq n. \\ \\ &\implies \sum_{i=1}^{n} \left\{ (\mu o \Psi) \delta_{ij} - \gamma(\alpha_{i}) \,\xi(a_{ij}) \,\mu \right\}(x_{i}) = 0 \qquad \dots(a) \end{split}$$

As $M \neq 0$, at least one $x_i \neq 0$, hence we get a non zero solution for x_i from (a) only when Determinant {{ $(\mu \circ \psi)\delta_{ij} - \gamma (\alpha_i) \xi (a_{ij}) \mu$ } = 0.

Expanding the determinant, using the facts that

 $(\mu \times \mu o \psi) (m) = \mu (m) \wedge \mu o \psi(m)$, for all m in M.

 $(\mu o \psi) \times (\mu o \psi) = (\mu o \psi) \text{ and } \mu \times \mu = \mu.$

We obtain the required result as $\mu o \psi + A \{\mu \times \mu o \psi\} + B \mu = 0$, where A and B are real numbers.

Lemma 4.12: Let M be a simple R Γ -module. Then there exists a unique x in M such that every m in M can be expressed as m = x αr , for $\alpha \in \Gamma$ and $r \in R$.

Proof: We have $0 \neq x\Gamma R$, is an R Γ -submodule of M. M being simple, $x\Gamma R = M$, and hence proved the result.

Remark 4.13: Since, M is fuzzy simple i.e every fuzzy $R\Gamma$ -submodule of M is

constant implies and implied by M is simple, hence by lemma 4.11, there exists a unique x in M such that every m in M can be expressed as $m = x\alpha r$, for $\alpha \in \Gamma$ and $r \in R$. In other words M is spanned by a singleton.

Proposition 4.14: Let M be spanned by a singleton $x \in M$ and (μ, γ, ξ) , a finitely generated fuzzy RΓ-submodule of M. Let also $\alpha \in \Gamma$ be fixed such that every m in M is expressed as $m = x\alpha r$, $r \in R$. Then (μ, γ, ξ) is faithful only when ξ is a right(left) quasi faithful ideal of R. If the generator set of M consists of more than one element, (μ, γ, ξ) will no more be faithful.

Proof: Let $a \in M$, so that $a = x\alpha r$, for $r \in R$ so that by definition 4.8, $\mu(a) = \mu(x)\gamma(\alpha)\xi(r)$. Then as ξ is left quasi faithful, there exist β and s such that $\xi(r\beta s) = \xi(r)$ and we have $\mu(a\beta s) = \mu(x\alpha r\beta s) = \mu(x)\gamma(\alpha)\xi(r\beta s) = \mu(x)\gamma(\alpha)\xi(r) = \mu(a)$. Let $m, n \in M$, so that $m = x\alpha r$, $n = x\alpha s$ for $r, s \in R$, then $\mu(m-n) = \mu(x \alpha (r-s)) = \mu(x)\gamma(\alpha)\xi(r-s) = \mu(x)\gamma(\alpha)\xi(r) \wedge \mu(x)\gamma(\alpha)\xi(s) = \mu(m) \wedge \mu(n) \{\xi \text{ is left quasi faithful}\}.$

Example 4.15: We show that keeping other conditions unchanged, if M is spanned by at least two elements $\{x_1, x_2\}$, then also the faithfulness condition of (μ, γ, ξ) is not satisfied.

For m, $n \in M$, we have $m = x_1 \alpha r_1 + x_2 \alpha r_2$ and $n = x_1 \alpha s_1 + x_2 \alpha s_2$. Therefore m-n = $x_1 \alpha (r_1 - s_1) + x_2 \alpha (r_2 - s_2)$. Thus $\mu(m-n) = \mu(x_1) \gamma(\alpha) \xi (r_1 - s_1) + \mu(x_2) \gamma(\alpha) \xi(r_2 - s_2)$. Let $\xi (r_1 - s_1) = \xi (r_1)$ and $\xi (r_2 - s_2) = \xi (s_2)$. In general, we have

 $\mu(\text{m-n}) = \mu(x_1) \gamma(\alpha) \xi(r_1) + \mu(x_2) \gamma(\alpha) \xi(s_2)$

 $\neq \mu(x_1) \gamma(\alpha)\xi(r_1) + \mu(x_2) \gamma(\alpha)\xi(r_2) \wedge \mu(x_1) \gamma(\alpha)\xi(s_1) + \mu(x_2) \gamma(\alpha)\xi(s_2).$

5. R-NORMAL FUZZY SUBGROUPS AND SUBMODULES

Definition 5.1: A fuzzy subset μ of an R Γ -group G is called a fuzzy subgroup of G if the condition: $\mu(x-y) \ge \mu(x) \land m(y)$, holds.

Definition 5.2: Let G be an R Γ -group where R is a Γ -near ring with unity, γ , a fuzzy subset of Γ , ξ a fuzzy subset of R. A fuzzy subgroup μ of G is called R-normal if

 $\mu(a^{-1} \alpha g \alpha a) \ge \mu(g) \lor \gamma(\alpha) \lor \xi(a), \forall g \in G, \alpha \in \Gamma \text{ and for every unit } a \in \mathbb{R}.$

Remark 5.3: We denote the fuzzy R-normal subgroup μ with respect to the fuzzy subsets γ of Γ , ξ of R by the triplet (μ , γ , ξ).

Example 5.4: Let R ={a, b, c, d}, $\Gamma = \{\alpha\}$, set of a single operation, composition in R with respect to the binary operations "+" and " α " being given in the tables 5.4.1 and 5.4.2, so that (R,+, α) is a Γ -near ring.

+ a b c d	α abcd	+ x y	α a b c d	α x y
a a b c d	bcdba	x x x	x x x x x	b x x
b b a d c	c a b c d	y y x	y	c x y
c c d b a	d b a d c			d x y
d d c a b				
Table 5.4.1	Table 5.4.2	Table 5.4.3	Table 5.4.4	Table 5.4.5

Let $G = \{x, y\}$ be a set and the composition among the elements of G are defined in table 5.4.3 and among the elements of G and R are given in table 5.4.4 and 5.4.5.

We define the fuzzy sets μ , γ and ξ as : μ (x) = 0.6, μ (y) = 0.5. ξ (a) = 0.6, ξ (b) = 0.5, ξ (c) = 0.4, ξ (d) = 0.5. and γ (a) = 0.4. Here $a^{-1} = b$ and $b^{-1} = a$ while $c^{-1} = c$ and $d^{-1} = d$. Then (μ , γ , ξ) is an R- normal fuzzy subgroup of G.

Remark 5.5: If $f: G \rightarrow H$ is an R Γ -homomorphism and (μ, γ, ξ) is an R-normal fuzzy subgroup of G then $(f^1(\mu), \gamma, \xi)$ and $(f(\mu), \gamma, \xi)$ are also R-normal fuzzy subgroups of H. If G is an R Γ -group, H its R Γ -ideal, then we can define the quotient R Γ -group G/H in the same way as we define a quotient group in ordinary group structure, with the more general condition that: a α (g + H) α b = a α g α b + H, \forall a, b \in R, $\alpha \in \Gamma$ and g \in G.

Proposition 5.6: Let G be an R Γ -group and (μ , γ , ξ), an R-normal fuzzy subgroup of G. Then for H an R Γ -ideal of G, μ induces an R-normal fuzzy subgroup μ' of G/H given by

 $\mu'(g + H) = \mu(g) \wedge \mu(H)$, where $\mu(H) = \vee \{\mu(h) \mid h \in H\}$

Remark 5.7: The R Γ -module M can be treated as an R Γ -group also, where R is a Γ -ring instead of a Γ -near ring. Also if (μ , γ , ξ) is a fuzzy R Γ -submodule of M then we can treat it as a fuzzy R Γ -subgroup of M. Moreover, if the fuzzy subset ξ of R is

a fuzzy R Γ -ideal of R, then (μ , γ , x) is an R-normal fuzzy subgroup of M.

Lemma 5.8: Let F(M) be the set of all R-normal fuzzy submodules of M. Then F(M) is closed under addition of fuzzy submodules.

Proof: Let x be a unit in R, $\alpha \in \Gamma$, $g \in M$ and $\mu_1, \mu_2 \in F(M)$.

We have $(\mu_1 + \mu_2) (x^{-1} \alpha g \alpha x) = \vee \{\mu_1 (z) \land \mu_2 (y) | z + y = x^{-1} \alpha g \alpha x, y, z \in M\}$ = $\vee \{\mu_1 (z) \land \mu_2 (y) | x\alpha(y+z)\alpha x^{-1} = g\} = \vee \{\mu_1 (z) \land \mu_2 (y) | x\alpha y\alpha x^{-1} + x\alpha z\alpha x^{-1} = g\}$ = $\vee \{\mu_1 (x^{-1} \alpha u\alpha x) \land \mu_2 (x^{-1} \alpha v\alpha x) | u + v = g\}$ $\geq \vee \{\{\mu_1 (u) \lor \xi (x) \lor \gamma (\alpha)\} \land \{\mu_2 (v) \lor \xi(x) \lor \gamma(\alpha)\} | u + v = g\}$

 $\geq \{ \vee \left\{ \mu_1\left(u\right) \wedge \mu_2\left(v\right) \middle| u + v = g \right\} \} \vee \xi(x) \vee \gamma(\alpha) = (\mu_1 + \mu_2)(g) \vee \xi(x) \vee \gamma(\alpha).$

Remark 5.9: Under the binary operation "+", F(M) possesses a semigroup structure. So we can define the notion of an additive function on F(M).

Definition 5.10: A map $f: A \rightarrow B$, between two semigroups is said to be an additive function, if f(a + b) = f(a) + f(b), $\forall a, b \in A$.

Proposition 5.11: There exists an additive function between F(M) and F(M/H), the semigroups consisting of all R-normal fuzzy R Γ -submodules of M and M/H respectively with respect to the fuzzy subset γ of Γ and fuzzy R Γ -ideal ξ of R, the elements of M/H being R-normal fuzzy R Γ -submodules induced by those of M as defined in 5.7.

Proof: For μ_1 and $\mu_2 \in F(M)$, we have by lemma 5.9, $\mu_1 + \mu_2 \in F(M)$. We define the function $f : F(M) \to F(M/H)$ as: $f(\mu) = \mu'$, where $\mu'(g + H) = \mu(g) \land \mu(H)$, and $\mu(H) = \lor {\mu(h) | h \in H}$ for every $g \in G$.

Now we discuss an interesting uniqueness property under isomorphism of a fuzzy map as defined in [2].

Definition 5.12 [2]: A fuzzy map *f* from a set X to a set Y is an ordinary map from X to the set of all fuzzy subsets of Y satisfying the following conditions:

- (i) for all $x \in X$, there exists $y_x \in Y$ such that $(f(x))(y_y)=1$
- (ii) for all $x \in X$, $(f(x))(y_1)=(f(x))(y_2)$ implies $y_1 = y_2$.

Remark 5.13 [2]: A fuzzy map *f* from X to Y gives rise to a unique ordinary map $\mu_f: X \times Y \to I$ given by $\mu_f(x, y) = (f(x))(y)$ where I is the interval [0,1]

Definition 5.14: Let M and N be two R Γ -modules and $f: M \to N$ be a fuzzy mapping. Then f is said to be a fuzzy homomorphism if the following hold:

(1)
$$\mu_f(\mathbf{m}_1 + \mathbf{m}_2, \mathbf{n}) = \bigvee_{n=n_1+n_2} \{ \mu_f(\mathbf{m}_1, \mathbf{n}_1) \land \mu_f(\mathbf{m}_2, \mathbf{n}_2) \}$$

(2) $\mu_f(\mathbf{m}, \mathbf{r}\alpha, \mathbf{n}) \ge \mu_f(\mathbf{m}, \mathbf{n})$, for all $\mathbf{m}, \mathbf{m}_1, \mathbf{m}_2 \in \mathbf{M}, \alpha \in \Gamma$ and $\mathbf{n}, \mathbf{n}_1, \mathbf{n}_2 \in \mathbf{N}, \mathbf{r} \in \mathbf{R}$.

Proposition 5.15: Let $f : F(M) \to F(M/H)$ be the additive function, $\phi : M \to M$ a fuzzy homomorphism, such that $\phi(m)$ is an R-normal fuzzy R Γ -submodule of M for every $m \in M$. Then the composite map $f \circ \phi : M \to F(M/H)$ defined by $f \circ \phi$ (m) = $f(\phi(m)), \forall m \in M$ is also a fuzzy homomorphism.

We generalize the proposition 5.15 as follows:

Proposition 5.16: Let $\lambda : M \to M'$ be a surjective R Γ -homomorphism between the R Γ - modules M and M', $f : F(M) \to F(M')$, an additive function and $\phi : M \to M'$, a fuzzy homomorphism such that $\phi(m)$ is an R-normal fuzzy R Γ submodule of M for every $m \in M$. Then the composite map $fo \phi$ is again a fuzzy homomorphism.

Proof: We have the composite map $fo \phi : M \to F(M')$ defined by $fo \phi (m) = f(\phi(m)), \forall m \in M$. Moreover for $\mu \in F(M)$ there is a $\mu' \in F(M')$ such that $f(\mu) = \mu'$, whenever for $g \in M, \exists g' \in M', \lambda(g) = g'$, we have $\mu'(g') = \mu(g)$.

(a) μ' thus defined is R-normal R Γ -fuzzy submodule of M' with respect to the fuzzy subsets γ of G , and the fuzzy R Γ -ideal ξ of R .

(b) fo ϕ is well defined i.e it is an R-normal fuzzy R Γ -submodule of M'.

(c) Since ϕ is a fuzzy map, for $g \in M$, $\exists g^* \in M : \phi(g)(g^*) = 1$. λ being surjective $\exists g' \in M' : \lambda(g^*) = g'$. Hence for $\phi(g)(g') = f(\phi(g))(g') = \phi(g)(g^*) = 1$.

(d) fo ϕ (g) (g₁') = fo ϕ (g) (g₂') \Rightarrow f(ϕ (g))(g₁') = f(ϕ (g))(g₂')

⇒ There exist g_1 and g_2 : $\lambda(g_1) = g_1'$ and $\lambda(g_2) = g_2'$ respectively and we have $\phi(g)(g_1) = \phi(g)(g_2) \Rightarrow g_1 = g_2$. Thus *f*o ϕ is a fuzzy homomorphism.

REFERENCES

- B. Banerjee and S. Borkotokey: Γ-semi group in Fuzzy setting; J. Fuzzy Math, 11, (2003) no. 3, 995-1003.
- [2] F.P Choudhury, A.B Chakraborty, S.S Khare, A note on Fuzzy Subgroups and Fuzzy Homomorphism; J. Math. Anal. Appl. 131(1988), 537-553.
- [3] J.N. Mordeson and D.S. Malik , *Fuzzy Commutative Algebra*, World Scientific Pub. Co .Pte. Ltd (1998).
- [4] N. Nobusawa, On a generalization of ring theory, Osaka J. Math. 1 (1964). 81-89.
- [5] R. Kumar, *Certain fuzzy ideals of rings redefined*, Fuzzy Sets and Systems, **46** (1992) 251-260.
- [6] S.M. Hong and Y.B. Jun: A note on Fuzzy ideals in G-Rings; Bull.Honam. Math. Soc. 12 (1995) 39-48.
- [7] T.S. Ravisankar and U.S. Shukla: *Structure of* G-*Ring*; Pacific J. of Maths; **30**(1979) no. 2, 537-559.
- [8] Y.I. Kwon, Y.B.Jun, J.W. Park : *MG-Homomorphisms and MG-ideals of MG-groups*; Pusan Kyongnam, Math Journal **12** (1996), 47-54.

Surajit Borkotokey

Lecturer, Department of Mathematcis Dibrugarh University, Dibrugarh, Assam (India) E-mail: surajitbor@yahoo.com