International Review of Fuzzy Mathematics Vol. 3 No. 1 (June, 2018)

Received: 13th March 2017 Revised: 24th April 2017 Accepted: 10th October 2017

Young Bae Jun & Andrzej Walendziak

FUZZY IDEALS OF PSEUDO MV-ALGEBRAS

ABSTRACT. The notion of fuzzy (implicative) ideals of a pseudo MV-algebra is introduced, and its characterizations are established. Conditions for a fuzzy set to be a fuzzy ideal are given. Given a fuzzy set μ , the least fuzzy ideal containing μ is constructed.

2000 Mathematics Subject Classification. 06D35, 08A72.

Key words and phrases: pseudo MV-algebra, (fuzzy) ideal, (fuzzy) implicative ideal.

1. INTRODUCTION

The ideal theory of pseudo MV-algebras is studied in [1] and [2]. In particular, the second author gave characterizations of ideals, and introduced the notion of implicative ideals in pseudo MV-algebras (see [2]). In this paper, we introduce the notion of fuzzy (implicative) ideals in a pseudo MV-algebra. We give characterizations of fuzzy (implicative) ideals, and provide conditions for a fuzzy set to be a fuzzy ideal. Given a fuzzy set μ , we make the least fuzzy ideal containing μ .

2. PRELIMINARIES

A *pseudo MV-algebra* is an algebra $(M; \oplus, -, \tilde{}, 0, 1)$ of type (2, 1, 1, 0, 0) such that the following axioms hold for all $x, y, z \in M$ with an additional binary operation \odot defined via

$$y \odot x = (x^- \oplus y^-)^{\sim}$$
:

- (a1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$,
- (a2) $x \oplus 0 = 0 \oplus x = x$,
- (a3) $x \oplus 1 = 1 \oplus x = 1$,
- (a4) $1^{\sim} = 0, 1^{-} = 0,$

- (a5) $(x^- \oplus y^-)^{\sim} = (x^{\sim} \oplus y^{\sim})^-,$
- (a6) $x \oplus x^{\sim} \odot y = y \oplus y^{\sim} \odot x = x \odot y^{-} \oplus y = y \odot x^{-} \oplus x$,
- (a7) $x \odot (x^- \oplus y) = (x \oplus y^{\sim}) \odot y$,
- (a8) $(x^{-})^{\sim} = x.$

If we define $x \le y$ if and only if $x^- \oplus y = 1$, then \le is a partial order such that *M* is a bounded distributive lattice with the join $x \lor y$ and the meet $x \land y$ given by

$$x \lor y = x \oplus x^{\sim} \odot y = x \odot y^{-} \oplus y,$$
$$x \land y = x \odot (x^{-} \oplus y) = (x \oplus y^{\sim}) \odot y.$$

Let *M* be a pseudo *MV*-algebra *M* and $x, y, z \in M$. Then the following properties are valid (see [1]).

- (b1) $x \odot y \le x \land y \le x \lor y \le x \oplus y$.
- (b2) $(x \lor y) = x \land y$.
- (b3) $x \le y \Rightarrow z \odot x \le z \odot y, x \odot z \le y \odot z.$
- (b4) $z \oplus (x \land y) = (z \oplus x) \land (z \oplus y).$
- (b5) $z \odot (x \oplus y) \le z \odot x \oplus y$.
- (b6) $(x^{\sim})^{-} = x.$
- (b7) $x \odot 1 = 1 \odot x = x$.
- (b8) $x \oplus x^{\tilde{}} = 1, x^{\tilde{}} \oplus x = 1.$
- (b9) $x \odot x^{-} = 0, x^{-} \odot x = 0.$
- (b10) $x \odot (y \odot z) = (x \odot y) \odot z$.

A subset I of a pseudo MV-algebra M is called an *ideal* of M (see [2]) if it satisfies:

- (c1) $0 \in I$,
- (c2) If $x, y \in I$, then $x \oplus y \in I$,
- (c3) If $x \in I$, $y \in M$ and $y \le x$, then $y \in I$.

For every subset $W \subseteq M$, we denote by $\langle W \rangle$ the ideal of M generated by W, that is, $\langle W \rangle$ is the smallest ideal containing W. By [1, Lemma 2.5],

 $\langle W \rangle = \{ x \in M \mid x \le y_1 \oplus \ldots \oplus y_k \text{ for some } y_1, \ldots, y_k \in W \}.$

3. FUZZY IDEALS

We give the definition of a fuzzy ideal in a pseudo MV-algebra.

Definition 3.1. A fuzzy set μ in a pseudo *MV*-algebra *M* is called a *fuzzy ideal* of *M* if it satisfies:

(d1) $(\forall x, y \in M)$ $(\mu(x \oplus y) \ge \min \{\mu(x), \mu(y)\}),$

(d2) $(\forall x, y \in M) (y \le x \Longrightarrow \mu(y) \ge \mu(x)).$

It is easily seen that (d2) forces

(d3) $(\forall x \in M) (\mu(0) \ge \mu(x)).$

Example 3.2. Let *I* be an ideal of a pseudo *MV*-algebra *M* and let μ_I be a fuzzy set in *M* defined by

$$\mu_{I}(x) := \begin{cases} \alpha & if \ x \in I, \\ \beta & otherwise, \end{cases}$$

where $\alpha, \beta \in [0, 1]$ with $\alpha > \beta$. Let $x, y \in M$. If $x, y \in I$, then $x \oplus y \in I$ and so

$$\mu_{I}(x \oplus y) = \alpha = \min \{\mu_{I}(x), \mu_{I}(y)\}.$$

If $x \notin I$ or $y \notin I$, then $\mu_I(x) = \beta$ or $\mu_I(y) = \beta$. Thus

 $\mu_{I}(x \oplus y) \ge \beta = \min \{\mu_{I}(x), \mu_{I}(y)\}.$

Let $x, y \in M$ be such that $y \le x$. If $y \in I$, then $\mu_I(y) = \alpha \ge \mu_I(x)$. Assume that $y \notin I$. Then $x \notin I$, and thus $\mu_I(y) = \beta = \mu_I(x)$. Therefore μ_I is a fuzzy ideal of M.

Proposition 3.3. Let µ be a fuzzy ideal of a pseudo MV-algebra M. Then

- (i) $(\forall x, y \in M) (\mu(x \odot y) \ge \min \{\mu(x), \mu(y)\}).$
- (ii) $(\forall x, y \in M) (\mu(x \land y) \ge \min \{\mu(x), \mu(y)\}).$
- (iii) $(\forall x, y \in M) (\mu(x \land y) = \min \{\mu(x), \mu(y)\}).$
- (iv) $(\forall x, y \in M) (\mu(x \oplus y) = \min \{\mu(x), \mu(y)\}).$

Proof. Since $x \odot y \le x \land y \le x \lor y \le x \oplus y$ for all $x, y \in M$, it follows from (d1) and (d2) that

$$\mu(x \odot y) \ge \mu(x \land y) \ge \mu(x \lor y) \ge \mu(x \oplus y) \ge \min \{\mu(x), \mu(y)\}.$$

Since $x \oplus y \ge x \lor y \ge x$, *y* for all $x, y \in M$, we have $\mu(x \oplus y) \le \mu(x)$, $\mu(y)$ and $\mu(x \lor y) \le \mu(x)$, $\mu(y)$ by (d2). This completes the proof.

Theorem 3.4. Let μ be a fuzzy set in a pseudo MV-algebra M. Then μ is a fuzzy ideal of M if and only if it satisfies (d1) and

(d4) $(\forall x, y \in M) (\mu(x \lor y) \ge \mu(x)).$

Proof. Let μ be a fuzzy ideal of M and let $x, y \in M$. Since $x \land y \leq x$, it follows from (d2) that $\mu(x \land y) \geq \mu(x)$. Suppose that μ satisfies (d1) and (d4). Let $x, y \in M$ be such that $y \leq x$. Then $x \land y = y$ and so $\mu(y) = \mu(x \land y) \geq \mu(x)$ by (d4). Hence μ is a fuzzy ideal of M.

Proposition 3.5. Every fuzzy ideal μ of a pseudo MV-algebra M satisfies the following inequality

$$(\forall x, y \in M) \ (\mu(y) \ge \min \{\mu(x), \mu(x \ \odot y)\}). \tag{1}$$

Proof. Let μ be a fuzzy ideal of a pseudo *MV*-algebra *M*. Since $y \le x \lor y = x \oplus x^{\sim}$ \odot *y* for all *x*, $y \in M$, it follows from (d1) and (d2) that

$$\mu(y) \ge \mu(x \oplus x^{\sim} \odot y) \ge \min \{\mu(x), \, \mu(x^{\sim} \odot y)\}.$$

This completes the proof.

Proposition 3.6. Let μ be a fuzzy set in a pseudo MV-algebra M that satisfies (d3) and (1). Then μ satisfies the condition (d2) and

$$(\forall x, y \in M) \ (\mu(y) \ge \min \{\mu(x), \mu(y \odot x^{-})\}).$$

$$(2)$$

Proof. Assume that μ satisfies (d3) and (1). Let $x, y \in M$ be such that $y \le x$. Using (b3) and (b9), we have $x \ \odot y \le x \ \odot x = 0$ and so $x \ \odot y = 0$. It follows from (d3) and (1) that

$$\mu(y) \ge \min \{\mu(x), \, \mu(x \, \odot \, y)\} = \min \{\mu(x), \, \mu(0)\} = \mu(x)$$

so that (d2) is valid. Note that

 $(y \odot x^{-})^{\sim} \odot (y \odot x^{-} \oplus x) \le (y \odot x^{-})^{\sim} \odot (y \odot x^{-}) \oplus x = 0 \oplus x = x$

so from (d2) that $\mu(x) \le \mu((y \odot x^{-})^{\sim} \odot (y \odot x^{-} \oplus x))$. Now since

 $x \circ \odot y \le x \oplus x \circ \odot y = y \odot x \oplus x,$

it follows from (d2) that $\mu(x \odot y) \ge \mu(y \odot x \oplus x)$ so that

 $\mu(y) \geq \min \{\mu(x), \mu(x \odot y)\} \geq \min \{\mu(x), \mu(y \odot x \odot y)\}$

- $\geq \min \{\mu(x), \min \{\mu(y \odot x^{-}), \mu((y \odot x^{-})^{\sim} \odot (y \odot x^{-} \oplus x))\}\}$
- $\geq \min \{\mu(x), \min \{\mu(y \odot x), \mu(x)\}\}$
- $= \min \{\mu(x), \mu(y \odot x)\}.$

This completes the proof.

Proposition 3.7. If a fuzzy set μ in a pseudo MV-algebra M satisfies conditions (d3) and (2), then μ is a fuzzy ideal of M.

Proof. Let $x, y \in M$ be such that $y \le x$. Then $y \odot x^- \le x \odot x^- = 0$ by (b3) and (b9), and thus $y \odot x^- = 0$. Using (d3) and (2), we have

 $\mu(y) \ge \min \{\mu(x), \, \mu(y \odot x^{-})\} = \min \{\mu(x), \, \mu(0)\} = \mu(x).$

Thus (d2) is valid. Note that

$$(x \oplus y) \odot y^{-} = (x \oplus (y^{-})^{\sim}) \odot y^{-} = x \land y^{-} \le x$$

for all $x, y \in M$ so from (2) and (d2) that

$$\mu(x \oplus y) \ge \min \{\mu(y), \mu((x \oplus y) \odot y^{-})\} \ge \min \{\mu(y), \mu(x)\}.$$

Hence (d1) is valid, and μ is a fuzzy ideal of *M*.

Combining Propositions 3.5, 3.6 and 3.7, we have the following characterization of a fuzzy ideal in a pseudo *MV*-algebra.

Theorem 3.8. For a fuzzy set μ in a pseudo MV-algebra M, the following are equivalent:

- (i) μ is a fuzzy ideal of M.
- (ii) μ satisfies the conditions (d3) and (1).
- (iii) μ satisfies the conditions (d3) and (2).

Proposition 3.9. Let μ be a fuzzy set in a pseudo MV-algebra M. If μ satisfies conditions (d3) and

$$(\forall x, y, z \in M) \ (\mu(x \odot y) \ge \min \{\mu(x \odot y \odot z), \mu(z \odot y)\}), \tag{3}$$

then μ is a fuzzy ideal of M. Moreover, μ satisfies:

(i) $(\forall x, y \in M) (\mu(x \odot y) = \mu(x \odot y \odot y)),$

(ii) $(\forall x \in M) (\forall n \in \mathbb{N}) (\mu(x) = \mu(x^n))$, where $x^n = x^{n-1} \odot x = x \odot x^{n-1}$ and $x^0 = 1$.

Proof. Taking x = y, y = 1 and $z = x^-$ in (3) and using (a8) and (b7), we have $\mu(y) = \mu(y \odot 1) \ge \min \{\mu(y \odot 1 \odot x^-), \mu((x^-)^- \odot 1)\} = \min \{\mu(y \odot x^-), \mu(x)\}.$

It follows from Theorem 3.8 that μ is a fuzzy ideal of *M*. Now taking z = y in (3) and using (b9) and (d3), we get

$$\mu(x \odot y) \ge \min \{\mu(x \odot y \odot y), \mu(y^{\sim} \odot y)\}$$

= min { $\mu(x \odot y \odot y), \mu(0)$ }
= $\mu(x \odot y \odot y).$

On the other hand, since $x \odot y \odot y \le x \odot y$, we see that $\mu (x \odot y \odot y) \ge \mu (x \odot y)$. Then (i) holds.

The proof of (ii) is by induction on *n*. If n = 1, then (ii) is obviously true. If we put x = 1 and y = x in (i), then

 $\mu(x) = \mu(1 \odot x) = \mu(1 \odot x \odot x) = \mu(x^2).$

Now assume that (ii) is valid for every positive integer k > 2. Then

$$\mu(x^{k+1}) = \mu(x^{k-1} \odot x \odot x) = \mu(x^{k-1} \odot x) = \mu(x^k) = \mu(x).$$

Therefore (ii) is true.

Lemma 3.10. For any fuzzy set μ in a pseudo MV-algebra M, the condition (3) is equivalent to the following condition:

$$(\forall x, y, z \in M) \ (\mu(x \odot y) \ge \min \{\mu(x \odot y \odot z^{-}), \mu(z \odot y)\}.$$
(4)

Proof. (3) \Rightarrow (4): Let $x, y, z \in M$. By (3),

 $\mu(x \odot y) \ge \min \{\mu(x \odot y \odot z^{-}), \, \mu((z^{-})^{\sim} \odot y)\}.$

Since $(\overline{z})^{\sim} = \overline{z}$, we have (4).

 $(4) \Rightarrow (3)$: Applying (4) we see that

$$\mu(x \odot y) \ge \min \{\mu(x \odot y \odot (z^{\sim})), \mu(z^{\sim} \odot y)\}.$$

From this we obtain (3), because $(\tilde{z}) = z$ by (b6).

In [2] we introduced the notion of implicative ideals in pseudo *MV*- algebras. An ideal *I* of a pseudo *MV*-algebra *M* is said to be *implicative* if it satisfies the following implication:

$$(\forall x, y, z \in M) (x \odot y \odot z \in I, z^{\sim} \odot y \in I \Rightarrow x \odot y \in I).$$

Definition 3.11. Let μ be a fuzzy ideal of a pseudo *MV*-algebra *M*. We say that μ is *fuzzy implicative* if it satisfies the condition (3) (or (4)).

Proposition 3.12. Let I be an ideal of a pseudo MV-algebra M. Then I is implicative if and only if the fuzzy set μ_1 which is described in Example 3.2 is a fuzzy implicative ideal of M.

Proof. Straightforward.

Lemma 3.13. Let μ be a fuzzy ideal of a pseudo MV-algebra M. Then

 $(\forall x, y \in M) \ (\mu(x \odot y) \ge \min \ \{\mu(x \odot y \odot y), \ \mu(y \land y^{\tilde{}})\}).$

Proof. Applying (b7) and (b8) we have

 $x \odot y = (x \odot y) \odot 1 = (x \odot y) \odot (y \oplus y),$

and so $x \odot y \le (x \odot y) \odot y \oplus y^{\sim}$ by (b5). Using (b4) we obtain

 $\begin{aligned} x \odot y &\leq y \land (x \odot y \odot y \oplus y^{\tilde{}}) \\ &\leq (x \odot y \odot y \oplus y) \land (x \odot y \odot y \oplus y^{\tilde{}}) \\ &= x \odot y \odot y \oplus (y \land y^{\tilde{}}). \end{aligned}$

It follows from (d2) and (d1) that

 $\mu(x \odot y) \ge \mu(x \odot y \odot y \oplus (y \land y^{\sim}) \ge \min \{\mu(x \odot y \odot y), \mu(y \land y^{\sim})\}.$

This completes the proof.

Theorem 3.14. Let μ be a fuzzy ideal of a pseudo MV-algebra M. Then the following statements are equivalent:

- (i) μ is fuzzy implicative.
- (ii) $(\forall x, y \in M) (\mu(x \odot y) = \mu(x \odot y \odot y)).$
- (iii) $(\forall x \in M) (x^2 = 0 \Longrightarrow \mu(x) = \mu(0)).$
- (iv) $(\forall x \in M) (\mu(x \land x) = \mu(0)).$
- (v) $(\forall x \in M) (\mu(x \land x^{\sim}) = \mu(0)).$

Proof. (i) \Rightarrow (ii): This is by Proposition 3.9.

(ii) \Rightarrow (iii): Taking x = 1 and y = x in (ii), we get

 $\mu(x) = \mu(1 \odot x) = \mu(1 \odot x \odot x) = \mu(x^2).$

Then (iii) is obviously true.

(iii) \Rightarrow (iv): Using (b3) and (b9) we have

 $(x \wedge x^{-})^{2} = (x \wedge x^{-}) \odot (x \wedge x^{-}) \le x \odot x^{-} = 0.$

Consequently, $(x \land \overline{x})^2 = 0$. Hence $\mu(x \land \overline{x}) = \mu(0)$.

(iv) \Rightarrow (v): Since $x \land x^{\sim} = x^{\sim} \land x = x^{\sim} \land (x^{\sim})^{-}$, it follows from (iv) that $\mu(x \land x^{\sim}) = \mu(0)$.

(v) \Rightarrow (i): By Lemma 3.13, $\mu(x \odot y) \ge \min \{\mu(x \odot y \odot y), \mu(y \land y^{\sim})\}$. Therefore $\mu(x \odot y) \ge \min \{\mu(x \odot y \odot y), \mu(0)\} = \mu(x \odot y \odot y)$. Applying (b3) and (b5) we get

 $x \odot y \odot y \le x \odot y \odot (z \lor y) = x \odot y \odot (z \oplus z^{\sim} \odot y) \le x \odot y \odot z \oplus z^{\sim} \odot y.$

Since μ is a fuzzy ideal, we have

 $\mu(x \odot y \odot y) \ge \mu(x \odot y \odot z \oplus z^{\sim} \odot y) \ge \min \{\mu(x \odot y \odot z), \mu(z^{\sim} \odot y)\}.$

Thus μ satisfies the condition (3), i.e., μ is fuzzy implicative.

Using the level subset of a fuzzy set, we give a characterization of a fuzzy ideal.

Theorem 3.15. Let μ be a fuzzy set in a pseudo MV-algebra M. Then μ is a fuzzy ideal of M if and only if its nonempty level subset

$$U(\mu; \alpha) := \{ x \in M \mid \mu(x) \ge \alpha \}$$

is an ideal of M for all $\alpha \in [0, 1]$.

Proof. Assume that μ is a fuzzy ideal of M and let $\alpha \in [0, 1]$ be such that $U(\mu; \alpha) \neq \theta$. Obviously $0 \in U(\mu; \alpha)$. Let $x, y \in M$ be such that $x, y \in U(\mu; \alpha)$. Then $\mu(x) \ge \alpha$. and $\mu(y) \ge \alpha$. It follows from (d1) that

$$\mu(x \oplus y) \ge \min \{\mu(x), \mu(y)\} \ge \alpha$$

so that $x \oplus y \in U(\mu; \alpha)$. Let $x, y \in M$ be such that $x \in U(\mu; \alpha)$ and $y \le x$. Then $\mu(y) \ge \mu(x) \ge \alpha$ by (d2), and so $y \in U(\mu; \alpha)$. Therefore $U(\mu; \alpha)$ is an ideal of M.

Conversely suppose that $U(\mu; \alpha)$ is a nonempty ideal of M for all $\alpha \in [0, 1]$. If (d1) is not valid, then there exist $a, b \in M$ such that $\mu(a \oplus b) < \min \{\mu(a), \mu(b)\}$. Taking

$$\beta = \frac{1}{2} (\mu (a \oplus b) + \min \{\mu (a), \mu (b)\}),$$

we get $\mu(a \oplus b) < \beta < \min \{\mu(a), \mu(b)\}$. Therefore $a, b \in U(\mu; \beta)$ but $a \oplus b \notin U(\mu; \beta)$. This is a contradiction, and (d1) is valid. Finally let $x, y \in M$ be such that $y \le x$.

Assume that $\mu(y) < \mu(x)$ and let $\gamma = \frac{1}{2} (\mu(y) + \mu(x))$. Then $\mu(y) < \gamma < \mu(x)$ and thus

 $x \in U(\mu; \gamma)$ and $y \notin U(\mu; \gamma)$. This is impossible, and μ is a fuzzy ideal of M.

Corollary 3.16. If μ is a fuzzy ideal of a pseudo MV-algebra M, then the set

 $M_a := \{x \in M \mid \mu(x) \ge \mu(a)\}$

is an ideal of M for every $a \in M$.

Proof. Straightforward.

Theorem 3.17. Let μ be a fuzzy set in a pseudo MV-algebra M. Then μ satisfies the condition (3) if and only if for all $x, y, z \in M$ and $\alpha \in [0, 1]$, whenever $x \odot y \odot z$ $\in U(\mu; \alpha)$ and $z^{\sim} \odot y \in U(\mu; \alpha)$ then $x \odot y \in U(\mu; \alpha)$.

Proof. Let $x, y, z \in M$ and $\alpha \in [0, 1]$ be such that $x \odot y \odot z \in U(\mu; \alpha)$ and $z^{\sim} \odot y \in U(\mu; \alpha)$. Then $\mu(x \odot y \odot z) \ge \alpha$ and $\mu(z^{\sim} \odot y) \ge \alpha$. It follows from (3) that

 $\mu(x \odot y) \ge \min \{\mu(x \odot y \odot z), \, \mu(z^{\sim} \odot y)\} \ge \alpha$

so that $x \odot y \in U(\mu; \alpha)$. Conversely, if the condition (3) is not valid, then

 $\mu(a \odot b) < \min \{\mu(a \odot b \odot c), \mu(c^{\sim} \odot b)\}$

for some $a, b, c \in M$. Let

$$\beta := \frac{1}{2} \ (\mu(a \odot b) + \min \{\mu(a \odot b \odot c), \mu(c ~ \odot b)\}).$$

Then $\mu(a \odot b) < \beta < \min \{\mu(a \odot b \odot c), \mu(c^{\sim} \odot b)\}$, and so $a \odot b \odot c \in U(\mu; \beta)$ and $c^{\sim} \odot b \in U(\mu; \beta)$ but $a \odot b \neq U(\mu; \beta)$. This is a contradiction.

Theorems 3.15 and 3.17 together yield the following corollary.

Corollary 3.18. Let μ be a fuzzy set in a pseudo MV-algebra M. Then μ is a fuzzy implicative ideal of M if and only if for each $\alpha \in [0, 1]$, $U(\mu; \alpha) = \theta$ or $U(\mu; \alpha)$ is an implicative ideal of M.

Theorem 3.19. For a fuzzy set μ in a pseudo MV-algebra M, let μ^* be a fuzzy set in M defined by

$$\mu^*(x) := \sup \left\{ \alpha \in [0, 1] \mid x \in \langle U(\mu; \alpha) \rangle \right\}$$

for all $x \in M$. Then μ^* is the least fuzzy ideal of M that contains μ .

Proof. For any $\beta \in \text{Im}(\mu^*)$, let $\beta_n = \beta - \frac{1}{n}$ for $n \in \mathbb{N}$. Let $x \in U(\mu^*; \beta)$. Then

 $\mu^*(x) \ge \beta$, which implies that

$$\sup \{ \alpha \in [0, 1] \mid x \in \langle U(\mu; \alpha) \rangle \} \ge \beta > \beta - \frac{1}{n} = \beta_n, \forall_n \in \mathbb{N}.$$

Hence for any $n \in \mathbb{N}$ there exists $\gamma_n \in \{\alpha \in [0, 1] | x \in \langle U(\mu; \alpha) \rangle\}$ such that $\gamma_n > \beta_n$. Thus $x \in \langle U(\mu; \gamma_n) \rangle$ for all $n \in \mathbb{N}$. Consequently, $x \in \bigcap_{n \in \mathbb{N}} \langle U(\mu; \gamma_n) \rangle$. On the other

hand, if $x \in \bigcap_{n \in \mathbb{N}} \langle U(\mu; \gamma_n) \rangle$, then $\gamma_n \in \{\alpha \in [0, 1] \mid x \in \langle U(\mu; \alpha) \rangle\}$ for any $n \in \mathbb{N}$. Therefore

$$\beta - \frac{1}{n} = \beta_n < \gamma_n \le \sup \left\{ \alpha \in [0, 1] \mid x \in \langle U(\mu; \alpha) \rangle \right\} = \mu^*(x), \forall_n \in \mathbb{N}.$$

Since *n* is arbitrary, it follows that $\beta \leq \mu^*(x)$ so that $x \in U(\mu^*; \beta)$. Hence $U(\mu^*; \beta)$ = $\bigcap_{n \in \mathbb{N}} \langle U(\mu; \gamma_n) \rangle$, which is an ideal of *M*. Therefore we conclude that μ^* is a fuzzy ideal of *M* by Theorem 3.15. We now prove that μ^* contains μ . For any $x \in M$, let $\beta \in \{\alpha \in [0, 1] \mid x \in U(\mu; \alpha)\}$. Then $x \in U(\mu; \beta)$ and thus $x \in \langle U(\mu; \beta) \rangle$. Therefore $\beta \in \{\alpha \in [0, 1] \mid x \in \langle U(\mu; \alpha) \rangle\}$, which implies that

$$\{\alpha \in [0, 1] \mid x \in U(\mu; \alpha)\} \subseteq \{\alpha \in [0, 1] \mid x \in \langle U(\mu; \alpha) \rangle\}.$$

It follows that

$$\mu(x) \leq \sup \{ \alpha \in [0, 1] \mid x \in U(\mu; \alpha) \}$$

$$\leq \sup \{ \alpha \in [0, 1] \mid x \in \langle U(\mu; \alpha) \rangle \}$$

$$= \mu^*(x)$$

which shows that μ^* contains μ . Finally, let v be a fuzzy ideal of M containing μ . Let

 $x \in M$ and let $\mu^*(x) = \beta$. Then $x \in U(\mu^*; \beta) = \bigcap_{n \in \mathbb{N}} \langle U(\mu; \gamma_n) \rangle$, and so $x \in \langle U(\mu; \gamma_n) \rangle$ for

all $n \in \mathbb{N}$. Consequently,

 $x \le y_1 \oplus \ldots \oplus y_k$ for some $y_1, \ldots, y_k \in U(\mu, \gamma_n)$

(see the last paragraph of Section 2). It is easy to check that

 $\mu(x) \ge \min \{\mu(y_1), \ldots, \mu(y_k)\} \ge \gamma_n.$

Then $v(x) \ge \mu(x) \ge \gamma_n > \beta_n = \beta - \frac{1}{n}$ for every $n \in \mathbb{N}$, so that $v(x) \ge \beta = \mu^*(x)$ since

n is arbitrary. This shows that $\mu^* \subseteq \nu$, and the proof is complete.

REFERENCES

- G. Georgescu and A. Iorgulescu, *Pseudo MV -algebras*, Multi. Val. Logic 6 (2001), 95-135.
- [2] A. Walendziak, *On implicative ideals of pseudo MV -algebras*, Sci. Math. Jpn. Online e-2005 (2005), 363-369.

Y.B. Jun

Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea E-mail: ybjun@gnu.ac.kr jamjana@korea.com

A. Walendziak

Institute of Mathematics and Physics University of Podlasie, 08-110 Siedlce, Poland E-mail: walent@interia.pl