International Review of Fuzzy Mathematics Vol. 3 No. 1 (June, 2018)

Received: 15th April 2017 Revised: 10th May 2017 Accepted: 17th September 2017

Tazid Ali

FUZZY QUOTIENT SPACE OF A VECTOR SPACE

ABSTRACT: In this paper we have introduced the concept of cosets of a subspace in a vector space V generated by an element of the space and a translational invariant fuzzy subset μ of the space. We have proved some results analogous to certain basic results of the classical vector space. Finally we have defined the quotient space of V generated by a subspace and μ .

Keywords: Cosets, Translational invariant fuzzy subset, Quotient space.

1. INTRODUCTION

The notion of *fuzzy subset* was initiated by Zadeh [3]. Rosenfeld introduced the concept of *fuzzy subgroups* in his classical paper [2] in 1971. Ray [1] introduced the concept of *translational invariant fuzzy subset*. In [1] Ray obtained *quotient group* of a *group* generated by a *subgroup* and a *fuzzy subset*. Ali and Ray [4] obtained *quotient ring* of a *ring* generated by an *ideal* and a *fuzzy subset*. In this paper the result is extended to *vector space*.

2. PRELIMINARIES

Let * be a *binary operation* on a nonempty set S and μ be a *fuzzy subset* of S.

Definition 2.1. [1] μ is said to be *left translational invariant* with respect to * if $\mu(x) = \mu(y) \Rightarrow \mu(a * x) = \mu(a*y) \forall x, y, a \in S.$

Definition 2.2. [1] μ is said to be *right translational invariant* with respect to * if $\mu(x) = \mu(y) \Rightarrow \mu(x*a) = \mu(y*a) \forall x, y, a \in S$.

Definition 2.3. [1] μ is said to be *translational invariant* with respect to * if μ is both *left* and *right translational invariant* with respect to *.

Remark 2.4. If μ is *commutative*, i.e., $\mu(x*y) = \mu(y*x) \forall x$, $y \in S$, then μ is *left translational invariant* if and only if μ is *right translational invariant*.

The above notion of *translational invariant fuzzy subset* can be extended to any *set* with more than one *binary operation*.

Example 2.5. Consider the ring $Z_6 = \{0, 1, 2, 3, 4, 5\}$, the ring of integers modulo 6.

Let μ be a *fuzzy subset* of Z_6 defined as follows :

$$\mu(0) = \mu(3) = 1$$

$$\mu(1) = \mu(4) = .5$$

$$\mu(2) = \mu(5) = .3$$

It can be easily verified that μ is a *translational invariant fuzzy subset* of Z_6 with respect to *addition* and *multiplication modulo* 6.

Definition 2.6. A *fuzzy subset* μ of a *vector space* V(F) is said to be *translational invariant* if μ is *translational invariant* with respect to both *vector addition* and *scalar multiplication* i.e.,

$$\mu(a) = \mu(b) \Longrightarrow \mu(a + x) = \mu(b + x)$$
 and

$$\mu(a) = \mu(b) \Longrightarrow \mu(\alpha a) = \mu(\alpha b) \ \forall \ a, b, x \in V \text{ and } \forall \ \alpha \in F.$$

Example 2.7. Let *F* be any *field*. Consider the vector space V = F[x], the set of all polynomials in *x* over *F*.

Define
$$\mu: V \rightarrow [0, 1]$$
 as $\mu(f) = 1/\text{deg.}f$, $\text{deg.}f \neq 0$
= 1, otherwise.

Then μ is *translational invariant* with respect to *scalar multiplication* but not with respect to *vector addition*.

However $v : V \rightarrow [0, 1]$ define as v(f) = constant term of f, is *translational invariant* with respect to both *vector addition* and *scalar multiplication*.

Definition 2.8. Suppose *W* is a *subspace* of a *vector space V* and μ is a *fuzzy subset* of *V*. Suppose $a \in V$, and consider the *subset* $C(a, \mu, W)$ of *V*, given as follows:

 $C(a, \mu, W) = \{x \in V : \mu(x) = \mu(a + w), \text{ for some } w \in W\}.$

We call $C(a, \mu, W)$ the *coset* of W in V generated by a and μ .

Proposition 2.9. $a \in C(a, \mu, W)$ and $a + W \subseteq C(a, \mu, W) \forall a \in V$.

Proof. Since $\mu(a) = \mu(a + 0) \forall a \in V$ it follows that $a \in C(a, \mu, W) \forall a \in V$.

Now let $x \in a + W$, then x = a + w for some $w \in W$.

Hence $\mu(x) = \mu(a + w)$, $w \in W$, and so $x \in C(a, \mu, W)$.

Consequently $a + W \subseteq C(a, m, W) \forall a \in V$.

Example 2.10. Consider the vector space \mathbf{R}^2 over \mathbf{R} and fix a vector $\mathbf{v} = (v_1, v_2)$ in \mathbf{R}^2 .

Let μ be a *fuzzy subset* of \mathbb{R}^2 satisfying $\mu(a) = \mu(b)$ if and only if $b - a = nv n \in \mathbb{Z}$.

Then μ is a *translational invariant* with respect to both *vector addition* as well *scalar multiplication* in \mathbf{R}^2 .

Consider the vector subspace $W = \langle (1, 1) \rangle$ and let a = (1, 2).

Then a + W = set of all *vectors* lying on the line passing through (1, 2) and parallel to (1, 1). whereas $C(a, \mu, W)$ = set of all *vectors* lying on the above line as

well as on lines parallel to it and at distances integral multiple of $\left| v_1 - v_2 \right| \frac{1}{\sqrt{2}}$

from it .

So here we see that a + W is a *proper subset* of $C(a, \mu, W)$.

3. SOME RESULTS

In this section we have proved some results analogous to certain basic results of classical *vector space*.

Theorem 3.1. Suppose *W* is a *subspace* of the *vector space V* and μ is a *fuzzy subset* of *V*. Let *a*, *b*∈*V*. If *a* − *b*∈*W* then

$$C(a, \mu, W) = C(b, \mu, W).$$
Proof. Let $a - b \in W$.
Then $x \in C(a, \mu, W)$
 $\Rightarrow \mu(x) = \mu(a + w), w \in W$
 $\Rightarrow \mu(x) = \mu(b - b + a + w), -b + a + w \in W$
 $\Rightarrow x \in C(b, \mu, W).$

Hence $C(a, \mu, W) \subseteq C(b, \mu, W)$

Similarly, $C(b, \mu, W) \subseteq C(a, \mu, W)$

Thus we get $C(a, \mu, W) = C(b, \mu, W)$.

Corollary 3.2. Suppose *W* is a *subspace* of the *vector space V* and μ is a *fuzzy subset* of *V*. Let $a \in V$. If $a \in W$, then $C(a, \mu, W) = C(0, \mu, W)$, where 0 is the *zero element* of *V*.

Proof. In Theorem 3.1 if we take b = 0, we shall get the required result.

Henceforth, unless otherwise mentioned, μ is always assumed to be a *translational invariant fuzzy subset* of V and W is assumed to be a *subspace* of V.

Proposition 3.3. Let $a, b \in V$. Then

 $C(a, \mu, W) = C(b, \mu, W) \Leftrightarrow b \in C(a, \mu, W).$ **Proof.** Let $C(a, \mu, W) = C(b, \mu, W)$. As $b \in C(b, \mu, W)$, we have $b \in C(a, \mu, W)$. Now $b \in C(a, \mu, W)$ implies $\mu(b) = \mu(a + w), w \in W$ which gives $\mu(a) = \mu(b - w)$. Now $x \in C(a, \mu, W)$ $\Rightarrow \mu(x) = \mu(a + w_1), w_1 \in W$ $\Rightarrow \mu(x) = \mu(b - w + w_1), -w + w_1 \in W$ $\Rightarrow x \in C(b, \mu, W).$ Hence $C(a, \mu, W) \subseteq C(b, \mu, W)$. Again $x \in C(b, \mu, W)$ $\Rightarrow \mu(x) = \mu(b + w_2), w_2 \in W$ $\Rightarrow \mu(x) = \mu(a + w + w_2), w + w_2 \in W$ $\Rightarrow x \in C(a, \mu, W).$ Hence $C(b, \mu, W) \subseteq C(a, \mu, W)$. Consequently $C(a, \mu, W) = C(b, \mu, W)$. Similarly we can prove :

Proposition 3.4. Let $a, b \in V$. Then

 $C(a, \mu, W) = C(b, \mu, W) \Leftrightarrow a \in C(b, \mu, W).$

Theorem 3.5. Let $a, b \in V$. Then either $C(a, \mu, W)$ and $C(b, \mu, W)$ are disjoint or $C(a, \mu, W) = C(b, \mu, W)$.

Proof. Suppose $C(a, \mu, W)$ and $C(b, \mu, W)$ are not disjoint. Then there exists $x \in V$ such that $x \in C(a, \mu, W)$ and $x \in C(b, \mu, W)$.

Now $x \in C(a, \mu, W) \Rightarrow C(x, \mu, W) = C(a, \mu, W)$ and

$$x \in C(b, \mu, W) \Rightarrow C(x, \mu, W) = C(b, \mu, W).$$

Hence $C(a, \mu, W) = C(b, \mu, W)$.

This proves the theorem.

Theorem 3.6. Let *a*, $b \in V$. If $a - b \in C(0, \mu, W)$ or $b - a \in C(0, \mu, W)$, then $C(a, \mu, W) = C(b, \mu, W)$.

Proof. Let $a - b \in C(0, \mu, W)$. Then $\mu(a - b) = \mu(0 + w) = \mu(w), w \in W$.

From which we get $\mu(a) = \mu(b + w)$.

Now $\mu(a) = \mu(b + w) \Rightarrow a \in C(b, \mu, W)$

 $\Rightarrow C(a, \mu, W) = C(b, \mu, W).$

Similar is the case if $b - a \in C(0, \mu, W)$.

Theorem 3.7. Let $a, b \in V$. If $C(a, \mu, W) = C(b, \mu, W)$ then

 $a - b \in C(0, \mu, W)$ or $b - a \in C(0, \mu, W)$.

Proof. Let $C(a, \mu, W) = C(b, \mu, W)$, then by Theorem 3.4 we have $a \in C(b, \mu, W)$ which implies $\mu(a) = \mu(b + w)$, for some $w \in W$.

Therefore $\mu(a - b) = \mu(w) \Rightarrow \mu(a - b) = \mu(0 + w) \Rightarrow a - b \in \mathbb{C}(0, \mu, W).$

Similarly we can show that $b - a \in C(0, \mu, W)$.

Theorem 3.8. Let $a \in V$. Then $C(a, \mu, W) = \bigcup (x + W), x \in C(a, \mu, W)$.

Proof. It is known that $a + W \subseteq C$ (a, μ , W). If a + W = C (a, μ , W) then the theorem is proved. If not, let $b \in C(a, \mu, W) - (a + W)$.

Since $b \in C(a, \mu, W)$, we have $C(b, \mu, W) = C(a, \mu, W)$.

Also since b does not belong to a + W, so b + W and a + W are disjoint.

We observe that $b + W \subseteq C(b, \mu, W) = C(a, \mu, W)$.

If $C(a, \mu, W) = (a + W) \cup (b + W)$, we are done.

If not, we shall consider all mutually disjoint *cosets* of W formed by the *elements* of $C(a, \mu, W)$ and ultimately get the desired result.

Theorem 3.9. *V* is *partitioned* into disjoint *cosets* of *W* generated by the *elements* of *V* and the *fuzzy subset* μ .

Proof. For each $a \in V$, we have $a \in C(a, \mu, W)$.

Also for any $b \in V$, if $b \in C(a, \mu, W)$ then $C(a, \mu, W) = C(b, \mu, W)$.

Hence $V = \bigcup \{ C(a, \mu, W), a \in V \}$.

This completes the proof.

4. FUZZY QUOTIENT SPACE GENERATED BY A FUZZY SUBSET

Let V be a vector space and W be a subspace of V. Suppose μ is a translational invariant fuzzy subset of V.

Let $C(V, \mu, W) = \{C(a, \mu, W) : a \in V\}$. Let $C(a, \mu, W), C(b, \mu, W) \in C(V, \mu, W)$. Suppose $C(x, \mu, W) = C(a, \mu, W)$ and $C(y, \mu, W) = C(b, \mu, W)$. Then $x \in C(a, \mu, W)$ and $y \in C(b, \mu, W)$ $\Rightarrow \mu(x) = \mu(a + w_1)$ and $\mu(y) = \mu(b + w_2), w_1, w_2 \in W$ $\Rightarrow \mu(x + y) = \mu(a + w_1 + y) = \mu(a + y + w_1) = \mu(a + b + w_2 + w_1)$ $\Rightarrow x + y \in C (a + b, \mu, W)$, since $w_2 + w_1 \in W$ $\Rightarrow C(x + y, \mu, W) = C(a + b, \mu, W)$. Thus if $C(x, \mu, W) = C(a + b, \mu, W)$. Again suppose $C(a, \mu, N) = C(b, \mu, N)$, Then $a \in C(b, \mu, W)$ $\Rightarrow \mu(a) = \mu(b + w), w \in W$ $\Rightarrow \mu(\alpha a) = \mu(\alpha b + \alpha w), \alpha \in F$ $\Rightarrow \alpha a \in C(\alpha b, \mu, W), \text{ since } \alpha w \in W$ $\Rightarrow C(\alpha a, \mu, W) = C(\alpha b, \mu, W).$ Thus if $C(a, \mu, W) = C(b, \mu, W),$ then $C(\alpha a, \mu, W) = C(\alpha b, \mu, W).$

Hence we can define one *binary operation* called *vector addition* and *a scalar multiplication*, in $C(V, \mu, W)$, the *set* of all *cosets* of W in V generated by μ , as follows :

For any $C(a, \mu, W)$, $C(b, \mu, W) \in C(V, \mu, W)$ and $\alpha \in F$

 $C(a, \mu, W) + C(b, \mu, W) = C(a + b, \mu, W)$ and

 $\alpha C(a,\,\mu,\,W)=C(\alpha a,\,\mu,\,W).$

Theorem 4.1. Let μ be a *translational invariant fuzzy subset* of a *vector space V* and *W* a *subspace* of *V*. Then $C(V, \mu, W)$, the *set* of all *cosets* of *W* in *V* generated by μ , is a *vector space* with respect to the *vector addition* and *scalar multiplication* defined by

 $C(a, \mu, W) + C(b, \mu, W) = C(a + b, \mu, W), \text{ and}$ $\alpha C(a, \mu, W) = C(\alpha a, \mu, W), \text{ where}$ $C(a, \mu, W), C(b, \mu, W) \in C(V, \mu, W) \text{ and } \alpha \in F.$ **Proof.** Let $C(a, \mu, W), C(b, \mu, W), C(d, \mu, W) \in C(V, \mu, W).$ Then $(C(a, \mu, W) + C(b, \mu, W)) + C(d, \mu, W)$ $= C(a + b, \mu, W) + C(d, \mu, W)$ $= C((a + b) + d, \mu, W)$ $= C(a + (b + d), \mu, W)$ $= C(a, \mu, W) + (C(b, \mu, W) + C(d, \mu, W)).$ Also $C(a, \mu, W) + C(b, \mu, W) = C(a + b, \mu, W)$ $= C(b + a, \mu, W)$

 $= C(b, \mu, W) + C(a, \mu, W).$

(0, μ, W) is the *zero element* of C(V, μ, W).
(- a, μ, W) is the *additive inverse* of C(a, μ, W).
Therefore W is an *abelian group*.

Further we have

$$\begin{aligned} \alpha \left\{ C\left(a,\,\mu,\,W\right) + \left(C(b,\,\mu,\,W)\right) \right\} &= \alpha \, C((a+b),\,\mu,\,W) \\ &= C(\alpha \, (a+b),\,\mu,\,W) \\ &= C((\alpha a + \alpha b \,),\,\mu,\,W) \\ &= C(\alpha a,\,\mu,\,W) + C(\alpha b,\,\mu,\,W) \\ &= \alpha \, C(a,\,\mu,\,W) + \alpha \, C(b,\,\mu,\,W). \end{aligned}$$

Again,

$$\begin{aligned} (\alpha + \beta) \ C(a, \mu, W) &= C((\alpha + \beta) \ a, \mu, W) \\ &= C(\alpha a + \beta a, \mu, W) \\ &= C(\alpha a, \mu, W) + C(\beta a, \mu, W) \\ &= \alpha C(a, \mu, W) + \beta C(a, \mu, W). \end{aligned}$$

Also,

$$\begin{aligned} \alpha \{ \beta \ C(a, \mu, W) \} &= \alpha \ C(\beta a, \mu, W) \\ &= C(\alpha(\beta a), \mu, W) \\ &= C((\alpha\beta)a, \mu, W) = (\alpha\beta) \ C(a, \mu, W) \end{aligned}$$

And,

 $lC(a, \mu, W) = C(1a, \mu, W) = C(a, \mu, W)$, where *l* is the *identity* of *F*.

Hence $C(V, \mu, W)$ is a vector space.

Definition 4.2. The vector space $C(V, \mu, W)$ is called the *fuzzy quotient space* or *factor space* of V generated by W and μ .

REFERENCES

[1] A.K. Ray, Quotient group of a group generated by a subgroup and a fuzzy subset, *The Journal of Fuzzy Mathematics* **7**, No. 2. (1999) 459-463.

- [2] A. Rosenfeld, Fuzzy subgroup, J. Math Anal. Appl. 35 (1971) 512-517.
- [3] L.A. Zadeh, Fuzzy sets, *Information and Control*, **8** (1965) 338-353.
- [4] T. Ali, and A.K. Ray, Quotient ring of a ring generated by an ideal and a fuzzy subset, *The Journal of Fuzzy Mathematics* **13**, No.2. (2005).

Tazid Ali

Department of Mathematics Dibrugarh University Dibrugarh-786004, Assam, India