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FUZZY QUOTIENT SPACE OF
A VECTOR SPACE

ABSTRACT: In this paper we have introduced the concept of cosets of a
subspace in a vector space V generated by an element of the space and a
translational invariant fuzzy subset � of the space. We have proved some
results analogous to certain basic results of the classical vector space . Finally
we have defined the quotient space of V generated by a subspace and �.
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1. INTRODUCTION

The notion of fuzzy subset was initiated by Zadeh [3]. Rosenfeld introduced the
concept of fuzzy subgroups in his classical paper [2] in 1971. Ray [1] introduced the
concept of translational invariant fuzzy subset. In [1] Ray obtained quotient group
of a group generated by a subgroup and a fuzzy subset. Ali and Ray [4] obtained
quotient ring of a ring generated by an ideal and a fuzzy subset. In this paper the
result is extended to vector space.

2. PRELIMINARIES

Let � be a binary operation on a nonempty set S and � be a fuzzy subset of S.

Definition 2.1. [1] � is said to be left translational invariant with respect to � if
�(x) = �(y) � �(a � x) = �(a�y) � x , y , a�S.

Definition 2.2. [1] � is said to be right translational invariant with respect to �
if �(x) = �(y) � �(x�a) = �(y�a) � x, y , a�S.

Definition 2.3. [1] � is said to be translational invariant with respect to � if � is
both left and right translational invariant with respect to �.

Remark 2.4. If � is commutative, i.e., �(x�y) = �(y�x) � x , y�S, then � is left
translational invariant if and only if � is right translational invariant.
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The above notion of translational invariant fuzzy subset can be extended to

any set with more than one binary operation.

Example 2.5. Consider the ring Z
6
 = {0, 1, 2, 3, 4, 5}, the ring of integers

modulo 6.

Let � be a fuzzy subset of Z
6
 defined as follows :

�(0) = �(3) = 1

�(1) = �(4) = .5

�(2) = �(5) = .3

It can be easily verified that � is a translational invariant fuzzy subset of Z
6
 with

respect to addition and multiplication modulo 6.

Definition 2.6. A fuzzy subset � of a vector space V(F) is said to be translational
invariant if � is translational invariant with respect to both vector addition and
scalar multiplication i.e.,

�(a) = �(b) � �(a + x) = �(b + x) and

�(a) = �(b) � �(�a) = �(�b) � a, b, x�V and � � ��F.

Example 2.7. Let F be any field. Consider the vector space V = F[x], the set of
all polynomials in x over F.

Define � : V � [0, 1] as �(f) = 1/deg.f , deg.f � 0
     = 1, otherwise.

Then � is translational invariant with respect to scalar multiplication but not
with respect to vector addition.

However � : V � [0, 1] define as �(f) = constant term of f, is translational
invariant with respect to both vector addition and scalar multiplication.

Definition 2.8. Suppose W is a subspace of a vector space V and � is a fuzzy
subset of V. Suppose a�V, and consider the subset C(a, �, W) of V, given as follows:

C(a, �, W) = {x�V : � (x) = � (a + w), for some w�W}.

We call C(a, �, W ) the coset of W in V generated by a and �.

Proposition 2.9. a�C(a, �, W) and a + W � C(a, �, W) � a�V.
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Proof. Since �(a) = �(a + 0)  a�V it follows that a�C(a, �, W)  a�V.

Now let x�a + W, then x = a + w for some w ��W.

Hence �(x) = �(a + w), w�W, and so x�C(a, �, W).

Consequently a + W � C(a, m, W)  a�V.

Example 2.10. Consider the vector space R2 over R and fix a vector v = (v
1
, v

2
)

in R2.

Let � be a fuzzy subset of R2 satisfying �(a) = �(b) if and only if b – a = nv n�Z.

Then � is a translational invariant with respect to both vector addition as well
scalar multiplication in R2.

Consider the vector subspace W = �(1, 1)� and let a = (1, 2).

Then a + W = set of all vectors lying on the line passing through (1, 2) and
parallel to (1, 1). whereas C(a, �, W) = set of all vectors lying on the above line as

well as on lines parallel to it and at distances integral multiple of 1 2
1|

2
v v�

from it .

So here we see that a + W is a proper subset of C(a, �, W).

3. SOME RESULTS

In this section we have proved some results analogous to certain basic results of
classical vector space.

Theorem 3.1. Suppose W is a subspace of the vector space V and � is a fuzzy
subset of V. Let a, b�V.  If a – b�W  then

C(a, �, W) = C(b, �, W).

Proof. Let a – b�W.

Then x� C(a, �, W)

���( x ) = �(a + w), w�W

���(x) = �(b – b + a + w), – b + a + w�W

��x � C(b, �, W).
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Hence C(a, �, W) ��C(b, �, W)

Similarly, C(b, �, W) � C(a, �, W)

Thus we get C(a, �, W) = C(b, �, W).

Corollary 3.2. Suppose W is a subspace of the vector space V and � is a fuzzy
subset of V. Let a�V. If a�W, then C(a, �, W) = C(0, �, W), where 0 is the zero
element of V .

Proof. In Theorem 3.1 if we take b = 0, we shall get the required result.

Henceforth, unless otherwise mentioned, �� is always assumed to be a
translational invariant fuzzy subset of V and W is assumed to be a subspace of V.

Proposition 3.3. Let a, b ��V. Then

C(a, �, W) = C(b, �, W) ��b �C(a, �, W).

Proof. Let C(a, �, W) = C(b, �, W).

As b�C(b, �, W), we have b�C(a, �, W).

Now b�C(a, �� W) implies �(b) = �(a + w), w�W

which gives �(a) = �(b – w).

Now x�C(a, �, W)

���(x) = �(a + w
1
), w

1
�W

���(x) = �(b – w + w
1
), – w + w

1
 �W

��x�C(b, �, W).

Hence C(a, �, W) ��C(b, �, W).

Again x�C(b, �, W)

���(x) = �(b + w
2
),  w

2
�W

���(x) = �(a + w + w
2
), w + w

2
 �W

��x�C(a, �, W).

Hence C(b, �, W) � C(a, �, W).

Consequently C(a, �, W) = C(b, �, W).

Similarly we can prove :
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Proposition 3.4. Let a, b�V. Then

C(a, �, W) = C(b, �, W) � a�C(b, �, W).

Theorem 3.5. Let a, b �V. Then either C(a, �, W) and C(b, �, W) are disjoint or
C(a, �, W) = C(b, �, W).

Proof. Suppose C(a, �, W) and C(b, �, W) are not disjoint. Then there exists x�V
such that x�C(a, �, W) and x�C (b, �, W).

Now x� C(a, �, W) ��C(x, �, W) = C(a, �, W) and

x� C(b, �, W) ��C(x, �, W) = C(b, �, W).

Hence C(a, �, W) = C(b, �, W).

This proves the theorem.

Theorem 3.6. Let a, b�V. If a – b�C(0, �, W) or b – a �C(0, �, W), then
C(a, �, W) = C(b, �, W).

Proof. Let a – b �C(0, �, W). Then �(a – b) = �(0 + w) = �(w), w�W.

From which we get �(a) = �(b + w).

Now �(a) = �(b + w) ��a�C(b, �, W)

    ��C(a, �, W) = C(b, �, W).

Similar is the case if b – a�C(0, �, W).

Theorem 3.7. Let a, b�V. If C(a, �, W) = C(b, �, W) then

a – b �C(0, �, W) or b – a �C(0, �, W).

Proof. Let C(a, �, W) = C(b, �, W), then by Theorem 3 .4 we have a�C(b, �, W)
which implies �(a) = �(b + w), for some w�W.

Therefore �(a – b) = �(w) � �(a – b) = �(0 + w) � a – b �C(0, �, W).

Similarly we can show that b – a �C(0, �, W).

Theorem 3.8. Let a�V . Then C(a, �, W) = �(x + W), x �C(a, �, W).

Proof. It is known that a + W � C (a, �, W). If a + W = C (a, �, W) then the
theorem is proved. If not, let b �C(a, �, W) – (a + W).

Since b�C(a, �, W), we have C(b, �, W) = C(a, �, W).
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Also since b does not belong to a + W, so b + W and a + W are disjoint.

We observe that b + W ��C(b, �, W) = C(a, �, W).

If C(a, �, W) = (a + W) � (b + W), we are done.

If not , we shall consider all mutually disjoint cosets of W formed by the elements
of C(a, �, W) and ultimately get the desired result.

Theorem 3.9. V is partitioned into disjoint cosets of W generated by the elements
of V and the fuzzy subset �.

Proof. For each a�V, we have a�C(a, �, W).

Also for any b�V,  if b �C(a, �, W) then C(a, �, W) = C(b, �, W).

Hence V = �{C(a, �, W), a � V}.

This completes the proof.

4. FUZZY QUOTIENT SPACE GENERATED BY
A FUZZY SUBSET

Let V be a vector space and W be a subspace of V. Suppose � is a translational
invariant fuzzy subset of V.

Let C(V, �, W) = {C(a, �, W) : a�V}.

Let C(a, �, W), C(b, �, W )�C(V, �, W).

Suppose C(x, �, W) = C(a, �, W) and C(y, �, W) = C(b, �, W).

Then x�C(a, �, W)  and  y�C(b, �, W)

� �(x) = �(a + w
1
) and �(y) = �(b + w

2
),  w

1
, w

2
 �W

� �(x + y) = �(a + w
1
 + y) = �(a + y + w

1
) = �(a + b + w

2
 + w

1
)

� x + y �C (a + b, �, W), since w
2
 + w

1
 �W

� C(x + y, �, W) = C(a + b, �, W).

Thus if C(x, �, W) = C(a, �, W) and C(y, �, W) = C(b, �, W),

then C(x + y, �, W) = C(a + b, �, W).

Again suppose C(a, �, N) = C(b, �, N),

Then a�C(b, �, W)
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� �(a) = �(b + w), w �W

� �(�a) = �(�b + �w), � � F

� �a � C(�b, �, W), since �w ��W

� C(�a, �, W) = C(�b, �, W).

Thus if C(a, �, W) = C(b, �, W),

then C(�a, �, W) = C(�b, �, W).

Hence we can define one binary operation called vector addition and a scalar
multiplication, in C(V, �, W), the set of all cosets of W in V generated by �, as
follows :

For any C(a, �, W), C(b, �, W) �C(V, �, W) and ��F

C(a, �, W) + C(b, �, W) = C(a + b, �, W) and

�C(a, �, W) = C(�a, �, W).

Theorem 4.1. Let � be a translational invariant fuzzy subset of a vector space V
and W a subspace of V. Then C(V, �, W), the set of all cosets of W in V generated by
�, is a vector space with respect to the vector addition and scalar multiplication
defined by

C(a, �, W) + C(b, �, W) = C(a + b, �, W), and

�C(a, �, W) = C(�a, �, W), where

C(a, �, W), C(b, �, W) �C(V, �, W) and ��F.

Proof. Let C(a, �, W), C(b, �, W), C(d, �, W)�C(V, �, W).

Then (C(a, �, W) + C(b, �, W)) + C(d, �, W)

= C(a + b, �, W) + C(d, �, W)

= C((a + b) + d, �, W)

= C(a + (b + d), �, W)

= C(a, �, W) + (C(b, �, W ) + C(d, �, W)).

Also C(a, �, W) + C(b, �, W) = C(a + b, �, W)

= C(b + a, �, W)

= C(b, �, W) + C(a, �, W).



18 Tazid Ali

(0, �, W) is the zero element of C(V, �, W).

(- a, �, W) is the additive inverse of C(a, �, W).

Therefore W is an abelian group.

Further we have

� {C (a, �, W) + (C(b, �, W)} = � C((a + b), �, W)

= C(� (a +b), �, W)

= C((�a + �b ), �, W)

= C(�a, �, W) + C(�b, �, W)

= � C(a, �, W) + � C(b, �, W).

Again ,

(� + �) C(a, �, W ) = C((� + �) a, �, W)

= C(�a + �a, �, W)

= C(�a, �, W) + C(�a, �, W)

= �C(a, �, W) + �C(a, �, W).

Also,

�{� C(a, �, W)} = � C(�a, �, W)

= C(�(�a), �, W)

= C((��)a, �, W) = (��) C(a, �, W).

And,

1C(a, �, W) = C(1a, �, W) = C(a, �, W), where 1 is the identity of F.

Hence C( V, �, W ) is a vector space .

Definition 4.2. The vector space C(V, �, W) is called the fuzzy quotient space or
factor space of V generated by W and �.
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