Received: 03rd August 2017 Revised: 14th April 2017 Accepted: 10th December 2017

Miguel CALDAS, Govindappa NAVALAGI & Ratnesh SARAF

WEAKLY θ-OPEN FUNCTIONS BETWEEN FUZZY TOPOLOGICAL SPACES

ABSTRACT: In this paper, we introduce and characterize fuzzy weakly θ open functions between fuzzy topological spaces as natural dual to the fuzzy weakly θ -continuous functions and also study these functions in relation to some other types of already known functions.

2000 Math Subject Classification: Primary: 54A40.

Key Words and Phrases: Fuzzy θ -open sets, fuzzy weakly open, fuzzy θ -continuous, fuzzy weakly θ -continuous f.a.o.N. functions, fuzzy θ -connected spaces.

1. INTRODUCTION AND PRELIMINARIES

The concept of fuzzy sets was introduced by Prof. L.A. Zadeh in his classical paper [14]. After the discovery of the fuzzy subsets, much attention has been paid to generalize the basic concepts of classical topology in fuzzy setting and thus a modern theory of fuzzy topology is developed. The notion of fuzzy subsets naturally plays a very significant role in the study of fuzzy topology which was introduced by C.L. Chang [4] in 1968. In 1980, Ming and Ming [6], introduced the concepts of quasi-coincidence and q-neighbourhoods by which the extensions of functions in fuzzy setting can very interestingly and effectively be carried out. In 1985, D.A. Rose [13] defined weakly open functions in topological spaces. In 1997 J.H. Park, Y.B. Park and J.S. Park [9] introduced the notion of weakly open functions in between fuzzy topological spaces. In [12] Z. Petricevic has introduced and studied the concepts of fuzzy θ -continuous and fuzzy weakly θ -continuous functions. In this paper we introduce and discuss the concepts of fuzzy θ -open and fuzzy weakly θ -open functions and also study these functions comparing with other types of already known functions.

Throughout this paper by (X, τ) or simply by X we mean a fuzzy topological space (fts, shorty) due to Chang [4]. A point fuzzy in X with support $x \in X$ and value p ($0) is denoted by <math>x_p$. Two fuzzy sets λ and β are said to be quasi-coincident (q-coincident, shorty) denoted by $\lambda q\beta$, if there exists $x \in X$ such that $\lambda(x) + \beta(x) > 1$ [6] and by \overline{q} we denote "is not" q-coincident. It is known [6] that $\lambda \le \beta$ if and only if $\lambda \overline{q}$ (1– β). A fuzzy set λ is said to be q-neighbourhood (q-nbd) of x_p if there is a fuzzy open set μ such that $x_p q\mu$ and $\mu \le \lambda$.

The interior, closure and the complement of a fuzzy set $\lambda \in X$ are denoted by $Int(\lambda)$, $Cl(\lambda)$ and $1 - \lambda$ respectively. For definitions and results not explained in this paper, the reader is referred to [1,4,5,7,11,13,14] assuming them to be well known.

DEFINITIONS 1.1. A fuzzy set λ in a fts *X* is called,

- (1) Fuzzy preopen [3] if $\lambda \leq Int(Cl(\lambda))$.
- (2) Fuzzy regular open [1] if $\lambda = Int(Cl(\lambda))$.
- (3) Fuzzy α -open [3] if $\lambda \leq Int(Cl(Int(\lambda)))$.
- (4) Fuzzy β -open [5] if $\lambda \leq Cl(Int(Cl(\lambda)))$.

DEFINITIONS 1.2. [7]. A fuzzy point x_p in a fts X is said to be a fuzzy θ -cluster point of a fuzzy set λ if and only if for every fuzzy open q-nbd μ of x_p , $Cl(\mu)$ is qcoincident with λ . The set of all fuzzy θ -cluster points of λ is called the fuzzy θ -closure of λ and is denoted by $Cl_{\theta}(\lambda)$. A fuzzy set λ is fuzzy θ -closed if and only if $\lambda = Cl_{\theta}(\lambda)$. The complement of a fuzzy θ -closed set is called of fuzzy θ -open and the θ -interior of λ denoted by $Int_{\theta}(\lambda)$ is defined as:

 $Int_{\theta}(\lambda) = \{x_p : \text{ for some fuzzy open q-nbd } \beta \text{ of } x_p, Cl(\beta) \le \lambda\}.$

LEMMA 1.3. [2]. Let λ be a fuzzy set in a fts *X*, then:

- (1) λ is a fuzzy θ -open if and only if $\lambda = Int_{\theta}(\lambda)$.
- (2) $1 Int_{\theta}(\lambda) = Cl_{\theta}(1 \lambda)$ and $Int_{\theta}(1 \lambda) = 1 Cl_{\theta}(\lambda)$.
- (3) $Cl_{\theta}(\lambda)$ (resp. $Int_{\theta}(\lambda)$) is a fuzzy closed set (resp. fuzzy open set) but not necessarily is a fuzzy θ -closed set (resp. fuzzy θ -open set).

RESULT. 1.4. (i) It is easy to see that $Cl(\lambda) \leq Cl_{\theta}(\lambda)$ and $Int_{\theta}(\lambda) \leq Int(\lambda)$ for any fuzzy set λ in a fts *X*:

(ii) For a fuzzy open (resp. fuzzy closed) set λ in a fts *X*, $Cl(\lambda) = Cl_{\theta}(\lambda)$ (resp. $Int_{\alpha}(\lambda) = Int(\lambda)$).

DEFINITION 1.5. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function from a fts (X, τ) into a fts (Y, σ) . The function *f* is called:

- (i) fuzzy weakly open [10] if $f(\lambda) \le Int (f(Cl(\lambda)))$ for each fuzzy open set λ in *X*.
- (ii) fuzzy almost open (written as f.a.o.N) [8] if *f*(λ) is a fuzzy open set of *Y* for each fuzzy regular open set λ in *X*.
- (iii) fuzzy β -open [5] if $f(\lambda)$ is a fuzzy β -open set of *Y* for each fuzzy open set λ of *X*.
- (iv) fuzzy θ -continuous [12] (resp. fuzzy weakly θ -continuous [12]) if for each fuzzy point x_p and each open nbd λ of of $f(x_p)$, there is a fuzzy open nbd μ of x_p such that $f(Cl(\mu)) \leq Cl(\lambda)$ (resp. $f(Int(Cl(\mu))) \leq Cl(\lambda))$.

2. FUZZY WEAKLY θ-OPEN FUNCTIONS

Since fuzzy θ -continuity [12] is dual to fuzzy θ -openness (It might be new one), we define in this paper the concept of fuzzy weak θ -openness as natural dual to the fuzzy weak θ -continuity [12].

DEFINITION 2.1. A function $f: (X, \tau_1) \to (Y, \tau_2)$ is said to be fuzzy weakly θ -open if $f(\lambda) \leq Int_{\theta}(f(Cl(\lambda)))$ for each fuzzy open set λ of X.

DEFINITION 2.2. A function $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ is said to be fuzzy θ -open if $f(\lambda)$ is a fuzzy θ -open set of *Y* for each fuzzy open set λ of *X*:

REMARK. 2.3. Clearly, every fuzzy weakly θ -open function is fuzzy weakly open and every fuzzy θ -open function is fuzzy weakly θ -open.

EXAMPLE 2.4. Let $X = \{a, b\}$ and $Y = \{x, y\}$. Fuzzy sets A, B, E and H be defined as:

A(a) = 0.2 , A(b) = 0.3; B(a) = 0.8 , B(b) = 0.9; E(x) = 0.5 , E(y) = 0.7;H(x) = 0.4 , H(y) = 0.3.

Let $\tau = \{0, A, 1_x\}$, $\sigma = \{0, B, 1_x\}$ and $\gamma = \{0, E, H, 1_y\}$. Then the mapping $f : (X, \tau) \rightarrow (Y, \gamma)$ defined by f(a) = x and f(b) = y is fuzzy weakly θ -open which is not fuzzy θ -open and the mapping $g : (X, \sigma) \rightarrow (Y, \gamma)$ defined by g(a) = x and g(b) = y is fuzzy weakly open but not fuzzy weakly θ -open.

THEOREM 2.5. For a function $f: (X, \tau_1) \rightarrow (Y, \tau_2)$, the following conditions are equivalent :

- (i) f is fuzzy weakly θ -open,
- (ii) $f(Int_{\alpha}(\lambda)) \leq Int_{\alpha}(f(\lambda))$ for every fuzzy subset λ of X,
- (iii) $Int_{\alpha}(f^{-1}(\beta)) \leq f^{-1}(Int_{\alpha}(\beta))$ for every fuzzy subset β of *Y*,
- (iv) $f^{-1}(Cl_{\alpha}(\beta)) \leq Cl_{\alpha}(f^{-1}(\beta))$ for every fuzzy subset β of *Y*.

PROOF. (*i*) \rightarrow (*ii*) : Let λ be any fuzzy subset of X and x_p a fuzzy point in $Int_{\theta}(\lambda)$. Then, there exists a fuzzy open q-nbd γ of x_p such that $\gamma \leq Cl(\gamma) \leq \lambda$. Then, $f(\gamma) \leq f(Cl(\gamma)) \leq f(\lambda)$. Since f is fuzzy weakly θ -open, $f(\gamma) \leq Int_{\theta}(f(Cl(\gamma))) \leq Int_{\theta}(f(\lambda))$. It implies that $f(x_p)$ is a point in $Int_{\theta}(f(\lambda))$. This shows that $x_p \in f^{-1}(Int_{\theta}(f(\lambda)))$. Thus $Int_{\theta}(\lambda) \leq f^{-1}(Int_{\theta}(f(\lambda)))$, and so $f(Int_{\theta}(\lambda)) \leq Int_{\theta}(f(\lambda))$.

(*ii*) \leq (*i*) : Let μ be a fuzzy open set in *X*. As $\mu \leq Int_{\theta}(Cl(\mu))$ implies, $f(\mu) \leq f(Int_{\theta}(Cl(^{1}))) \leq Int_{\theta}(f(Cl(\mu)))$. Hence *f* is fuzzy weakly θ -open.

 $(ii) \rightarrow (iii)$: Let β be any fuzzy subset of *Y*. Then by $(ii), f(Int_{\theta}(f^{-1}(\beta))) \leq Int_{\theta}(\beta)$. Therefore $Int_{\theta}(f^{-1}(\beta)) \leq f^{-1}(Int_{\theta}(\beta))$.

 $(iii) \rightarrow (ii)$: This is obvious.

 $(iii) \rightarrow (iv)$: Let β be any fuzzy subset of Y. Using (iii), we have

$$1 - Cl_{\theta}(f^{-1}(\beta)) = Int_{\theta}(1 - f^{-1}(\beta)) = Int_{\theta}(f^{-1}(1 - \beta)) \leq f^{-1}(Int_{\theta}(1 - \beta))$$

 $= f^{-1}(1 - Cl_{\theta}(\beta)) = 1 - (f^{-1}(Cl_{\theta}(\beta)))$. Therefore, we obtain $f^{-1}(Cl_{\theta}(\beta)) \le Cl_{\theta}(f^{-1}(\beta))$.

 $(iv) \rightarrow (iii)$: Similarly we obtain, $1 - f^{-1}(Int_{\theta}(\beta)) \le 1 - Int_{\theta}(f^{-1}(\beta))$, for every fuzzy subset β of *Y*, i.e., $Int_{\theta}(f^{-1}(\beta)) \le f^{-1}(Int_{\theta}(\beta))$.

THEOREM 2.6. If *X* is a fuzzy regular space, then for a function $f: (X, \tau_1) \rightarrow (Y, \tau_2)$, the following conditions are equivalent:

(i) f is fuzzy weakly θ -open,

(ii) For each fuzzy θ -open set λ in *X*, $f(\lambda)$ is fuzzy θ -open in *Y*,

(iii) For any fuzzy set β of *Y* and any fuzzy θ -closed set λ in *X* containing $f^{-1}(\beta)$, there exists a fuzzy θ -closed set δ in *Y* containing β such that $f^{-1}(\delta) \leq \lambda$.

PROOF. (*i*) \rightarrow (*ii*) : Let λ be a fuzzy θ -open set in X. Then $1 - f(\lambda)$ is a fuzzy set in Y and by (i) and Theorem 2.5 (iv), $f^{-1}(Cl_{\theta}(1 - f(\lambda))) \leq Cl_{\theta}(f^{-1}(1 - f(\lambda)))$. Therefore, $1 - f^{-1}(Int_{\theta}(f(\lambda))) \leq Cl_{\theta}(1 - \lambda) = 1$. Then, we have $\lambda \leq f^{-1}(Int_{\theta}(f(\lambda)))$ which implies $f(\lambda) \leq Int_{\theta}(f(\lambda))$. Hence $f(\lambda)$ is fuzzy θ -open in Y.

 $(ii) \rightarrow (iii)$: Let β be any fuzzy set in *Y* and λ be a fuzzy θ -closed set in *X* such that $f^{-1}(\beta) \leq \lambda$. Since $1 - \lambda$ is fuzzy θ -open in *X*, by (ii), $f(1 - \lambda)$ is fuzzy θ -open in *Y*. Let $\delta = 1 - f(1 - \lambda)$. Then δ is fuzzy θ -closed and $\beta \leq \delta$. Now, $f^{-1}(\delta) = f^{-1}(1 - f(1 - \lambda)) = 1 - f^{-1}(f(\lambda)) \leq \lambda$.

 $(iii) \rightarrow (i)$: Let β be any fuzzy set in *Y*. Then by Corollary 3.6 of [7] $\lambda = Cl_{\theta}(f^{-1}(\beta))$ is fuzzy θ -closed set in *X* and $f^{-1}(\beta) \leq \lambda$. Then there exists a fuzzy θ -closed set δ in *Y* containing β such that $f^{-1}(\delta) \leq \lambda$. Since δ is fuzzy θ -closed $f^{-1}(Cl_{\theta}(\beta)) \leq f^{-1}(\delta) \leq Cl_{\theta}(f^{-1}(\beta))$. Therefore by Theorem 2.5, *f* is a weakly θ -open function.

Furthermore, we can prove the following,

THEOREM 2.7. If $f: (X, \tau_1) \to (Y, \tau_2)$ is fuzzy weakly θ -open, then for each x_p fuzzy point in X and each fuzzy open set μ of X containing x_p , there exists a fuzzy open set δ in Y containing $f(x_p)$ such that $\delta \leq f(Cl(\mu))$.

PROOF. Let $x_p \in X$ and μ be a fuzzy open set in *X* containing x_p . Since *f* is fuzzy weakly θ -open. $f(\mu) \leq Int_{\theta}(f(Cl(\mu)))$. Let $\delta = Int_{\theta}(f(Cl(\mu)))$. Hence $\delta \leq f(Cl(\mu))$, with δ containing $f(x_p)$.

The reverse in the theorem above is true if f is a fuzzy closed function.

COROLLARY 2.8. Let $f : (X, \tau_1) \to (Y, \tau_2)$ be a closed function. Then the statement following are equivalent:

(i) f is fuzzy weakly θ -open,

(ii) For each x_p fuzzy point in X and each fuzzy open set μ of X containing x_p , there exists a fuzzy open set δ containing $f(x_p)$ such that $\delta \leq f(Cl(\mu))$.

PROOF. (*i*) \rightarrow (*ii*) : Theorem 2.7.

 $(ii) \rightarrow (i)$: Let μ be a fuzzy open set in *X* and let $y_p \in f(\mu)$. It follows from (ii) $\delta \leq f(Cl(\mu))$ for some δ fuzzy open in *Y* containing y_p . Hence as *f* is a closed function we have, $y_p \in \delta \leq Int_{\theta}(f(Cl(\mu)))$ by Result 1.4(ii) above. This shows that $f(\mu) \leq Int_{\theta}(f(Cl(\mu)))$, i.e., *f* is a fuzzy weakly θ -open function.

THEOREM 2.9. Let $f : (X, \tau_1) \to (Y, \tau_2)$ be a bijective function. Then the following statements are equivalent:

(i) f is fuzzy weakly θ -open,

(ii) $Cl_{\alpha}(f(\lambda)) \leq f(Cl(\lambda))$ for each λ fuzzy open of X,

(iii) $Cl_{\beta}(f(Int(\beta)) \le f(\beta))$ for each β fuzzy closed of X.

PROOF. (*i*) \rightarrow (*iii*) : Let β be a fuzzy closed set in *X*. Then we have $f(1-\beta) = 1 - f(\beta) \leq Int_{\theta}(f(Cl(1-\beta)))$ and so $1-f(\beta) \leq 1-Cl_{\theta}(f(Int(\beta)))$. Hence $Cl_{\theta}(f(Int(\beta))) \leq f(\beta)$.

 $(iii) \rightarrow (ii)$: Let λ be a fuzzy open set in *X*. Since $Cl(\lambda)$ is a fuzzy closed set and $\lambda \leq Int(Cl(\lambda))$ by (iii) we have $Cl_{\rho}(f(\lambda)) \leq Cl_{\rho}(f(Int(Cl(\lambda))) \leq f(Cl(\lambda)))$.

 $(ii) \rightarrow (iii)$: Similar to $(iii) \rightarrow (ii)$.

 $(iii) \rightarrow (i)$: Clear.

The following theorem the proof is mostly straightforward and is omitted.

THEOREM 2.10. For a function $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ the following conditions are equivalent:

(i) f is fuzzy weakly θ -open,

(ii) For each fuzzy closed subset β of *X*, $f(Int(\beta)) \leq Int_{\alpha}(f(\beta))$,

(iii) For each fuzzy open subset λ of X, $f(Int(Cl(\lambda))) \leq Int_{\theta}(f(Cl(\lambda)))$,

(iv) For every fuzzy preopen subset λ of *X*, $f(\lambda) \leq Int_{\alpha}(f(Cl(\lambda)))$,

(v) For every fuzzy α -open subset λ of X, $f(\lambda) \leq Int_{\alpha}(f(Cl(\lambda)))$.

Now, we give a fuzzy strong definition of continuity define that when combined with fuzzy weak θ -openness imply fuzzy θ -openness.

DEFINITION 2.11. A function $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ is said to be fuzzy strongly continuous if for every fuzzy subset λ of X, $f(Cl(\lambda)) \leq f(\lambda)$.

LEMMA 2.12. If $f : (X, \tau_1) \to (Y, \tau_2)$ is fuzzy strongly continuous, then $Int_{\theta}(f(Cl(\lambda))) \leq f(\lambda)$ but the converse does not hold as is shown by the following example.

EXAMPLE 2.13. Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Fuzzy sets A and B be defined as :

$$A(a) = 0$$
, $A(b) = 0.2$, $A(c) = 0.8$;
 $B(x) = 0$, $B(y) = 0.7$, $B(z) = 0.4$.

Let $\tau = \{0, A, 1_x\}$ and $\sigma = \{0, B, 1_y\}$. Then the mapping $f: (X, \tau) \to (Y, \sigma)$ defined by f(a) = x and f(b) = y and f(c) = y satisfies the condition $Int_{\theta}(f(Cl(\lambda))) \le f(\lambda)$ but not fuzzy strongly continuous.

THEOREM 2.14. If $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ is fuzzy weakly θ -open and fuzzy strongly continuous, then *f* is fuzzy θ -open.

PROOF. Let λ be an fuzzy open subset of *X*. Since *f* is fuzzy weakly θ -open $f(\lambda) \leq Int_{\theta}(f(Cl(\lambda)))$. However, because *f* is fuzzy strongly continuous, $f(\lambda) \leq Int_{\theta}(f(\lambda))$ and therefore $f(\lambda)$ is fuzzy θ -open.

The following example shows that neither of this fuzzy strongly continuity yield a decomposition of fuzzy θ -openness.

EXAMPLE 2.15. Let $X = \{a, b\}$ and $Y = \{x, y\}$. Fuzzy sets A and B defined as:

$$A(a) = 0.4$$
, $A(b) = 0.8$;
 $B(x) = 0.4$, $B(y) = 0.3$.

Let $\tau = \{0, A, 1_x\}$ and $\sigma = \{0, B, 1_x\}$. Then the mapping $f: (X, \tau) \to (Y, \sigma)$ defined by f(a) = x and f(b) = y satisfies fuzzy θ -openness but not fuzzy strongly continuity. A function $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ is said to be fuzzy contra θ -closed if $f(\lambda)$ is a fuzzy θ -open set of Y, for each fuzzy closed set λ in X.

THEOREM 2.16. If $f: (X, \tau_1) \to (Y, \tau_2)$ is fuzzy contra θ -closed, then *f* is a fuzzy weakly θ -open function.

PROOF. Let λ be an fuzzy open subset of *X*. Then, we have $f(\lambda) \le f(Cl(\lambda)) = Int_{\rho}(f(Cl(\lambda)))$.

The converse of Theorem 2.16 does not hold.

EXAMPLE. 2.17. Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$.

Define fuzzy sets A, B and H as :

$$A(a) = A(b) = 1 , A(c) = 0;$$

$$B(a) = 0 , B(b) = B(c) = 1;$$

$$H(a) = 1 , H(b) = H(c) = 0.$$

Let $\tau = \{0, A, 1_x\}$ and $\sigma = \{0, B, H, 1_x\}$. Then the mapping $f : (X, \tau) \rightarrow (X, \sigma)$ defined as : f(a) = f(c) = c and f(b) = b is fuzzy weakly θ -open but not fuzzy contra θ -closed.

THEOREM 2.18. Let *X* be a fuzzy regular space. Then $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ is fuzzy weakly θ -open if and only if *f* is fuzzy θ -open.

PROOF. The sufficiency is clear. Necessity. Let λ be a non-null fuzzy open subset of *X*. For each x_p fuzzy point in λ , let μ_{x_p} be an fuzzy open set such that $x_p \in \mu_{x_p} \leq Cl = (\mu_{x_p}) \leq \lambda$. Hence we obtain that $\lambda = \bigcup \{\mu_{x_p} : x_p \in \lambda\} = \bigcup \{Cl(\mu_{x_p}) : x_p \in \lambda\}$ and, $f(\lambda) = \bigcup \{f(\mu_{x_p}) : x_p \in \lambda\} \leq \bigcup \{Int_{\theta}(f(Cl(\mu_{x_p}))) : x_p \in \lambda\} \leq Int_{\theta}(f(\bigcup \{Cl(\mu_{x_p}) : x_p \in \lambda\}) = Int_{\theta}(f(\lambda))$. Thus *f* is fuzzy θ -open.

THEOREM 2.19. If $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ is a f.a.o.N function and a fuzzy closed function, then it is a fuzzy weakly θ -open function.

PROOF. Let λ be a fuzzy open set in *X*. Since *f* is *f*.a.o.N and *Int*(*Cl*(λ)) is fuzzy regular open, *f*(*Int*(*Cl*(λ))) is fuzzy open in *Y* and hence *f*(λ) \leq *f*(*Int*(*Cl*(λ))) \leq *Int*(*f*(*Cl*(λ))) = *Int*_{θ}(*f*(*Cl*(λ))). This shows that *f* is fuzzy weakly θ -open.

It is obvious that converse of Theorem 2.19 is not true in general.

LEMMA 2.20 [6]. If $f: (X, \tau_1) \to (Y, \tau_2)$ is a fuzzy continuous function, then for any fuzzy subset λ of X, $f(Cl(\lambda)) \leq Cl(f(\lambda))$.

THEOREM 2.21. If $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ is a fuzzy weakly θ -open and fuzzy continuous function, then *f* is a fuzzy β -open function.

PROOF. Let λ be a fuzzy open set in *X*. Then by fuzzy weak θ -openness of $f, f(\lambda) \leq Int_{\theta}(f(Cl(\lambda)))$. Since *f* is fuzzy continuous $f(Cl(\lambda)) \leq Cl(f(\lambda))$. Hence we obtain that, $f(\lambda) \leq Int_{\theta}(f(Cl(\lambda))) \leq Int_{\theta}(Cl(f(\lambda))) \leq Cl(Int(Cl(f(\lambda))))$. Therefore, $f(\lambda) \leq Cl(Int(Cl(f(\lambda))))$ which shows that $f(\lambda \text{ is a fuzzy } \beta$ -open set in *Y*. Thus *f* is a fuzzy β -open function.

Since every fuzzy strongly continuous function is fuzzy continuous we have the following corollary.

COROLLARY 2.22. If $f: (X, \tau_1) \to (Y, \tau_2)$ is a fuzzy weakly θ -open and fuzzy strongly continuous function. Then *f* is a fuzzy β -open function.

Recall that, two non-empty fuzzy sets λ and β in a fuzzy topological spaces *X* (i.e., neither λ nor β is 0_x) are said to be fuzzy θ -separated [9] if $\lambda \overline{q}Cl_{\theta}(\beta)$ and $\beta \overline{q}C_{\theta}l(\lambda)$ or equivalently if there exist two fuzzy θ -open sets μ and ν such that $\lambda \leq \mu$, $\beta \leq \nu$, $\lambda \overline{q}\nu$ and $\beta \overline{q}\mu$.

A fuzzy topological space X which can not be expressed as the union of two fuzzy θ -separated sets is said to be a fuzzy θ -connected space [10].

THEOREM 2.23. If $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ is a fuzzy weakly θ -open from a space *X* onto a fuzzy θ -connected space *Y*; then *X* is fuzzy connected.

PROOF. If possible, let *X* be not connected. Then there exist fuzzy separated sets β and γ in *X* such that $X = \beta \cup \gamma$. Since β and γ are fuzzy separated, there exist two fuzzy open sets μ and ν such that $\beta \leq \mu$, $\gamma \leq \nu$, $\beta \overline{q} \nu$ and $\gamma \overline{q} \mu$. Hence we have $f(\beta) \leq f(\mu), f(\gamma) \leq f(\nu), f(\beta) \overline{q} f(\nu)$ and $f(\gamma) \overline{q} f(\mu)$. Since *f* is fuzzy weakly θ -open, we have $f(\mu) \leq Int_{\theta}(f(Cl(\mu)))$ and $f(\nu) \leq Int_{\theta}(f(Cl(\nu)))$ and since μ and ν are fuzzy open and also fuzzy closed, we have $f(Cl(\mu)) = f(\mu)$, $f(Cl(\nu)) = f(\nu)$. Hence $f(\mu)$ and $f(\nu)$ are fuzzy θ -open in *Y*. Therefore, $f(\beta)$ and $f(\gamma)$ are fuzzy θ -separated sets in *Y* and *Y*

= $f(X) = f(\beta \cup \gamma) = f(\beta) \cup f(\gamma)$. Hence this contrary to the fact that *Y* is fuzzy θ -connected. Thus *X* is fuzzy connected.

DEFINITION 2.24. A space *X* is said to be fuzzy hyperconnected if every nonempty fuzzy open subset of *X* is fuzzy dense in *X*.

THEOREM 2.25. If *X* is a fuzzy hyperconnected space, then a function $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ is fuzzy weakly θ -open if and only if f(X) is fuzzy θ -open in *Y*.

PROOF. The su±ciency is clear. For the necessity observe that for any fuzzy open subset λ of X, $f(\lambda) \le f(X) = Int_{\theta}(f(X)) = Int_{\theta}(f(Cl(\lambda)))$.

ACKNOWLEDGEMENT. The authors would like to thank the referee for his careful work and very nice comments of the paper.

REFERENCES

- [1] K.K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., **82**(1981), 14-32.
- R.N. Bhoumik and A. Mukherjee, Fuzzy weakly completely continuous functions, Fuzzy Sets and Systems, 55(1993), 347-354.
- [3] A.S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44(1991), 303-308.
- [4] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-192.
- [5] A.S. Mashhour, M.H. Ghanim and M.A. Fath Alla, On fuzzy non-continuous mappings, Bull. Calcutta Math. Soc., 78(1986), 57-69.
- [6] P.P. Ming and L.Y. Ming, Fuzzy topology I. Neighborhood structure of fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., **76**(1980), 571-594.
- [7] M.N. Mukherjee and S.P. Sinha, fuzzy μ -closure operator on fuzzy topological spaces, Int. J. Math. Math. Sci., **14**(1991), 309-314.
- [8] S. Nanda, On fuzzy topological spaces, Fuzzy Sets and Systems, **19**(1986), 193-197.
- [9] J.H. Park, B. Young Lee and J.R. Choi, Fuzzy θ-connectedness, Fuzzy Sets and Systems, 59(1993), 237-244.
- [10] J.H. Park, Y.B. Park and J.S Park, Fuzzy weakly open mappings and fuzzy RScompact sets, Far East J. Math. Sci. Special vol., (1997), Part II, 201-212.

- [11] Z. Petricevic, A comparision of di®erent forms of continuity in fuzzy topology, (Unpublished).
- [12] Z. Petricevic, Weak forms of continuity in fuzzy topology, Mat. Vesnik, 42 (1990), 35-44.
- [13] D.A. Rose, On weak openness and almost openness, Int. J. Math. Math. Sci., 7(1984), 35-40.
- [14] L.A. Zadeh, Fuzzy sets, Inform and Control, **8**(1965), 338-353.

M. Caldas

Departamento de Matematica Aplicada Universidade Federal Fluminense Rua Mario Santos Braga, s/n, CEP: 24020-140, Niteroi , RJ Brasil e-mail: gmamccs@vm.u®.br

G.B. Navalagi

Department of Mathematics KLE Societys G.H.College Haveri-581110, Karnataka, India e-mail: gnavalagi@hotmail.com

R.K. Saraf

Department of Mathematics Govt. K.N.G. College DAMOH-470661 M.P., India