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1. INTRODUCTION AND PRELIMINARIES

The concept of fuzzy sets was introduced by Prof. L.A. Zadeh in his classical paper
[14]. After the discovery of the fuzzy subsets, much attention has been paid to
generalize the basic concepts of classical topology in fuzzy setting and thus a modern
theory of fuzzy topology is developed. The notion of fuzzy subsets naturally plays a
very significant role in the study of fuzzy topology which was introduced by C.L.
Chang [4] in 1968. In 1980, Ming and Ming [6], introduced the concepts of quasi-
coincidence and q-neighbourhoods by which the extensions of functions in fuzzy
setting can very interestingly and effectively be carried out. In 1985, D.A. Rose [13]
defined weakly open functions in topological spaces. In 1997 J.H. Park, Y.B. Park
and J.S. Park [9] introduced the notion of weakly open functions in between fuzzy
topological spaces. In [12] Z. Petricevic has introduced and studied the concepts of
fuzzy �-continuous and fuzzy weakly �-continuous functions. In this paper we
introduce and discuss the concepts of fuzzy �-open and fuzzy weakly �-open functions
and we obtain several characterizations and properties of these functions and also
study these functions comparing with other types of already known functions.
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Throughout this paper by (X, �) or simply by X we mean a fuzzy topological
space (fts, shorty) due to Chang [4]. A point fuzzy in X with support x � X and value
p (0 < p � 1) is denoted by x

p
. Two fuzzy sets � and � are said to be quasi-coincident

(q-coincident, shorty) denoted by �q�, if there exists x � X such that �(x) +��(x) > 1

[6] and by q  we denote “is not” q-coincident. It is known [6] that ����� if and only

if q�  (1–�). A fuzzy set � is said to be q-neighbourhood (q-nbd) of x
p
 if there is a

fuzzy open set � such that x
p
q� and � � �.

The interior, closure and the complement of a fuzzy set ��� X are denoted by
Int(�), Cl(�) and 1 –�� respectively. For definitions and results not explained in this
paper, the reader is referred to [1,4,5,7,11,13,14] assuming them to be well known.

DEFINITIONS 1.1. A fuzzy set � in a fts X is called,

(1) Fuzzy preopen [3] if � � Int(Cl(�)).

(2) Fuzzy regular open [1] if � = Int(Cl(�)).

(3) Fuzzy �-open [3] if � � Int(Cl(Int(�))).

(4) Fuzzy �-open [5] if � � Cl(Int(Cl(�))).

DEFINITIONS 1.2. [7]. A fuzzy point x
p
 in a fts X is said to be a fuzzy �-cluster

point of a fuzzy set � if and only if for every fuzzy open q-nbd � of x
p
, Cl(�) is q-

coincident with �. The set of all fuzzy �-cluster points of � is called the fuzzy
�-closure of � and is denoted by Cl�(�). A fuzzy set � is fuzzy �-closed if and only
if � = Cl�(�). The complement of a fuzzy �-closed set is called of fuzzy �-open and
the �-interior of � denoted by Int�(�) is defined as:

Int�(�) = {x
p
 : for some fuzzy open q-nbd � of x

p
, Cl(�) � �}.

LEMMA 1.3. [2]. Let � be a fuzzy set in a fts X, then:

(1) � is a fuzzy �-open if and only if � = Int�(�).

(2) 1 – Int�(�) = Cl�(1 – �) and Int��(1 – �) = 1 – Cl�(�).

(3) Cl�(�) (resp. Int�(�)) is a fuzzy closed set (resp. fuzzy open set) but not
necessarily is a fuzzy �-closed set (resp. fuzzy �-open set).



Weakly �-Open Functions between Fuzzy Topological Spaces 105

RESULT. 1.4. (i) It is easy to see that Cl(�) � Cl�(�) and Int�(�) � Int(�) for any
fuzzy set � in a fts X:

(ii) For a fuzzy open (resp. fuzzy closed) set � in a fts X, Cl(�) = Cl�(�) (resp.
Int�(�) = Int(�)).

DEFINITION 1.5. Let f : (X, �) � (Y, �) be a function from a fts (X, �) into a fts
(Y, �). The function f is called:

(i) fuzzy weakly open [10] if f(�) � Int (f(Cl(�))) for each fuzzy open set � in
X.

(ii) fuzzy almost open (written as f.a.o.N) [8] if f(�) is a fuzzy open set of Y for
each fuzzy regular open set � in X.

(iii) fuzzy �-open [5] if f(�) is a fuzzy �-open set of Y for each fuzzy open set �
of X.

(iv) fuzzy �-continuous [12] (resp. fuzzy weakly �-continuous [12]) if for each
fuzzy point x

p
 and each open nbd � of of f(x

p
), there is a fuzzy open nbd � of

x
p
 such that f(Cl(�)) � Cl(�) (resp. f(Int(Cl(�))) � Cl(�)).

2. FUZZY WEAKLY �-OPEN FUNCTIONS

Since fuzzy �-continuity [12] is dual to fuzzy �-openness (It might be new one), we
define in this paper the concept of fuzzy weak �-openness as natural dual to the
fuzzy weak �-continuity [12].

DEFINITION 2.1. A function f : (X, �
1
) � (Y, �

2
) is said to be fuzzy weakly

�-open if f(�) � Int�(f(Cl(�))) for each fuzzy open set � of X.

DEFINITION 2.2. A function f : (X, �
1
) � (Y, �

2
) is said to be fuzzy �-open if

f(�) is a fuzzy �-open set of Y for each fuzzy open set � of X:

REMARK. 2.3. Clearly, every fuzzy weakly �-open function is fuzzy weakly
open and every fuzzy �-open function is fuzzy weakly �-open.

EXAMPLE 2.4. Let X = {a, b} and Y = {x, y}. Fuzzy sets A, B, E and H be
defined as:
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A(a) = 0.2  ,  A(b) = 0.3;

B(a) = 0.8  ,  B(b) = 0.9;

E(x) = 0.5  ,  E(y) = 0.7;

H(x) = 0.4  ,  H(y) = 0.3.

Let � = {0, A, 1
X
}, � = {0, B, 1

X
} and � = {0, E, H, 1

Y
}. Then the mapping f :

(X, �) � (Y, �) defined by f(a) = x and f(b) = y is fuzzy weakly �-open which is not
fuzzy �-open and the mapping g : (X, �) � (Y, �) defined by g(a) = x and g(b) = y is
fuzzy weakly open but not fuzzy weakly �-open.

THEOREM 2.5. For a function f : (X, �
1
) � (Y, �

2
), the following conditions are

equivalent :

(i) f is fuzzy weakly �-open,

(ii) f(Int�(�)) � Int�(f(�)) for every fuzzy subset � of X,

(iii) Int�(f
–1(�)) �� f–1(Int�(�)) for every fuzzy subset � of Y,

(iv) f–1(Cl�(�)) � Cl�(f
–1(�)) for every fuzzy subset � of Y.

PROOF. (i) � (ii) : Let � be any fuzzy subset of X and x
p
 a fuzzy point in

Int�(�). Then, there exists a fuzzy open q-nbd � of x
p
 such that � � Cl(�) � �. Then,

f(�) � f(Cl(�)) � f(�). Since f is fuzzy weakly �-open, f(�) � Int�(f(Cl(�))) � Int�(f(�)).
It implies that f(x

p
) is a point in Int�(f(�)). This shows that x

p
 � f–1 (Int�(f(�))). Thus

Int�(�) � f–1 (Int�(f(�))), and so f(Int�(�)) � Int�(f(�)).

(ii) � (i) : Let � be a fuzzy open set in X. As � � Int�(Cl(�)) implies, f(�) �
f(Int�(Cl(¹))) � Int�(f(Cl(�))). Hence f is fuzzy weakly �-open.

(ii) � (iii) : Let � be any fuzzy subset of Y. Then by (ii), f(Int�(f
–1(�))) � Int�(�).

Therefore Int�(f
–1(�)) � f–1(Int�(�)).

(iii) � (ii) : This is obvious.

(iii) � (iv) : Let � be any fuzzy subset of Y. Using (iii), we have

1 – Cl�(f
–1(�)) = Int�(1 – f–1(�)) = Int�(f

–1(1 – �)) � f–1(Int�(1 – �))

= f–1(1 – Cl�(�)) = 1 – (f–1(Cl�(�)). Therefore, we obtain f–1(Cl�(�)) � Cl�(f
–1(�)).
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(iv) � (iii) : Similarly we obtain, 1 – f–1(Int�(�)) � 1 – Int�(f
–1(�)), for every fuzzy

subset � of Y, i.e., Int�(f
–1(�))�� f–1(Int�(�)).

THEOREM 2.6. If X is a fuzzy regular space, then for a function f : (X, �
1
) � (Y,

�
2
), the following conditions are equivalent:

(i) f is fuzzy weakly �-open,

(ii) For each fuzzy �-open set � in X, f(�) is fuzzy �-open in Y,

(iii) For any fuzzy set � of Y and any fuzzy �-closed set � in X containing f–1(�),
there exists a fuzzy �-closed set � in Y containing � such that f–1(�) � �.

PROOF. (i) � (ii) : Let � be a fuzzy �-open set in X. Then 1 – f(�) is a fuzzy set
in Y and by (i) and Theorem 2.5 (iv), f–1(Cl�(1 – f(�))) � Cl�(f

–1(1 – f(�))). Therefore,
1 – f–1 (Int�(f(�))) � Cl�(1 – �) = 1. Then, we have � � f–1 (Int�(f(�))) which implies
f(�) � Int�(f(�)). Hence f(�) is fuzzy �-open in Y.

(ii) � (iii) : Let � be any fuzzy set in Y and � be a fuzzy �-closed set in X such
that f–1(�) � �. Since 1 – � is fuzzy �-open in X, by (ii), f(1– �) is fuzzy �-open in Y.
Let � = 1 – f(1 – �). Then � is fuzzy �-closed and � � �. Now, f–1(�) = f–1(1 – f(1 – �))
= 1 – f–1 (f(�)) � �.

(iii) � (i) : Let � be any fuzzy set in Y. Then by Corollary 3.6 of [7] � = Cl�(f
–1

(�)) is fuzzy �-closed set in X and f–1(�) � �. Then there exists a fuzzy �-closed set �
in Y containing � such that f–1(�) � �. Since � is fuzzy �-closed f–1(Cl�(�)) � f–1(�) �
Cl�(f

–1(�)). Therefore by Theorem 2.5, f is a weakly �-open function.

Furthermore, we can prove the following,

THEOREM 2.7. If f : (X, �
1
) � (Y, �

2
) is fuzzy weakly �-open, then for each x

p

fuzzy point in X and each fuzzy open set � of X containing x
p
, there exists a fuzzy

open set � in Y containing f(x
p
) such that � � f(Cl(�)).

PROOF. Let x
p
 � X and � be a fuzzy open set in X containing x

p
. Since f is fuzzy

weakly �-open. f(�) � Int�(f(Cl(�))). Let � = Int�(f(Cl(�))). Hence � � f(Cl(�)), with
� containing f(x

p
).

The reverse in the theorem above is true if f is a fuzzy closed function.
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COROLLARY 2.8. Let f : (X, �
1
) � (Y, �

2
) be a closed function. Then the

statement following are equivalent:

(i) f is fuzzy weakly �-open,

(ii) For each x
p
 fuzzy point in X and each fuzzy open set � of X containing x

p
,

there exists a fuzzy open set � containing f(x
p
) such that � � f(Cl(�)).

PROOF. (i) � (ii) : Theorem 2.7.

(ii) � (i) : Let � be a fuzzy open set in X and let y
p
 � f(�). It follows from (ii) �

� f(Cl(�)) for some � fuzzy open in Y containing y
p
. Hence as f is a closed function

we have, y
p
 ��� � Int�(f(Cl(�))) by Result 1.4(ii) above. This shows that f(�) �

Int�(f(Cl(�))), i.e., f is a fuzzy weakly �-open function.

THEOREM 2.9. Let f : (X, �
1
) � (Y, �

2
) be a bijective function. Then the

following statements are equivalent:

(i) f is fuzzy weakly �-open,

(ii) Cl�(f(�)) � f(Cl(�)) for each � fuzzy open of X,

(iii) Cl�(f(Int(�)) � f(�) for each � fuzzy closed of X.

PROOF. (i) � (iii) : Let � be a fuzzy closed set in X. Then we have f(1–�) = 1–
f (�) � Int�(f(Cl(1 – �))) and so 1–f(�) � 1–Cl�(f(Int(�)). Hence Cl�(f(Int(�))) � f(�).

(iii) � (ii) : Let � be a fuzzy open set in X. Since Cl(�) is a fuzzy closed set and
� � Int(Cl(�)) by (iii) we have Cl�(f(�)) � Cl�(f(Int(Cl(�))) � f(Cl(�)).

(ii) � (iii) : Similar to (iii) � (ii).

(iii) � (i) : Clear.

The following theorem the proof is mostly straightforward and is omitted.

THEOREM 2.10. For a function f : (X, �
1
) � (Y, �

2
) the following conditions

are equivalent:

(i) f is fuzzy weakly �-open,

(ii) For each fuzzy closed subset � of X,    f(Int(�)) � Int�(f(�)),

(iii) For each fuzzy open subset � of X,   f(Int(Cl(�))) � Int�(f(Cl(�))),
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(iv) For every fuzzy preopen subset � of X,   f(�) � Int�(f(Cl(�))),

(v) For every fuzzy �-open subset � of X,   f(�) � Int�(f(Cl(�))).

Now, we give a fuzzy strong definition of continuity define that when combined
with fuzzy weak �-openness imply fuzzy �-openness.

DEFINITION 2.11. A function f : (X, �
1
) � (Y, �

2
) is said to be fuzzy strongly

continuous if for every fuzzy subset � of X, f(Cl(�)) � f(�).

LEMMA 2.12. If f : (X, �
1
) � (Y, �

2
) is fuzzy strongly continuous, then

Int�(f(Cl(�))) � f(�) but the converse does not hold as is shown by the following
example.

EXAMPLE 2.13. Let X = {a, b, c} and Y = {x, y, z}. Fuzzy sets A and B be
defined as :

A(a) = 0 , A(b) = 0.2 , A(c) = 0.8;

B(x) = 0 , B(y) = 0.7 , B(z) = 0.4.

Let � = {0, A, 1
X
} and � = {0, B, 1

Y
}. Then the mapping f : (X, �) � (Y, �) defined

by f(a) = x and f(b) = y and f(c) = y satisfies the condition Int�(f(Cl(�))) � f(�) but not
fuzzy strongly continuous.

THEOREM 2.14. If f : (X, �
1
) � (Y, �

2
) is fuzzy weakly �-open and fuzzy

strongly continuous, then f is fuzzy �-open.

PROOF. Let � be an fuzzy open subset of X. Since f is fuzzy weakly �-open f(�)
� Int�(f(Cl(�))). However, because f is fuzzy strongly continuous, f(�) � Int�(f(�))
and therefore f(�) is fuzzy �-open.

The following example shows that neither of this fuzzy strongly continuity yield
a decomposition of fuzzy �-openness.

EXAMPLE 2.15. Let X = {a, b} and Y = {x, y}. Fuzzy sets A and B defined as:

A(a) = 0.4 , A(b) = 0.8;
B(x) = 0.4 , B(y) = 0.3 .

Let � = {0, A, 1
X
} and � = {0, B, 1

X
}. Then the mapping f : (X, �) � (Y, �) defined

by f(a) = x and f(b) = y satisfies fuzzy �-openness but not fuzzy strongly continuity.



110 Miguel CALDAS, Govindappa NAVALAGI & Ratnesh SARAF

A function f : (X, �
1
) � (Y, �

2
) is said to be fuzzy contra �-closed if f(�) is a fuzzy

�-open set of Y, for each fuzzy closed set � in X.

THEOREM 2.16. If f : (X, �
1
) � (Y, �

2
) is fuzzy contra �-closed, then f is a

fuzzy weakly �-open function.

PROOF. Let � be an fuzzy open subset of X. Then, we have f(�) � f(Cl(�))) =
Int�(f(Cl(�))).

The converse of Theorem 2.16 does not hold.

EXAMPLE. 2.17. Let X = {a, b, c} and Y = {x, y, z}.

Define fuzzy sets A, B and H as :

A(a) = A(b) = 1 , A(c)= 0;

B(a) = 0 , B(b) = B(c) = 1;

H(a) = 1 , H(b) = H(c) = 0.

Let � = {0, A, 1
X
} and � = {0, B, H, 1

X
}. Then the mapping f : (X, �) � (X, �)

defined as : f(a) = f(c) = c and f(b) = b is fuzzy weakly �-open but not fuzzy contra
�-closed.

THEOREM 2.18. Let X be a fuzzy regular space. Then f : (X, �
1
) � (Y, �

2
) is

fuzzy weakly �-open if and only if f is fuzzy �-open.

PROOF. The sufficiency is clear. Necessity. Let � be a non-null fuzzy open
subset of X. For each x

p
 fuzzy point in �, let �xp

 be an fuzzy open set such that x
p
 � �xp

� Cl=(�xp
) ���. Hence we obtain that � = �{�xp

 : x
p
 ���} = ��Cl(�xp

) : x
p
 � �} and,

f(�) = �{f(�xp
) : x

p
 � �} � �{Int�(f(Cl(�xp

))) : x
p
 � �} � Int�(f(�{Cl(�xp

) : x
p
 � �}) =

Int�(f(�)). Thus f is fuzzy �-open.

THEOREM 2.19. If f : (X, �
1
) � (Y, �

2
) is a f.a.o.N function and a fuzzy closed

function, then it is a fuzzy weakly �-open function.

PROOF. Let � be a fuzzy open set in X. Since f is f.a.o.N and Int(Cl(�)) is fuzzy
regular open, f(Int(Cl(�))) is fuzzy open in Y and hence f(�) � f(Int(Cl(�)) �
Int(f(Cl(�))) = Int�(f(Cl(�))). This shows that f is fuzzy weakly �-open.

It is obvious that converse of Theorem 2.19 is not true in general.
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LEMMA 2.20 [6]. If f : (X, �
1
) � (Y, �

2
) is a fuzzy continuous function, then for

any fuzzy subset � of X, f(Cl(�)) � Cl(f(�)).

THEOREM 2.21. If f : (X, �
1
) � (Y, �

2
) is a fuzzy weakly �-open and fuzzy

continuous function, then f is a fuzzy �-open function.

PROOF. Let � be a fuzzy open set in X. Then by fuzzy weak �-openness of
f, f(�) � Int�(f(Cl(�))). Since f is fuzzy continuous f(Cl(�)) � Cl(f(�)). Hence we
obtain that, f(�) � Int�(f(Cl(�))) � Int�(Cl(f(�))) � Cl(Int(Cl(f(�)))). Therefore, f(�) �
Cl(Int(Cl(f(�))) which shows that f(� is a fuzzy �-open set in Y. Thus f is a fuzzy �-
open function.

Since every fuzzy strongly continuous function is fuzzy continuous we have the
following corollary.

COROLLARY 2.22. If f : (X, �
1
) � (Y, �

2
) is a fuzzy weakly �-open and fuzzy

strongly continuous function. Then f is a fuzzy �-open function.

Recall that, two non-empty fuzzy sets � and � in a fuzzy topological spaces X

(i.e., neither � nor � is 0
X
) are said to be fuzzy �-separated [9] if ( )qCl�� �  and

( )qC l�� �  or equivalently if there exist two fuzzy �-open sets � and � such that � �

�, � � �, q� �  and q� � .

A fuzzy topological space X which can not be expressed as the union of two
fuzzy �-separated sets is said to be a fuzzy �-connected space [10].

THEOREM 2.23. If f : (X, �
1
) � (Y, �

2
) is a fuzzy weakly �-open from a space

X onto a fuzzy �-connected space Y; then X is fuzzy connected.

PROOF. If possible, let X be not connected. Then there exist fuzzy separated
sets � and � in X such that X = �����. Since � and � are fuzzy separated, there exist

two fuzzy open sets � and � such that ����� , �����, q� �  and q� � . Hence we have

f(�) � f(�), f(�) � f(�), f(�) q f(�) and f(�) q f(�). Since f is fuzzy weakly �-open, we

have f(�) � Int�(f(Cl(�))) and f(�) � Int�(f(Cl(�))) and since � and � are fuzzy open
and also fuzzy closed, we have f(Cl(�)) = f(�) , f(Cl(�)) = f(�). Hence f(�) and f(�)
are fuzzy �-open in Y. Therefore, f(�) and f(�) are fuzzy �-separated sets in Y and Y
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= f(X) = f(���� �) = f(�) � f(�). Hence this contrary to the fact that Y is fuzzy
�-connected. Thus X is fuzzy connected.

DEFINITION 2.24. A space X is said to be fuzzy hyperconnected if every non-
empty fuzzy open subset of X is fuzzy dense in X.

THEOREM 2.25. If X is a fuzzy hyperconnected space, then a function f : (X,
�

1
) � (Y, �

2
) is fuzzy weakly �-open if and only if f(X) is fuzzy �-open in Y.

PROOF. The su±ciency is clear. For the necessity observe that for any fuzzy
open subset � of X, f(�) � f(X) = Int�(f(X)) = Int�(f(Cl(�))).
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