International Review of Fuzzy Mathematics Vol. 3 No. 1 (June, 2018)

Received: 03rd March 2017 Revised: 14th April 2017 Accepted: 10th September 2017

Young Bae Jun & Seok Zun Song

FUZZY IDEALS WITH OPERATORS IN BCC-ALGEBRAS

ABSTRACT: The notions of BCC-algebras with operators (brie, Ω -BCC algebras) and Ω -fuzzy BCC-ideals of Ω -BCC-algebras are given. Some properties of Ω -fuzzy BCC-ideals of Ω -BCC-algebras are investigated.

2000 Mathematics Subject Classification: 06F35, 03B52.

Key words and phrases: Ω -BCC-algebra, Ω -BCC-ideal, Ω -fuzzy BCK-ideal, Ω -fuzzy BCC-ideal.

1. INTRODUCTION

In 1966, Y. Imai and K. Iséki [8] defined a class of algebras of type (2,0) called *BCK-algebras* which generalizes on one hand the notion of algebra of sets with the set subtraction as the only fundamental non-nullary operation, on the other hand the notion of implication algebra. The class of all BCK-algebras is a quasivariety. K. Iséki posed an interesting problem (solved by A. Wroński [11]) whether the class of BCK-algebras is a variety. In connection with this problem, Y. Komori [9] introduced a notion of *BCC*-algebras, and W. A. Dudek [1, 2] redefined the notion of *BCC*-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. In [6], W. A. Dudek and X. H. Zhang introduced a notion of *BCC*-ideals in *BCC*-algebras (see [3, 4, 5]). In this paper, we introduce the notions of *BCC*-algebras with operators (briefly, Ω -*BCC*-algebras) and Ω -fuzzy *BCC*-ideals of Ω -*BCC*-algebras.

2. BASIC CONCEPTS AND RESULTS

We record here some basic concepts and clarify notions which are used in the sequel. For more details, we refer to the textbook BCK-Algebras (Meng and Jun [10]) and references which are given in this article.

Recall that a *BCC-algebra* is an algebra (X,*, 0) of type (2,0) satisfying the following axioms:

for every $x, y, z \in X$. For any *BCC*-algebra *X*, the relation \leq defined by $x \leq y$ if and only if x * y = 0 is a partial order on *X*. In a *BCC*-algebra *X*, the following holds (see [7]).

•
$$x * x = 0$$
,

- $x * y \leq x$,
- $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$

for all $x, y \in X$. A nonempty subset *S* of a *BCC*-algebra *X* is said to be a *subalgebra* of *X* if $x * y \in S$ whenever $x, y \in S$. A nonempty subset *A* of a *BCC*-algebra *X* is called a *BCK-ideal* of *X* if it satisfies

•
$$0 \in A$$

• $(\forall x \in X) (\forall y \in A) (x * y \in A \Longrightarrow x \in A).$

A nonempty subset A of a BCC-algebra X is called a BCC-ideal of X if it satisfies

- $0 \in A$,
- $(\forall x, z \in X) (\forall y \in A) ((x * y) * z \in A \Rightarrow x * z \in A).$

Note that every *BCC*-ideal of a *BCC*-algebra *X* is a subalgebra of *X*. For a fuzzy set μ in *X* and $t \in [0, 1]$, the set $\mu_t := \{x \in X \mid \mu(x) \ge t\}$ is called a *level set* of μ . A fuzzy set μ in a *BCC*-algebra *X* is called a *fuzzy subalgebra* of *X* if $\mu(x * y) \ge \min \{\mu(x), \mu(y)\}$ for all $x, y \in X$. A fuzzy set μ in a *BCC*-algebra *X* is called a *fuzzy BCK*-*ideal* of *X* it it satisfies

•
$$(\forall x \in X) \ (\mu(0) \ge \mu(x)).$$

• $(\forall x, y \in X) \ (\mu(x) \ge \min \{\mu(x * y), \mu(y)\}).$

A fuzzy set μ in a *BCC*-algebra X is called a *fuzzy BCC-ideal* of X if it satisfies

- $(\forall x \in X) \ (\mu(0) \ge \mu(x)).$
- $(\forall x, y, z \in X) \ (\mu(x * z) \ge \min \{\mu((x * y) * z), \mu(y)\}).$

3. FUZZY BCC-IDEALS WITH OPERATORS

We begin with the definition of a *BCC*-algebra with operators.

Definition 3.1. A *BCC-algebra with operators* is an algebraic system consisting of a *BCC*-algebra *X*, a nonempty set Ω and a function defined on the product set $\Omega \times X$ and having values in *X* such that, if *ax* denotes the element in *X* determined by the element *x* of *X* and the element α of Ω , then $\alpha(x * y) = \alpha x * \alpha y$ holds for any *x*, $y \in X$ and $\alpha \in \Omega$. We shall usually use the phrase "*X* is an Ω -*BCC*-algebra" to a *BCC*-algebra with operators. A subalgebra *S* of an Ω -*BCC*-algebra *X* is said to be an Ω -*subalgebra* of *X* if $\alpha x \in S$ for every $\alpha \in \Omega$ and $x \in S$. A *BCC*-ideal *A* of an Ω -*BCC*-algebra *X* is said to be an Ω -*BCC*-ideal of *X* if $\alpha x \in A$ for every $\alpha \in \Omega$ and $x \in A$.

Example 3.2. Let *X* be a *BCC*-algebra and let Ω be a nonempty set. If we define $\alpha x = 0$ (or, $\alpha x = x$) for all $x \in X$ and $\alpha \in \Omega$, then *X* is an Ω -*BCC*-algebra.

Proposition 3.3. Let X be an Ω -BCC-algebra. For each $\alpha \in \Omega$, the set

$$X_{\alpha} := \{ x \in X \mid \alpha x = x \}$$

is a subalgebra of X. Moreover, if X satisfies the right cancellation law, then X_{α} is a BCK-ideal of X.

Proof. Let $x, y \in X_{\alpha}$ for each $\alpha \in \Omega$. Then $\alpha x = x$ and $\alpha y = y$, which imply that $\alpha(x * y) = \alpha x * \alpha y = x * y$, i.e., $x * y \in X_{\alpha}$. Hence X_{α} is a subalgebra of X. Assume that X satisfies the right cancellation law and let $x, y \in X$ be such that $x * y \in X_{\alpha}$ and $y \in X_{\alpha}$. Then $\alpha x * y = \alpha x * \alpha y = \alpha(x * y) = x * y$, and hence $\alpha x = x$ by the right cancellation law. Thus $x \in X_{\alpha}$, and X_{α} is a *BCK*-ideal of X.

Proposition 3.4. In an Ω -BCC-algebra X, the following hold:

- (i) $(\forall \alpha \in \Omega) (\alpha 0 = 0)$.
- (ii) $(\forall x, y \in X) (\forall \alpha \in \Omega) (x \le y \Longrightarrow \alpha x \le \alpha y).$

Proof. (i) For any $x \in X$ and $\alpha \in \Omega$ we have $\alpha 0 = \alpha(x * x) = \alpha x * \alpha x = 0$.

(ii) Let $x, y \in X$ be such that $x \le y$ and let $\alpha \in \Omega$. Then $\alpha x * \alpha y = \alpha(x * y) = \alpha 0 = 0$, and so $\alpha x \le \alpha y$.

Proposition 3.5. Let X be an Ω -BCC-algebra. For each $\alpha \in \Omega$, the set

$$X(\alpha, 0) := \{x \in X \mid \alpha x = 0\}$$

is a BCC-ideal of X.

Proof. Proposition 3.4 (i) implies $0 \in X(\alpha, 0)$. Let $x, y, z \in X$ and $\alpha \in \Omega$ be such that $(x * y) * z \in X(\alpha, 0)$ and $y \in X(\alpha, 0)$. Then

$$\alpha(x * z) = \alpha x * \alpha z = (\alpha x * 0) * \alpha z = (\alpha x * \alpha y) * \alpha z$$

= $\alpha(x * y) * \alpha z = \alpha((x * y) * z) = 0,$

and so $x * z \in X(\alpha, 0)$. Thus $X(\alpha, 0)$ is a *BCC*-ideal of *X*.

Definition 3.6. Let X be an Ω -BCC-algebra. A fuzzy set μ in X is called an Ω -fuzzy subalgebra (resp. Ω -fuzzy BCK-ideal, Ω -fuzzy BCC-ideal) of X if it is a fuzzy subalgebra (resp. fuzzy BCK-ideal, fuzzy BCC-ideal) of X such that the following inequality:

$$(\forall x \in X) \ (\forall \alpha \in \Omega) \ (\mu(\alpha x) \ge \mu(x)).$$

Example 3.7. Let μ be a fuzzy set in an Ω -*BCC*-algebra *X* defined by

$$\mu(x) := \begin{cases} 0.7 & if \ \alpha x = 0 \ for \ each \ \alpha \in \Omega, \\ 0.4 & otherwise. \end{cases}$$

It is easy to verify that μ is an Ω -fuzzy *BCC*-ideal of *X*.

Proposition 3.8. If μ is an Ω -fuzzy subalgebra of an Ω -BCC-algebra X, then

(i) $(\forall x, y \in X) (\forall \alpha \in \Omega) (\mu(\alpha(x * y)) \ge \min \{\mu(\alpha x), \mu(\alpha y)\}).$

(i) $(\forall x \in X) (\forall \alpha \in \Omega) (\mu(\alpha 0) (= \mu(0)) \ge \mu(\alpha x)).$

Proof. Straightforward.

Given Ω -fuzzy *BCC*-ideal, we make a fuzzy *BCC*-ideal.

Theorem 3.9. Let μ be an Ω -fuzzy BCC-ideal of an Ω -BCC-algebra X. For any $\alpha \in \Omega$, let ν be a fuzzy set in X given by $\nu(x) = \mu(\alpha x)$ for all $x \in X$. Then ν is a fuzzy BCC-ideal of X.

Proof. Using Proposition 3.4(i), we have

$$v(0) = \mu(\alpha 0) = \mu(0) \ge \mu(\alpha x) = v(x)$$

for all $x \in X$ and $\alpha \in \Omega$. For any $x, y, z \in X$ and $\alpha \in \Omega$, we get

$$v(x * z) = \mu(\alpha(x * z)) = \mu(\alpha x * \alpha z) \ge \min \{\mu((\alpha x * \alpha y) * \alpha z), \mu(\alpha y)\}$$

 $= \min \{\mu(\alpha((x * y) * z), \mu(\alpha y))\} = \min \{\nu((x * y) * z), \nu(y)\}.$

Therefore v is a fuzzy *BCC*-ideal of X.

Theorem 3.10. Let X be an Ω -BCC-algebra. If μ is an Ω -fuzzy BCC-ideal of X, then for each $\alpha \in \Omega$ the set

$$G_{\alpha} := \{x \in X \mid \mu(\alpha x) = \mu(0)\}$$

is an Ω -BCC-ideal of X.

Proof. Clearly $0 \in G_{\alpha}$. Let $x, y, z \in X$ be such that $(x * y) * z \in G_{\alpha}$ and $y \in G_{\alpha}$. Then

$$\mu(\alpha(x * z)) = \mu(\alpha x * \alpha z) \ge \min \{\mu((\alpha x * \alpha y) * \alpha z), \mu(\alpha y)\}$$
$$= \min \{\mu(\alpha((x * y) * z), \mu(\alpha y)\} = \mu(0),$$

and so $x * z \in G_{\alpha}$. This completes the proof.

If μ is an Ω -fuzzy *BCC*-ideal of an Ω -*BCC*-algebra *X*, then μ_t , $t \in [0, 1]$, is either empty or a *BCC*-ideal of *X* (see [3, Theorem 4.9]). Let $x \in \mu_t$ and $\alpha \in \Omega$. Then $\mu(\alpha x) \ge \mu(x) \ge t$, and so $\alpha x \in \mu_t$. Thus μ_t is an Ω -*BCC*-ideal of *X*. Now let μ be a fuzzy set in an Ω -*BCC*-algebra *X* for which every nonempty level set is an Ω -*BCC*-ideal of *X*. Then μ is a fuzzy *BCC*-ideal of *X* (see [3, Theorem 4.9]). Assume that there exists

 $x \in X$ and $\alpha \in \Omega$ such that $\mu(\alpha x) < \mu(x)$. Taking $t = \frac{1}{2} (\mu(\alpha x) + \mu(x))$ implies that $\mu(\alpha x) < t < \mu(x)$, and so $\alpha x \notin \mu_t$ and $x \in \mu_t$. This contradicts to the fact that every nonempty level set is an Ω -*BCC*-ideal of *X*. This shows that μ is an Ω -fuzzy *BCC*-ideal of *X*: Hence we have the following theorem.

Theorem 3.11. A fuzzy set μ in an Ω -BCC-algebra X is an Ω -fuzzy BCC-ideal of X if and only if for every $t \in [0, 1]$ the level set μ_t is either empty or an Ω -BCC-ideal of X.

Theorem 3.12. Let A be a nonempty subset of an Ω -BCC-algebra X and let v be a fuzzy set in X defined by

$$v(x) := \begin{cases} s & if \ x \in A, \\ t & otherwise, \end{cases}$$

for all $x \in X$ and s > t in [0, 1]. Then v is an Ω -fuzzy BCC-ideal of X if and only if A is an Ω -BCC-ideal of X.

Proof. Note that

$$v_r := \begin{cases} X & \text{if } 0 \le r \le t, \\ A & \text{if } t < r \le s, \\ \phi & \text{if } s < r \le 1. \end{cases}$$

Hence the proof follows from Theorem 3.11.

Proposition 3.13. Every Ω -fuzzy BCK-ideal μ of an Ω -BCC-algebra X satisfies the following inequality:

$$(\forall x, y \in X) (\forall \alpha \in \Omega) (\mu(\alpha(x * y)) \ge \min \{\mu(\alpha x), \mu(\alpha y)\})$$

Proof. Since $x * y \le x$ for all $x, y \in X$, $\alpha(x * y) \le \alpha x$ by Proposition 3.4 (ii). Since μ is order reversing, it follows that

$$\mu(\alpha(x * y)) \ge \mu(\alpha x) \ge \min \{\mu(\alpha x * \alpha y), \mu(\alpha y)\}$$

= min { $\mu(\alpha(x * y)), \mu(\alpha y)$ } \ge min { $\mu(\alpha x), \mu(\alpha y)$ },

which completes the proof.

Let $\{A_t \mid t \in T\}$, where $\phi \neq T \subseteq [0, 1]$, be a collection of Ω -*BCC*-ideals of an Ω -*BCC*-algebra *X* such that

$$(\forall s, t \in T) (s > t \Leftrightarrow A_s \subset A_t).$$

Then $\bigcup_{t \le s} A_s$ and $\bigcap_{s < t} A_s$ are Ω -*BCC*-ideals of *X*. Combining Theorem 3.11 and [5, Proposition 3.8] induce the following theorem.

Theorem 3.14. Let $\{A_t | t \in T\}$, where $\phi \neq T \subseteq [0, 1]$, be a collection of Ω -BCC ideals of an Ω -BCC-algebra X such that

(i)
$$X = \bigcup_{t \in T} A_t$$

(ii) $(\forall s, t \in T) (s > t \Leftrightarrow A_s \subset A_t)$.

Then a fuzzy set μ on X defined by $\mu(x) = \sup \{t \in T \mid x \in A_t\}$ for all $x \in X$ is an Ω -fuzzy BCC-ideal of X.

Theorem 3.15. Let μ be a fuzzy set in an Ω -BCC-algebra X and let Im(μ) = { t_0 , t_1, \ldots, t_n }, where $t_0 > t_1 > \ldots > t_n$. If $A_0 \subset A_1 \subset \ldots \subset A_n = X$ are Ω -BCC-ideals of X such that $\mu(A_k \setminus A_{k-1}) = t_k$ for $k = 0, 1, \ldots, n$, where $A_{-1} = \phi$ then μ is an Ω -fuzzy BCC-ideal of X.

Proof. Using [5, Proposition 3.11] we know that μ is a fuzzy *BCC*-ideal of *X*. Let $x \in X$ and $\alpha \in \Omega$. Then $x \in A_k \setminus A_{k-1}$ for some $k \in \{1, 2, ..., n\}$. Since A_k is an Ω -*BCC*-ideal of *X*, $\alpha x \in A_k$. Hence $\mu(\alpha x) \ge t_k = \mu(x)$. This shows that μ is an Ω -fuzzy *BCC*-ideal of *X*.

Theorem 3.16. If every Ω -fuzzy BCC-ideal μ in an Ω -BCC-algebra X has the finite image, then every descending chain of Ω -BCC-ideals of X terminates at finite step.

Proof. Let μ be a fuzzy set in X defined by

$$\mu(x) := \begin{cases} \frac{n}{n+1} & \text{if } x \in A_n \setminus A_{n+1}, n = 0, 1, 2, \dots, \\ 1 & \text{if } x \in \bigcap A_n, n = 0, 1, 2, \dots, \end{cases}$$

where $X = A_0 \supset A_1 \supset A_2 \supset ...$ is a strictly descending chain of Ω -BCC-ideals of X which does not terminate at finite step. Then μ is a fuzzy BCC-ideal of X (see [5,

Proposition 3.16]). If
$$x \in A_n \setminus A_{n+1}$$
 and $\alpha \in \Omega$, then $\alpha x \in A_n$. Hence $\mu(\alpha x) \ge \frac{n}{n+1} =$

 $\mu(x)$. Now if $x \in A_n$ and $\alpha \in \Omega$, then $\alpha x \in \bigcap A_n$. Thus $\mu(\alpha x) = 1 = \mu(x)$. Therefore μ is an Ω -fuzzy *BCC*-ideal of *X* which has an infinite number of different values. This is impossible, and the result is valid.

Theorem 3.17. Let μ be an Ω -fuzzy BCC-ideal of an Ω -BCC-algebra X. If Im(μ) is a well-ordered subset of [0, 1], then every ascending chain of Ω -BCC-ideals of X terminates at finite step.

Proof. Let μ be a fuzzy set in X defined by

$$\mu(x) := \begin{cases} 0 & if \ x \notin \bigcup_{n \in \mathbb{N}} A_n, \\ \frac{1}{k} & where \ k = \min\{n \in \mathbb{N} \mid x \in A_n\} \end{cases}$$

where $A_1 \subset A_2 \subset A_3 \subset ...$ is a strictly ascending chain of Ω -*BCC*-ideals of *X* which does not terminate at finite step. Then μ is a fuzzy *BCC*- ideal of *X* (see [5, Proposition 3.17]). Now if $x \notin \bigcup_{n \in \mathbb{N}} A_n$, then obviously $\mu(\alpha x) \ge 0 = \mu(x)$ for all $\alpha \in \Omega$. Assume

that $x \in \bigcup_{n \in \mathbb{N}} A_n$ and $\alpha \in \Omega$. Then $x \in A_n \setminus A_{n-1}$ for some $n \in \mathbb{N}$. Thus $\alpha x \in A_n$, and

hence $\mu(\alpha x) \ge \frac{1}{n} = \mu(x)$. Therefore μ is an Ω -fuzzy *BCC*-ideal of *X* which has an

infinite number of different values. This is impossible, and the result is valid.

REFERENCES

- [1] W. A. Dudek, *The number of subalgebras of finite BCC-algebras*, Bull. Inst. Math. Academia Sinica **20** (1992), 129-136.
- W. A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Academia Sinica 20 (1992), 137-150.
- W. A. Dudek and Y. B. Jun, *Fuzzy BCC-ideals in BCC-algebras*, Math. Montisnigri 10 (1999), 21-30.
- [4] W. A. Dudek and Y. B. Jun, *Fuzzifications of ideals in BCC-algebras*, Glasnik Math. 36(56) (2001), 127-138.
- [5] W. A. Dudek, Y. B. Jun and Z. Stojaković, *On fuzzy ideals in BCC-algebras*, Fuzzy Sets and Systems **123** (2001), 251-258.
- [6] W. A. Dudek and X. H. Zhang, *On ideals and congruences in BCC-algebras*, Czech. Math. J. 48(123) (1998), 21-29.
- [7] J. Hao, *Ideal theory of BCC-algebras*, Scientiae Mathematicae 1(3) (1998), 373-381.

- [8] Y. Imai and K. Iséki, *On axiom system of propositional calculi XIV*, Proc. Japan Academy **42** (1966), 19-22.
- Y. Komori, *The class of BCC-algebras is not a variety*, Math. Japon. 29 (1984), 391-394.
- [10] J. Meng and Y. B. Jun, *BCK-algebras*, Kyungmoonsa, Korea, 1994.
- [11] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213.

Y.B. Jun

Department of Mathematics Education Gyeongsang National, University Chinju 660-701, Korea E-mail address: ybjun@gnu.ac.kr

S. Z. Song

Department of Mathematics Cheju National University Cheju, 690-756, Korea *E-mail address*: szsong@cheju.ac.kr