International Review of Fuzzy Mathematics Vol. 5 No. 1 (June, 2020)

Received: 23rd July 2019 Revised: 14th August 2019 Accepted: 15th November 2019

Young Bae Jun, Hee Sik Kim and Eun Hwan Roh

REDEFINED FUZZY B-ALGEBRAS

ABSTRACT: Using the belongs to relation (\in) and quasi-coincidence with relation (q) between fuzzy points and fuzzy sets, the concept of (α , β)-fuzzy *B*-algebras where α and β are any two of { \in , q, $\in \lor q$, $\in \land$ } with $\alpha \neq \in \land q$ is introduced, and related properties are investigated. We give a condition for an (\in , $\in \lor q$)-fuzzy *B*-algebra to be an (\in , \in)-fuzzy *B*-algebra. We provide characterizations of an (\in , $\in \lor q$)-fuzzy *B*-algebra. We show that a proper (\in , \in)-fuzzy *B*-algebra \mathscr{A} of X with additional conditions can be expressed as the union of two proper non-equivalent (\in , $\in \lor q$)-fuzzy *B*-algebras of X. We also prove that if \mathscr{A} is a proper (\in , $\in \lor q$)-fuzzy *B*-algebra of a *B*-algebra X such that

 $\# \{ \mathcal{A}(\mathbf{x}) \mid \mathcal{A}(\mathbf{x}) < 0.5 \} \ge 2;$

then there exist two proper non-equivalent (\in , $\in \lor q$)-fuzzy *B*-algebras of X such that \mathcal{A} can be expressed as the union of them.

2000 *Mathematics Subject Classification:* 03G10, 03B05, 03B52, 06F35. *Key words and phrases: B*-algebra, *B*-subalgebra, belong to, quasi-coincident with, (\in, \in) -fuzzy *B*-algebra, (\in, q) -fuzzy *B*-algebra, $(\in, \in \lor q)$ -fuzzy *B* algebra.

1. INTRODUCTION

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([7, 8]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [5, 6] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They showed that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. Recently, the present authors ([9]) introduced a new notion, called a BH-algebra, which is a generalization of BCH/BCK-algebras. They also defined the notions of ideals and boundedness in BH-algebras, and showed that there is a maximal ideal in bounded BH-algebras. The

second author together with J. Neggers [13] introduced and investigated a class of algebras, i.e., the class of B-algebras, which is related to several classes of algebras of interest such as BCH/BCI/BCK-algebras and which seems to have rather nice properties without being excessively complicated otherwise. J. R. Cho and H. S. Kim [4] discussed further relations between B-algebras and other classes of algebras, such as quasigroups. It is well known that every group determines a B-algebra, called a group-derived B-algebra. It is natural to have a question of interest to determine whether or not all B-algebras are so group-derived. It is proved that this is not the case in general, and thus that this class of algebras contains the class of groups indirectly via the group-derived principle (See [1]). In this paper, using the belongs to relation (\in) and quasi-coincidence with relation (q) between fuzzy points and fuzzy sets, we introduce the concept of (α, β) -fuzzy B-algebras where α and β are any two of $\{ \in, q, \in \forall q, \in \land q \}$ with $\alpha \neq \in \land q$, and investigate related properties. We give a condition for an $(\in, \in \forall f)$ -fuzzy B-algebra to be an (\in, \in) -fuzzy B-algebra. We provide characterizations of an $(\in, \in \forall q)$ -fuzzy B-algebra. We show that a proper (\in, \in) -fuzzy B-algebra \mathcal{A} of X with additional conditions can be expressed as the union of two proper non-equivalent (\in, \in) -fuzzy B-algebras of X. We also prove that if \mathscr{A} is a proper $(\in, \in \lor q)$ -fuzzy B-algebra of a B-algebra X such that # $\{ \mathcal{A}(x) \mid \mathcal{A}(x) < 0.5 \} \ge 2$, then there exist two proper non-equivalent $(\in, \in \lor q)$ fuzzy B-algebras of X such that \mathcal{A} can be expressed as the union of them.

2. PRELIMINARIES

A *B*-algebra is a non-empty set X with a constant 0 and a binary operation " * " satisfying the following axioms:

- (i) $(\forall x \in X) (x * x = 0)$,
- (ii) $(\forall x \in X) (x * 0 = x)$,
- (iii) $(\forall x, y, x \in X) ((x * y) * z = x * (z * (0 * y))).$

A non-empty subset *N* of a B-algebra *X* is called a *B*-subalgebra of *X* if $x * y \in N$ for any $x, y \in N$. A non-empty subset *N* of a B-algebra *X* is said to be normal if $(x * a) * (y * b) \in N$ whenever $x * y \in N$ and $a * b \in N$. Note that any normal subset *N* of a B-algebra *X* is a B-algebra of *X*, but the converse need not be true (see [10]). A non-empty subset *N* of a B-algebra *X* is called a normal *B*-subalgebra of *X* if it is both a B-algebra and normal.

Lemma 2.1. [13] *If X is a B-algebra, then* x * y = x * (0 * (0 * y)) *for all* $x, y \in X$.

Example 2.2. [13] Let X be the set of all real numbers except for a negative integer -n. Define a binary operation " * " on X by

$$x * y := \frac{n(x-y)}{n+y}.$$

Then (X; *, 0) is a B-algebra.

Example 2.3. [13] Let \mathbb{Z} be the group of integers under usual addition and let $\alpha \notin \mathbb{Z}$. We adjoin the special element α to \mathbb{Z} . Let $X := \mathbb{Z} \cup {\alpha}$. Define $\alpha + 0 = \alpha, \alpha + n = n - 1$ where $n \neq 0$ in \mathbb{Z} and $\alpha + \alpha$ is an arbitrary element in X. Define a mapping ϕ : $X \rightarrow X$ by $\phi(\alpha) = 1$, $\phi(n) = -n$ where $n \in \mathbb{Z}$. If we define a binary operation "*" on X by $x * y := x + \phi(y)$, then (X; *, 0) is a non-group derived B-algebra.

A fuzzy set \mathcal{A} in a set *X* of the form

$$\mathcal{A}(\mathbf{y}) := \begin{cases} t \in (0,1] & \text{if } \mathbf{y} = \mathbf{x}, \\ 0 & \text{if } \mathbf{y} \neq \mathbf{x}, \end{cases}$$

is said to be a *fuzzy point* with support x and value t and is denoted by x.

For a fuzzy point x_i and a fuzzy set \mathfrak{A} in a set X, Pu and Liu [15] gave meaning to the symbol $x_i \alpha \mathfrak{A}$, where $\alpha \in \{ \in, q, \in \lor q, \in \land q \}$.

To say that $x_t \in \mathcal{A}(\text{resp. } x_t q \mathcal{A})$ means that $\mathcal{A}(x) \ge t$ (resp. $\mathcal{A}(x) + t > 1$), and in this case, x_t is said to *belong to* (resp. *be quasi-coincident with*) a fuzzy set \mathcal{A} .

To say that $x_t \in \forall q \in \mathcal{A}(\text{resp. } x_t \in \land q \in \mathcal{A})$ means that $x_t \in \mathcal{A} \text{ or } x_t q \in \mathcal{A}(\text{resp. } x_t \in \mathcal{A} \text{ and } x_t q \in \mathcal{A})$.

3. REDEFINED FUZZY B-ALGEBRAS

In what follows, let *X* denote a B-algebra unless otherwise specified, and let α and β denote any one of \in , q, $\in \lor q$, or $\in \land q$ unless otherwise specified. To say that $x,\overline{\alpha} \bowtie$ means that $x,\alpha \bowtie$ does not hold.

Definition 3.1. [10] A fuzzy set \mathscr{A} in *X* is called a *fuzzy B-algebra* if it satisfies the inequality

$$(\forall x, y \in X) \ (\mathscr{A}(x * y) \ge \min \{ \mathscr{A}(x), \mathscr{A}(y) \}).$$
(1)

Proposition 3.2. For any fuzzy set \mathfrak{A} in X, the condition (1) is equivalent to the following condition

 $(\forall x, y \in X) \ (\forall t_1, t_2 \in (0, 1]) \ (x_{t_1}, y_{t_2} \in \mathcal{A} \Longrightarrow (x * y)_{\min\{t_1, t_2\}} \in \mathcal{A}).$ (2)

Proof. Assume that the condition (1) is valid. Let $x, y \in X$ and $t_1, t_2 \in (0, 1]$ be

such that $x_{t_1}, y_{t_2} \in \mathcal{A}$. Then $\mathcal{A}(x) \ge t_1$ and $\mathcal{A}(y) \ge t_2$, which imply from (1) that

$$\mathscr{A}(x * y) \ge \min\{\mathscr{A}(x), \mathscr{A}(y)\} \ge \min\{t_1, t_2\}.$$

Hence $(x * y)_{\min\{t_1, t_2\}} \in \mathbb{C}$

Conversely suppose that the condition (2) is valid. Note that $x_{\mathcal{A}(x)} \in \mathcal{A}$ and $y_{\mathcal{A}(y)} \in \mathcal{A}$ for all $x, y \in X$. Thus $(x * y)_{\min\{\mathcal{A}(x), \mathcal{A}(y)\}} \in \mathcal{A}$ by (2), and so $\mathcal{A}(x * y) \ge \min\{\mathcal{A}(x), \mathcal{A}(y)\}$.

Definition 3.3. A fuzzy set \mathcal{A} in *X* is said to be an (α, β) -*fuzzy B-algebra* of *X*, where $\alpha \neq \in \land q$, if it satisfies the following conditions:

$$(\forall x, y \in X) \ (\forall t_1, t_2 \in (0, 1]) \ (x_{t_1} \alpha \, \mathcal{A}, y_{t_2} \alpha \, \mathcal{A} \Rightarrow (x * y)_{\min\{t_1, t_2\}} \beta \, \mathcal{A}).$$
(3)

Let \mathcal{A} be a fuzzy set in X such that $\mathcal{A}(x) \leq 0.5$ for all $x \in X$. Let $x \in X$ and $t \in X$.

(0, 1] be such that $x_t \in \land q \mathcal{A}$. Then $\mathcal{A}(x) \ge t$ and $\mathcal{A}(x) + t > 1$. It follows that $1 < \mathcal{A}(x) + t \le \mathcal{A}(x) + \mathcal{A}(x) = 2 \mathcal{A}(x)$

so that $\mathscr{A}(x) > 0.5$. This means that $\{x_t \mid x_t \in \land q \in \mathscr{A}\} = \emptyset$. Therefore the case $\alpha = \in \land q$ in Definition 3.3 will be omitted.

Example 3.4. Let $X = \{0, a, b, c\}$ be a set with the following Cayley table:

*	0	a	b	С
0	0	С	b	a
a	а	0	С	b
b	b	а	0	С
с	с	b	а	0

Then (X; *, 0) is a B-algebra ([1]). Let \mathscr{A} be a fuzzy set in X defined by $\mathscr{A}(0) = 0.6$, $\mathscr{A}(b) = 0.7$, and $\mathscr{A}(a) = \mathscr{A}(c) = 0.3$. Then \mathscr{A} is an $(\in, \in \lor q)$ -fuzzy B-algebra of X. But

(1) \mathscr{A} is not an (\in, \in) -fuzzy B-algebra of X since $b_{0.63} \in \mathscr{A}$ and $b_{0.68} \in \mathscr{A}$, but $(b * b)_{\min\{0.63, 0.68\}} = 0_{0.63} \in \mathscr{A}$.

(2) \mathscr{A} is not a $(q, \in \lor q)$ -fuzzy B-algebra of X since $b_{0.43} \neq \mathscr{A}$ and $a_{0.79} \neq \mathscr{A}$, but $(b * a)_{\min\{0.43, 0.79\}} = a_{0.43} \in \lor q \otimes \checkmark$ because $\mathscr{A}(a) = 0.3 \ngeq 0.43$ and $\mathscr{A}(a) + 0.43 = 0.3$ $+ 0.43 = 0.73 \nearrow 1$.

(3) A is not an $(\in \lor q, \in \lor q)$ -fuzzy B-algebra of X since $b_{0.5} \in \lor q$ A and $c_{0.8} \in \lor q$ A, but $(b * c)_{\min\{0.5,0.8\}} = c_{0.5} \in \lor q$ because $A(c) = 0.3 \ngeq 0.5$ and $A(c) + 0.5 = 0.3 + 0.5 = 0.8 \nearrow 1$.

(4) A is not an $(\in \lor q, q)$ -fuzzy B-algebra of X since $b_{0.66} \in \lor q$ And $a_{0.78} \in \lor q$ q A, but $(a * b)_{\min\{0.78, 0.66\}} = c_{0.66} \overline{q} A$ because $A(c) + 0.66 = 0.3 + 0.66 = 0.96 \neq 1$.

Theorem 3.5. Every $(\in \lor q, \in \lor q)$ -fuzzy *B*-algebra is an $(\in, \in \lor q)$ -fuzzy *B*-algebra.

Proof. Let \mathscr{A} be an $(\in \lor q, \in \lor q)$ -fuzzy B-algebra of *X*. Let $x, y \in X$ and $t_1, t_2 \in (0, 1]$ be such that $x_{t_1} \in \mathscr{A}$ and $y_{t_2} \in \mathscr{A}$. Then $x_{t_1} \in \lor q$ \mathscr{A} and $y_{t_2} \in \lor q$ \mathscr{A} , which imply that $(x * y)_{\min\{t_1, t_2\}} \in \lor q$ \mathscr{A} . Hence \mathscr{A} is an $(\in, \in \lor q)$ -fuzzy B-algebra of *X*.

Theorem 3.6. Every (\in, \in) -fuzzy *B*-algebra is an $(\in, \in \lor q)$ -fuzzy *B*-algebra. *Proof.* Straightforward.

Example 3.4 shows that the converse of Theorems 3.5 and 3.6 need not be true. **Proposition 3.7.** *If A is a non-zero* (α, β) *-fuzzy B-algebra of X*, *then A*(0) > 0. *Proof.* Assume that *A*(0) = 0. Since *A* is non-zero, there exists $x \in X$ such that A(x) = t > 0. If $\alpha = \epsilon$ or $\alpha = \epsilon \lor q$, then $x_t \alpha \bowtie$, but $(x * x)_{\min\{t,t\}} = 0_t \overline{\beta} \bowtie$. This is a contradiction. If $\alpha = q$, then $x_1 \alpha \bowtie$ because A(x) + 1 = t + 1 > 1. But $(x * x)_{\min\{1,1\}} = 0_t \overline{\beta} \bowtie$ which is a contradiction. Hence A(0) > 0.

For a fuzzy set \mathscr{A} in *X*, we denote $X_0 := \{x \in X \mid \mathscr{A}(x) > 0\}$.

Theorem 3.8. If \mathscr{A} is a nonzero (\in, \in) -fuzzy *B*-algebra of *X*, then the set X_0 is a *B*-subalgebra of *X*.

Proof. Let $x, y \in X_0$. Then $\mathscr{A}(x) > 0$ and $\mathscr{A}(y) > 0$. Suppose that $\mathscr{A}(x * y) = 0$. Note that $x_{\mathscr{A}(x)} \in \mathscr{A}$ and $y_{\mathscr{A}(y)} \in \mathscr{A}$, but $(x * y)_{\min\{\mathscr{A}(x), \mathscr{A}(y)\}} \in \mathscr{A}$ because \mathscr{A}

 $(x * y) = 0 < \min \{ \mathcal{A}(x), \mathcal{A}(y) \}$. This is a contradiction, and thus $\mathcal{A}(x * y) > 0$, which shows that $x * y \in X_0$. Consequently X_0 is a B-algebra of X.

Theorem 3.9. If \mathcal{A} is a nonzero (\in, q) -fuzzy *B*-algebra of *X*, then the set X_0 is a *B*-subalgebra of *X*.

Proof. Let $x, y \in X_0$. Then $\mathcal{A}(x) > 0$ and $\mathcal{A}(y) > 0$. If $\mathcal{A}(x * y) = 0$, then $\mathcal{A}(x * y) + \min \{ \mathcal{A}(x), \mathcal{A}(y) \} = \min \{ \mathcal{A}(x), \mathcal{A}(y) \} \le 1$.

Hence $(x * y)_{\min\{\mathscr{A}(x),\mathscr{A}(y)\}} \overline{q} \otimes \mathscr{A}$, which is a contradiction since $x_{\mathscr{A}(x)} \in \mathscr{A}$ and $y_{\mathscr{A}(y)} \in \mathscr{A}$. Thus $\mathscr{A}(x * y) > 0$, and so $x * y \in X_0$. Therefore X_0 is a B-algebra of X.

Theorem 3.10. If \mathfrak{A} is a nonzero (q, \in) -fuzzy *B*-algebra of *X*, then the set X_0 is a *B*-subalgebra of *X*.

Proof. Let $x, y \in X_0$. Then $\mathscr{A}(x) > 0$ and $\mathscr{A}(y) > 0$. Thus $\mathscr{A}(x) + 1 > 1$ and $\mathscr{A}(y) + 1 > 1$, which imply that $x_1 q \mathscr{A}$ and $y_1 q \mathscr{A}$. If $\mathscr{A}(x * y) = 0$, then $\mathscr{A}(x * y) < 1 = \min\{1, 1\}$. Therefore $(x * y)_{\min\{1, 1\}} \in \mathscr{A}$, which is a contradiction. It follows that $\mathscr{A}(x * y) > 0$ so that $x * y \in X_0$. This completes the proof.

Theorem 3.11. If \mathcal{A} is a nonzero (q, q)-fuzzy *B*-algebra of *X*, then the set X_0 is a *B*-subalgebra of *X*.

Proof. Let $x, y \in X_0$. Then $\mathscr{A}(x) > 0$ and $\mathscr{A}(y) > 0$. Thus $\mathscr{A}(x) + 1 > 1$ and $\mathscr{A}(y) + 1 > 1$, and therefore $x_1 q \mathscr{A}$ and $y_1 q \mathscr{A}$. If $\mathscr{A}(x * y) = 0$, then $\mathscr{A}(x*y) + \min \{1, 1\} = 0 + 1 = 1$, and so $(x*y)_{\min\{1,1\}} \overline{q} \mathscr{A}$. This is impossible, and hence $\mathscr{A}(x * y) > 0$, i.e., $x * y \in X_0$. This completes the proof.

Corollary 3.12. If A is one of the following

- (i) a nonzero $(\in, \in \land q)$ -fuzzy B-algebra of X,
- (ii) a nonzero (\in , $\in \lor q$)-fuzzy B-algebra of X,
- (iii) a nonzero ($\in \lor q, q$)-fuzzy B-algebra of X,

```
(iv) a nonzero (\in \lor q, \in)-fuzzy B-algebra of X,
```

```
(v) a nonzero (\in \lor q, \in \land q)-fuzzy B-algebra of X,
```

```
(vi)a nonzero (q, \in \land q)-fuzzy B-algebra of X,
```

(vii) a nonzero (q, $\in \lor$ q)-fuzzy B-algebra of X,

then the set X_0 is a *B*-algebra of *X*.

Proof. The proof is similar to the proof of Theorems 3.8, 3.9, 3.10, and/or 3.11.

Theorem 3.13. Every nonzero (q, q)-fuzzy B-algebra of X is constant on X_0 .

Proof. Let \mathcal{A} be a nonzero (q, q)-fuzzy B-algebra of X. Assume that \mathcal{A} is not constant on X_0 . Then there exists $y \in X_0$ such that $t_y = \mathcal{A}(y) \neq \mathcal{A}(0) = t_0$. Then either $t_y > t_0$ or $t_y < t_0$. Suppose $t_y < t_0$ and choose $t_1, t_2 \in (0, 1]$ such that $1 - t_0 < t_1 < 1 - t_y < t_2$. Then $\mathcal{A}(0) + t_1 = t_0 + t_1 > 1$ and $\mathcal{A}(y) + t_2 = t_y + t_2 > 1$, and so $0_{t_1} q \mathcal{A}$ and $y_{t_2} q \mathcal{A}$. Since

$$\mathscr{A}(y * 0) + \min \{t_1, t_2\} = \mathscr{A}(y) + t_1 = t_y + t_1 < 1,$$

we have $(y*0)_{\min_{t,t_0}} \overline{q} \mathcal{A}$ which is a contradiction. Next assume that $t_y > t_0$. Then \mathcal{A}

$$(y) + (1 - t_0) = t_y + 1 - t_0 > 1$$
 and so $y_{1 - t_0} q \mathcal{A}$. Since
 $\mathcal{A}(y * y) + (1 - t_0) = \mathcal{A}(0) + 1 - t_0 = t_0 + 1 - t_0 = 1$,

we get $(y * y)_{\min\{1-t_0, 1-t_0\}} \overline{q} \ll \mathcal{A}$. This is impossible. Therefore \ll is constant on X_0 .

Theorem 3.14. Let \mathfrak{A} be a non-zero (α, β) -fuzzy *B*-algebra of *X* where (α, β) is one of the following:

$$\begin{array}{ll} \bullet (\in, q), & \bullet (\in, \in \land q), \\ \bullet (q, \in), & \bullet (q, \in \land q), \\ \bullet (\in \lor q, q), & \bullet (\in \lor q, \in \land q), \\ \bullet (\in \lor q, \in), \end{array}$$

Then $\mathcal{A} = \chi_{\chi_0}$, the characteristic function of X_0 .

Proof. Assume that there exists $x \in X_0$ such that $\mathscr{A}(x) < 1$. For $\alpha = \in$, choose $t \in (0, 1]$ such that $t < \min\{1 - \mathscr{A}(x), \mathscr{A}(x), \mathscr{A}(0)\}$. Then $x_t \alpha \mathscr{A}$ and $0_t \alpha \mathscr{A}$, but $(x * 0)_{\min\{t,t\}} = x_t \overline{\beta} \mathscr{A}$ where $\beta = q$ or $\beta = \in \land q$. This is a contradiction. Now let $\alpha = q$. Then $x_1 \alpha \mathscr{A}$ and $0_1 \alpha \mathscr{A}$, but $(x * 0)_{\min\{1,1\}} = x_1 \overline{\beta} \mathscr{A}$ for $\beta = \epsilon \circ q = \epsilon \land q$, a contradiction. Finally let $\alpha = \epsilon \lor q$ and choose $t \in (0, 1]$ such that $x_t \in \mathscr{A}$ but $x_t \overline{q} \mathscr{A}$. Then $x_t \alpha \mathscr{A}$ and $0_1 \alpha \mathscr{A}$, but $(x * 0)_{\min\{t,1\}} = x_t \overline{\beta} \mathscr{A}$ for $\beta = q$ or $\beta = \epsilon \land q$. This is impossible. Note that $x_1 \alpha \mathscr{A}$ and $0_1 \alpha \mathscr{A}$ but $(x * 0)_{\min\{t,1\}} = x_t \overline{\beta} \mathscr{A}$ for $\beta = q$ or $\beta = \epsilon \land q$. This is impossible. Note that $x_1 \alpha \mathscr{A}$ and $0_1 \alpha \mathscr{A}$ but $(x * 0)_{\min\{t,1\}} = x_t \overline{\beta} \mathscr{A}$ for $\beta = q$ or $\beta = \epsilon \land q$.

Theorem 3.15. Let S be a B-subalgebra of X and let \mathcal{A} be a fuzzy set in X such that

(i) $\mathcal{A}(x) = 0$ for all $x \in X \setminus S$,

(ii) $\mathcal{A}(x) \ge 0.5$ for all $x \in S$.

Then \mathcal{A} *is a* $(q, \in \lor q)$ *-fuzzy B-algebra of X.*

Proof. Let $x, y \in X$ and $t_1, t_2 \in (0, 1]$ be such that $x_{t_1}q \otimes \mathcal{A}$ and $y_{t_2}q \otimes \mathcal{A}$, that is, $\mathfrak{A}(x) + t_1 > 1$ and $\mathfrak{A}(y) + t_2 > 1$. Then $x * y \in S$ because if not then $x \in X \setminus S$ or $y \in X \setminus S$. Thus $\mathfrak{A}(x) = 0$ or $\mathfrak{A}(y) = 0$, and so $t_1 > 1$ or $t_2 > 1$. This is a contradiction. If $\min\{t_1, t_2\} > 0.5$, then $\mathfrak{A}(x * y) + \min\{t_1, t_2\} > 1$ and thus $(x * y)_{\min\{t_1, t_2\}}q \otimes \mathcal{A}$. If $\min\{t_1, t_2\} \leq 0.5$, then $\mathfrak{A}(x * y) \geq 0.5 \geq \min\{t_1, t_2\}$ and so $(x * y)_{\min\{t_1, t_2\}} \in \mathcal{A}$. Therefore $(x * y)_{\min\{t_1, t_2\}} \in \forall q \otimes \mathcal{A}$. This completes the proof.

Theorem 3.16. Let \mathscr{A} be a $(q, \in \lor q)$ -fuzzy *B*-algebra of *X* such that \mathscr{A} is not constant on X_0 . Then there exists $x \in X$ such that $\mathscr{A}(x) \ge 0.5$. Moreover, $\mathscr{A}(x) \ge 0.5$ for all $x \in X_0$.

Proof. Assume that $\mathscr{A}(x) < 0.5$ for all $x \in X$. Since \mathscr{A} is not constant on X_0 , there exists $x \in X_0$ such that $t_x = \mathscr{A}(x) \neq \mathscr{A}(0) = t_0$. Then either $t_0 < t_x$ or $t_0 > t_x$. For the first case, choose $\delta > 0.5$ such that $t_0 + \delta < 1 < t_x + \delta$. It follows that $x_{\delta}q \mathscr{A}$, $\mathscr{A}(x * x) = \mathscr{A}(0) = y_0 < \delta = \min\{\delta, \delta\}$ and $\mathscr{A}(x * x) + \min\{\delta, \delta\} = \mathscr{A}(0) + \delta = t_0 + \delta$ < 1 so that $(x * x)_{\min\{\delta, \delta\}} \in \overline{\lor \lor q} \mathscr{A}$. This is a contradiction. Now if $t_0 > t_x$, we can choose $\delta > 0.5$ such that $t_x + \delta < 1 < t_0 + \delta$. Then $0_{\delta}q \mathscr{A}$ and $x_1 q \mathscr{A}$, but $(x * 0)_{\min\{1,\delta\}} = x_{\delta} \in \overline{\lor \lor q} \mathscr{A}$ since $\mathscr{A}(x) < 0.5 < \delta$ and $\mathscr{A}(x) + \delta = t_x + \delta < 1$. This leads a contradiction. Therefore $\mathscr{A}(x) \ge 0.5$ for some $x \in X$. We now show that $\mathscr{A}(0) \ge 0.5$. Assume that $\mathscr{A}(0) = t_0 < 0.5$. Since there exists $x \in X$ such that $\mathscr{A}(x) = t_x \ge 0.5$, it follows that $t_0 < t_x$. Choose $t_1 > t_0$ such that $t_0 + t_1 < 1 < t_x + t_1$. Then $\mathscr{A}(x) + t_1 = t_x + t_1 > 1$, and so $x_1 q \mathscr{A}$. Now we get

$$\mathcal{A}(x * x) + \min\{t_1, t_1\} = \mathcal{A}(0) + t_1 = t_0 + t_1 < 1,$$

$$\mathcal{A}(x * x) = \mathcal{A}(0) = t_0 < t_1 = \min\{t_1, t_1\}.$$

Hence $(x * x)_{\min\{t_1, t_1\}} \in \forall q \notin A$, a contradiction. Therefore $\mathcal{A}(0) \ge 0.5$. Finally suppose that $t_x = \mathcal{A}(x) < 0.5$ for some $x \in X_0$. Take t > 0 such that $t_x + t < 0.5$. Then $\mathcal{A}(x) + 1 = t_x + 1 > 1$ and $\mathcal{A}(0) + (0.5 + t) > 1$, which imply that $x_1 q \notin A$ and $0_{0.5+t} q \notin A$. But $(x*0)_{\min\{1,0.5+t\}} = x_{0.5+t} \in \forall q \notin A$ since $\mathcal{A}(x * 0) = \mathcal{A}(x) < 0.5 + t < \min\{1, 0.5 + t\}$ and

 $\mathscr{A}(x * 0) + \min\{1, 0.5 + t\} = \mathscr{A}(x) + 0.5 + t = t_x + 0.5 + t < 0.5 + 0.5 = 1.$

This is a contradiction. Hence A (x) ³ 0.5 for all x $\hat{I} X_0$. This completes the proof.

Theorem 3.17. A fuzzy set \mathcal{A} in X is an $(\in, \in \lor q)$ -fuzzy B-algebra of X if and only if it satisfies:

$$(\forall x, y \in X) \ (\mathscr{A}(x * y) \ge \min\{\mathscr{A}(x), \mathscr{A}(y), 0.5\}).$$
(4)

Proof. Suppose that \mathscr{A} is an $(\in, \in \lor q)$ -fuzzy B-algebra of X and let $x, y \in X$. If $\min\{\mathscr{A}(x), \mathscr{A}(y)\} < 0.5$, then $\mathscr{A}(x * y) \ge \min\{\mathscr{A}(x), \mathscr{A}(y)\}$. For, assume that $\mathscr{A}(x * y) < \min\{\mathscr{A}(x), \mathscr{A}(y)\}$ and choose t such that $\mathscr{A}(x * y) < t < \min\{\mathscr{A}(x), \mathscr{A}(y)\}$. Then $x_t \in \mathscr{A}$ and $y_t \in \mathscr{A}$ but $(x * y)_{\min\{t,t\}} = (x * y)_t \in \lor q : \mathscr{A}$, a contradiction. Hence $\mathscr{A}(x * y) \ge \min\{\mathscr{A}(x), \mathscr{A}(y)\}$ whenever $\min\{\mathscr{A}(x), \mathscr{A}(y)\} < 0.5$. Now suppose that $\min\{\mathscr{A}(x), \mathscr{A}(y)\} \ge 0.5$. Then $x_{0.5} \in \mathscr{A}$ and $y_{0.5} \in \mathscr{A}$, which imply that

$$(x * y)_{\min\{0.5, 0.5\}} = (x * y)_{0.5} \in \lor q$$

Thus $\mathscr{A}(x * y) \ge 0.5$. Otherwise, $\mathscr{A}(x * y) + 0.5 < 0.5 + 0.5 = 1$, a contradiction. Consequently, $\mathscr{A}(x * y) \ge \min\{\mathscr{A}(x), \mathscr{A}(y), 0.5\}$ for all $x, y \in X$. Conversely assume that (4) is valid. Let $x, y \in X$ and $t_1, t_2 \in (0, 1]$ be such that $x_{t_1} \in \mathscr{A}$ and $y_{t_2} \in \mathscr{A}$. Then $\mathscr{A}(x) \ge t_1$ and $\mathscr{A}(y) \ge t_2$. If $\mathscr{A}(x * y) < \min\{t_1, t_2\}$, then $\min\{\mathscr{A}(x), \mathscr{A}(y)\} \ge 0.5$. Otherwise, we have

 $\mathscr{A}(x * y) \ge \min\{\mathscr{A}(x), \mathscr{A}(y), 0.5\} \ge \min\{\mathscr{A}(x), \mathscr{A}(y)\} \ge \min\{t_1, t_2\}, a$ contradiction. It follows that

 $\mathscr{A}(x * y) + \min\{t_1, t_2\} > 2 \mathscr{A}(x * y) \ge 2 \min\{\mathscr{A}(x), \mathscr{A}(y), 0.5\} = 1 \text{ so that}$ $(x * y)_{\min\{t_1, t_2\} \notin \mathscr{A}}. \text{ Therefore } \mathscr{A} \text{ is an } (\in, \in \lor q) \text{-fuzzy B-algebra of } X.$

Proposition 3.18. Let
$$\mathscr{A}$$
 be an $(\in, \in \lor q)$ -fuzzy *B*-algebra of *X*. Then
(i) $(\forall x \in X) (\mathscr{A}(0) \ge \min\{\mathscr{A}(x), 0.5\}),$
(ii) $(\forall x \in X) (\mathscr{A}(0 * x) \ge \min\{\mathscr{A}(x), 0.5\}),$
(iii) $(\forall x, y \in X) (\mathscr{A}(x * (0 * y)) \ge \min\{\mathscr{A}(x), \mathscr{A}(y), 0.5\}),$
(iv) $(\forall x, y \in X) (\forall n \in \mathbb{N}) (\mathscr{A}(x^n * x) \ge \min\{\mathscr{A}(x), 0.5\})$ whenever *n* is odd),
(v) $(\forall x, y \in X) (\forall n \in \mathbb{N}) (\mathscr{A}(x^n * x) = \min\{\mathscr{A}(x), 0.5\})$ whenever *n* is even),

where $x^n * y = \underbrace{x * (\cdots * (x * (x * y))) \cdots }_n$ for all $x, y \in X$.

Proof. Since x * x = 0 for all $x \in X$, it follows from Theorem 3.17 that

$$\mathscr{A}(0) = \mathscr{A}(x * x) \ge \min\{\mathscr{A}(x), \mathscr{A}(x), 0.5\} = \min\{\mathscr{A}(x), 0.5\}$$

for all $x \in X$. Thus (i) is valid. For any $x, y \in X$, we have

$$\mathcal{A}(0 * x) \ge \min\{\mathcal{A}(0), \mathcal{A}(x), 0.5\} = \min\{\mathcal{A}(x), 0.5\}$$

by Theorem 3.17 and (i) which shows that (ii) is valid, and

$$\mathscr{A}(x * (0 * y)) \ge \min\{\mathscr{A}(x), \mathscr{A}(0 * y), 0.5\} \ge \min\{\mathscr{A}(x), \mathscr{A}(y), 0.5\}$$

by Theorem 3.17 and (ii). Therefore (iii) holds. Let $x \in X$ and assume that n is odd. Then n = 2k - 1 for some positive integer k. Observe that $\mathscr{A}(x * x) = \mathscr{A}(0) \ge \min \{\mathscr{A}(x), 0.5\}$. Suppose that $\mathscr{A}(x^{2k-1} * x) \ge \min \{\mathscr{A}(x), 0.5\}$ for a positive integer k. Then

$$\mathcal{A}(x^{2(k+1)-1} * x) = \mathcal{A}(x^{2k+1} * x) = \mathcal{A}(x^{2k-1} * (x * (x * x)))$$
$$= \mathcal{A}(x^{2k-1} * x) \ge \min\{\mathcal{A}(x), 0.5\}$$

which proves (iv). Similarly we obtain (v).

Theorem 3.19. A fuzzy set \mathcal{A} in X is an $(\in, \in \lor q)$ -fuzzy B-algebra of X if and only if the set

$$U(\mathcal{A}; t) := \{x \in X \mid \mathcal{A}(x) \ge t\}$$

is a *B*-subalgebra of *X* for all $t \in (0, 0.5]$.

Proof. Assume that \mathcal{A} is an $(\in, \in \lor q)$ -fuzzy B-algebra of X. Let $x, y \in U(\mathcal{A}; t)$ for $t \in (0, 0.5]$. Then $\mathcal{A}(x) \ge t$ and $\mathcal{A}(y) \ge t$. It follows from Theorem 3.17 that

$$\mathscr{A}(x * y) \ge \min\{\mathscr{A}(x), \mathscr{A}(y), 0.5\} \ge \min\{t, 0.5\} = t$$

so that $x * y \in U(\mathcal{A}; t)$. Therefore $U(\mathcal{A}; t)$ is a subalgerba of *X*. Conversely, let \mathcal{A} be a fuzzy set in *X* such that the set

$$U(\mathcal{A}; t) := \{x \in X \mid \mathcal{A}(x) \ge t\}$$

is a B-subalgebra of X for all $t \in (0, 0.5]$. If there exist $x, y \in X$ such that $\mathscr{A}(x * y) < \min \{ \mathscr{A}(x), \mathscr{A}(y), 0.5 \}$, then we can take $t \in (0, 1)$ such that $A(x * y) < t < \min \{ \mathscr{A}(x), \mathscr{A}(y), 0.5 \}$. Thus $x, y \in U(\mathscr{A}; t)$ and t < 0.5, and so $x * y \in U(\mathscr{A}; t)$, i.e., $\mathscr{A}(x * y) \ge t$. This is a contradiction. Therefore

$$\mathscr{A}(x * y) \ge \min\{\mathscr{A}(x), \mathscr{A}(y), 0.5\}$$

for all $x, y \in X$. Using Theorem 3.17, we conclude that \mathscr{A} is an $(\in, \in \lor q)$ -fuzzy B-algebra of X.

We give conditions for a fuzzy set to be an $(\in, \in \lor q)$ -fuzzy B-algebra.

Theorem 3.20. If a fuzzy set \mathscr{A} in X satisfies conditions (ii) and (iii) in *Proposition 3.18, then* \mathscr{A} is an $(\in, \in \lor q)$ -fuzzy *B*-algebra of X.

Proof. Assume that \mathfrak{A} satisfies conditions (ii) and (iii) in Proposition 3.18 and let $x, y \in X$. Then

$$\mathscr{A}(x * y) = \mathscr{A}(x * (0 * (0 * y))) \text{ by Lemma 2.1}$$

$$\geq \min\{\mathscr{A}(x), \mathscr{A}(0 * y), 0.5\} \text{ by Proposition 3.18(ii)}$$

$$\geq \min\{\mathscr{A}(x), \mathscr{A}(y), 0.5\}. \text{ by Proposition 3.18(iii)}$$

Using Theorem 3.17, we conclude that \mathfrak{A} is an $(\in, \in \lor q)$ -fuzzy B-algebra of X.

Theorem 3.21. Let *S* be a *B*-subalgebra of a *B*-algebra *X*. For any $t \in (0, 0.5]$, there exists an $(\in, \in \lor q)$ -fuzzy *B*-algebra \mathcal{A} of *X* such that $U(\mathcal{A}; t) = S$.

Proof. Let \mathcal{A} be a fuzzy set in *X* defined by

$$\mathcal{A}(x) = \begin{cases} t & if \quad x \in S, \\ 0 & otherwise, \end{cases}$$

for all $x \in X$ where $t \in (0, 0.5]$. Obviously, $U(\mathscr{A}; t) = S$. Assume that $\mathscr{A}(x * y) < \min \{ \mathscr{A}(x), \mathscr{A}(y), 0.5 \}$ for some $x, y \in X$. Since $\#\operatorname{Im}(\mathscr{A}) = 2$, it follows that $\mathscr{A}(x * y) = 0$ and $\min \{ \mathscr{A}(x), \mathscr{A}(y), 0.5 \} = t$, and so $\mathscr{A}(x) = t = \mathscr{A}(y)$, so that $x, y \in S$ but $x * y \notin S$. This is a contradiction, and so $\mathscr{A}(x * y) \ge \min \{ \mathscr{A}(x), \mathscr{A}(y), 0.5 \}$. Using Theorem 3.17, we know that \mathscr{A} is an $(\in, \in \lor q)$ -fuzzy B-algebra of X.

Theorem 3.22. For any subset S of X, the characteristic function χ_s of S is an $(\in, \in \lor q)$ -fuzzy B-algebra of X if and only if S is a B-subalgebra of X.

Proof. Assume that χ_s is an $(\in, \in \lor q)$ -fuzzy B-algebra of X. Let $x, y \in S$. Then $\chi_s(x) = 1 = \chi_s(y)$, and so $x_1 \in \chi_s$ and $y_1 \in \chi_s$. It follows that $(x * y)_1 = (x * y)_{\min\{1,1\}} \in \lor q \chi_s$ which yields $\chi_s(x * y) > 0$. Hence $x * y \in S$, and thus S is a B-subalgebra of X. Conversely if S is a B-subalgebra of X, then χ_s is an (\in, \in) -fuzzy B-algebra of X. It follows from Theorem 3.6 that χ_s is an $(\in, \in\lor q)$ -fuzzy B-algebra of X.

Theorem 3.23. Let $\{ \mathfrak{M}_i | i \in \Lambda \}$ be a family of $(\in, \in \lor q)$ -fuzzy *B*-algebras of *X*.

Then
$$\mathscr{A} := \bigcap_{i \in \Lambda} \mathscr{A}_i$$
 is an $(\in, \in \lor q)$ -fuzzy B-algebra of X.

Proof. Let $x, y \in X$ and $t_1, t_2 \in (0, 1]$ be such that $x_{t_1} \in \mathcal{A}$ and $y_{t_2} \in \mathcal{A}$. Assume that $(x * y)_{\min\{t_1, t_2\}} \in \sqrt{q} \mathcal{A}$. Then $\mathcal{A}(x * y) < \min\{t_1, t_2\}$ and $\mathcal{A}(x * y) + \min\{t_1, t_2\} \le 1$, which imply that

$$\mathscr{A}(x * y) < 0.5 \tag{5}$$

Let $\Omega_1 := \{i \in \Lambda \mid (x * y)_{\min\{t_1, t_2\}} \in \mathscr{A}_i\}$ and $\Omega_2 := \{i \in \Lambda \mid (x * y)_{\min\{t_1, t_2\}} \neq \mathscr{A}_i\} \cap \{j \in \Lambda \mid (x * y)_{\min\{t_1, t_2\}} \in \mathscr{A}_j\}.$

Then $\Lambda = \Omega_1 \cup \Omega_2$ and $\Omega_1 \cap \Omega_2 = \phi$. If $\Omega_2 = \phi$, then $(x * y)_{\min\{t_1, t_2\}} \in \mathscr{A}_i$ for all $i \in \Lambda$, that is, $\mathscr{A}_i(x * y) \ge \min\{t_1, t_2\}$ for all $i \in \Lambda$, which yields $\mathscr{A}(x * y) \ge \min\{t_1, t_2\}$. This is a contradiction. Hence $\Omega_2 \ne \phi$, and so for every $i \in \Omega_2$ we have $\mathscr{A}_i(x*y) < \min\{t_1, t_2\}$ and $\mathscr{A}_i(x*y) + \min\{t_1, t_2\} > 1$. It follows that $\min\{t_1, t_2\} > 0.5$. Now $x_{t_1} \in \mathscr{A}$ implies $\mathscr{A}(x) \ge t_1$ and thus $\mathscr{A}_i(x) \ge \mathscr{A}(x) \ge t_1 \ge \min\{t_1, t_2\} > 0.5$ for all $i \in \Lambda$. Similarly we get $\mathscr{A}_i(y) > 0.5$ for all $i \in \Lambda$. Next suppose that $t := \mathscr{A}_i(x*y) < 0.5$. Taking t < r < 0.5, we get $x_r \in \mathscr{A}_i$ and $y_r \in \mathscr{A}_i$, but $(x*y)_{\min\{r,r\}} = (x*y)_r \in \forall q \mathscr{A}_i$. This contradicts that \mathscr{A}_i is an $(\in, \in \lor q)$ -fuzzy B-algebra of X. Hence $\mathscr{A}_i(x*y) \ge 0.5$ for all $i \in \Lambda$, and so $\mathscr{A}(x*y) \ge 0.5$ which contradicts (5). Therefore $(x*y)_{\min\{t_1, t_2\}} \in \lor q$ and consequently \mathscr{A} is an $(\in, \in \lor q)$ -fuzzy B-algebra of X.

Theorem 3.24. Let $f : X \to Y$ be a homomorphism of B-algebras and let \mathfrak{A} and \mathfrak{B} be $(\in, \in \lor q)$ -fuzzy B-algebras of X and Y, respectively. Then

- (i) $f^{-1}(\mathcal{B})$ is an $(\in, \in \lor q)$ -fuzzy *B*-algebra of *X*.
- (ii) If \mathcal{A} satisfies the sup property, i.e., for any subset T of X there exists $x_0 \in T$ such that

$$\mathcal{A}(x_0) = \bigvee \{ \mathcal{A}(x) \mid x \in T \},\$$

then f(\mathfrak{A}) *is an* (\in , $\in \lor q$)*-fuzzy B-algebra of Y when f is onto.*

Proof. (i) Let $x, y \in X$ and $t_1, t_2 \in (0, 1]$ be such that $x_{t_1} \in f^{-1}(\mathcal{B})$ and $y_{t_2} \in f^{-1}(\mathcal{B})$. Then $(f(x))_{t_1} \in \mathcal{B}$ and $(f(y))_{t_2} \in \mathcal{B}$. Since \mathcal{B} is an $(\in, \in \lor q)$ -fuzzy B-algebra of Y, it follows that

$$(f(x * y))_{\min\{t_1, t_2\}} = (f(x) * f(y))_{\min\{t_1, t_2\}} \in \bigvee q \mathscr{B}$$

so that $(x*y)_{\min\{t_1, t_2\}} \in \bigvee q f^{-1}(\mathcal{B})$. Therefore $f^{-1}(\mathcal{B})$ is an $(\in, \in \lor q)$ -fuzzy B-algebra of *X*.

(ii) Let $a, b \in Y$ and $t_1, t_2 \in (0, 1]$ be such that $a_{t_1} \in f(\mathscr{A})$ and $b_{t_2} \in f(\mathscr{A})$. Then $(f(\mathscr{A}))(a) \ge t_1$ and $(f(\mathscr{A}))(b) \ge t_2$. Since \mathscr{A} has the sup property, there exists $x \in f^{-1}(a)$ and $y \in f^{-1}(b)$ such that

$$\mathcal{A}(x) = \bigvee \left\{ \mathcal{A}(z) \mid z \in f^{-1}(a) \right\}$$

and

$$\mathcal{A}(y) = \bigvee \{ \mathcal{A}(w) \mid w \in f^{-1}(b) \}.$$

Then $x_{t_1} \in \mathcal{A}$ and $x_{t_2} \in \mathcal{A}$. Since \mathcal{A} is an $(\in, \in \lor q)$ -fuzzy B-algebra of X, we have $(x * y)_{\min\{t_1, t_2\}} \in \lor q \mathcal{A}$. Now $x * y \in f^{-1}(a * b)$ and so $(f(\mathcal{A}))(a * b) \ge \mathcal{A}(x * y)$. Thus

$$(f(\mathcal{A}))(a * b) \ge \min\{t_1, t_2\} \text{ or } (f(\mathcal{A}))(a * b) + \min\{t_1, t_2\} > 1$$

which means that $(a * b)_{\min\{t_1, t_2\}} \in \forall q f(\mathcal{A})$. Consequently, $f(\mathcal{A})$ is an $(\in, \in \lor q)$ -fuzzy B-algebra of *Y*.

A fuzzy set \mathscr{A} in X is said to be *proper* if $Im(\mathscr{A})$ has at least two elements. Two fuzzy sets are said to be *equivalent* if they have same family of level subsets. Otherwise, they are said to be *non-equivalent*.

Theorem 3.25. Let X be a B-algebra. Then a proper (\in, \in) -fuzzy B-algebra \mathcal{A} of X such that $\#\operatorname{Im}(\mathcal{A}) \geq 3$ can be expressed as the union of two proper non-equivalent (\in, \in) -fuzzy B-algebras of X.

Proof. Let \mathcal{A} be a proper (\in, \in) -fuzzy B-algebra of X with $\text{Im}(\mathcal{A}) = \{t_0, t_1, \dots, t_n\}$, where $t_0 > t_1 > \dots > t_n$ and $n \ge 2$. Then

$$U(\mathscr{A}; t_0) \subseteq U(\mathscr{A}; t_1) \subseteq \ldots \subseteq U(\mathscr{A}; t_n) = X$$

is the chain of \in -level B-subalgebras of \mathscr{A} . Define fuzzy sets \mathscr{B} and \mathscr{C} in X by

$$\mathcal{B}(x) = \begin{cases} r_1 & \text{if } x \in U(\mathcal{A}; t_1), \\ t_2 & \text{if } x \in U(\mathcal{A}; t_2) \setminus U(\mathcal{A}; t_1), \\ \dots & \\ t_n & \text{if } x \in U(\mathcal{A}; t_n) \setminus U(\mathcal{A}; t_{n-1}), \end{cases}$$

and

$$\mathscr{C}(x) = \begin{cases} t_0 & \text{if } x \in U(\mathscr{A}; t_0), \\ t_1 & \text{if } x \in U(\mathscr{A}; t_1) \setminus U(\mathscr{A}; t_0), \\ r_2 & \text{if } x \in U(\mathscr{A}; t_3) \setminus U(\mathscr{A}; t_1), \\ t_4 & \text{if } x \in U(\mathscr{A}; t_4) \setminus U(\mathscr{A}; t_3), \\ \dots & \\ t_n & \text{if } x \in U(\mathscr{A}; t_n) \setminus U(\mathscr{A}; t_{n-1}), \end{cases}$$

respectively, where $t_2 < r_1 < t_1$ and $t_4 < r_2 < t_2$. Then \mathscr{B} and \mathscr{C} are (\in, \in) -fuzzy B algebras of X with

$$U(\mathscr{A}; t_1) \subseteq U(\mathscr{A}; t_2) \subseteq \ldots \subseteq U(\mathscr{A}; t_n) = X$$

and

$$U(\mathscr{A}; t_0) \subseteq U(\mathscr{A}; t_1) \subseteq U(\mathscr{A}; t_3) \subseteq \ldots \subseteq U(\mathscr{A}; t_n) = X$$

as respective chains of \in -level B-subalgebras, and $\mathcal{B}, \mathcal{C} \leq \mathcal{A}$. Thus \mathcal{B} and \mathcal{C} are non-equivalent, and obviously $\mathcal{B} \cup \mathcal{C} = \mathcal{A}$. This completes the proof.

Note that every (\in, \in) -fuzzy B-algebra is an $(\in, \in \lor q)$ -fuzzy B-algebra, but the converse is not true in general. Now we give a condition for an $(\in, \in \lor q)$ -fuzzy B-algebra to be an (\in, \in) -fuzzy B-algebra.

Theorem 3.26. Let \mathcal{A} be an $(\in, \in \lor q)$ -fuzzy *B*-algebra of *X* such that $\mathcal{A}(x) < 0.5$ for all $x \in X$. Then \mathcal{A} is an (\in, \in) -fuzzy *B*-algebra of *X*.

Proof. Let $x, y \in X$ and $t_1, t_2 \in (0, 1]$ be such that $x_{t_1} \in \mathcal{A}$ and $y_{t_2} \in \mathcal{A}$. Then $\mathcal{A}(x) \ge t_1$ and $\mathcal{A}(y) \ge t_2$. It follows from Theorem 3.17 that

 $\mathscr{A}(x * y) \ge \min\{\mathscr{A}(x), \mathscr{A}(y), 0.5\} = \min\{\mathscr{A}(x), \mathscr{A}(y)\} \ge \min\{t_1, t_2\}$

so that $(x * y)_{\min\{t_1, t_2\}} \in \mathscr{A}$. Hence \mathscr{A} is an (\in, \in) -fuzzy B-algebra of X.

For any fuzzy set \mathcal{A} in *X* and $t \in (0, 1]$, we denote

$$\mathcal{A}_t = \{x \in X \mid x_t q \in \mathcal{A}\} \text{ and } [A]_t = \{x \in X \mid x_t \in \lor q \in \mathcal{A}\}.$$

Obviously, $[\mathscr{A}]_t = U(\mathscr{A}; t) \cup \mathscr{A}_t$.

Theorem 3.27. A fuzzy set \mathcal{A} in X is an $(\in, \in \lor q)$ -fuzzy B-algebra of X if and only if $[\mathcal{A}]$, is a B-subalgebra of X for all $t \in (0, 1]$.

We call $[\mathcal{A}]_t$ an $(\in \forall q)$ -level B-subalgebra of \mathcal{A} .

Proof. Let \mathscr{A} be an $(\in, \in \lor q)$ -fuzzy B-algebra of X and let $x, y \in [\mathscr{A}]_t$ for $t \in (0, 1]$. Then $x_t \in \lor q \mathscr{A}$ and $y_t \in \lor q \mathscr{A}$, that is, $\mathscr{A}(x) \ge t$ or $\mathscr{A}(x) + t > 1$, and $\mathscr{A}(y) \ge t$ or $\mathscr{A}(y) + t > 1$. Since $\mathscr{A}(x * y) \ge \min\{\mathscr{A}(x), \mathscr{A}(y), 0.5\}$ by Theorem 3.17, we have $\mathscr{A}(x * y) \ge \min\{t, 0.5\}$. Otherwise, $x_t \in \lor q \mathscr{A}$ or $y_t \in \lor q \mathscr{A}$, a contradiction. If $t \le 0.5$, then $\mathscr{A}(x * y) \ge \min\{t, 0.5\} = t$ and so $x * y \in U(\mathscr{A}; t) \subseteq [\mathscr{A}]_t$. If t > 0.5, then $\mathscr{A}(x * y) \ge \min\{t, 0.5\} = 0.5$ and thus $\mathscr{A}(x*y)+t > 0.5+0.5 = 1$. Hence $(x * y)_t q \mathscr{A}$, and so $x*y \in \mathscr{A}_t \subseteq [\mathscr{A}]_t$. Therefore $[\mathscr{A}]_t$ is a B-subalgebra of X Conversely, let \mathscr{A} be a fuzzy set in X and $t \in (0, 1]$ be such that $[\mathscr{A}]_t$ is a B-subalgebra of X. If possible, let

 $\mathcal{A}(x * y) < t < \min\{\mathcal{A}(x), \mathcal{A}(y), 0.5\}$

for some $t \in (0, 0.5)$ and $x, y \in X$. Then $x, y \in U(\mathscr{A}; t) \subseteq [\mathscr{A}]_t$, which implies that $x * y \in [\mathscr{A}]_t$. Hence $\mathscr{A}(x * y) \ge t$ or $\mathscr{A}(x * y) + t > 1$, a contradiction. Therefore $\mathscr{A}(x * y) \ge \min{\{\mathscr{A}(x), \mathscr{A}(y), 0.5\}}$

for all $x, y \in X$. Using Theorem 3.17, we conclude that \mathscr{A} is an $(\in, \in \lor q)$ -fuzzy B-algebra of *X*.

Theorem 3.28. Let \mathcal{A} be a proper $(\in, \in \lor q)$ -fuzzy *B*-algebra of *X* such that $\#\{\mathcal{A}(x) \mid \mathcal{A}(x) < 0.5\} \ge 2$. Then there exist two proper non-equivalent $(\in, \in \lor q)$ -fuzzy *B*-algebras of *X* such that \mathcal{A} can be expressed as the union of them.

Proof. Let $\{ \mathcal{A}(x) \mid \mathcal{A}(x) < 0.5 \} = \{t_1, t_2, \dots, t_r\}$, where $t_1 > t_2 > \dots > t_r$ and $r \ge 2$. Then the chain of $(\in \lor q)$ -level B-subalgebras of \mathcal{A} is

$$[\mathscr{A}]_{0,5} \subseteq [\mathscr{A}]_{t_1} \subseteq [\mathscr{A}]_{t_2} \subseteq \ldots \subseteq [\mathscr{A}]_{t_r} = X.$$

Let \mathscr{B} and \mathscr{C} be fuzzy sets in *X* defined by

$$\mathcal{B}(x) = \begin{cases} t_1 & \text{if } x \in [\mathcal{A}]_{t_1}, \\ t_2 & \text{if } x \in [\mathcal{A}]_{t_2} \setminus [\mathcal{A}]_{t_1}, \\ \dots & \\ t_r & \text{if } x \in [\mathcal{A}]_{t_r} \setminus [\mathcal{A}]_{t_{r-1}}, \end{cases}$$

and

$$\mathscr{C}(x) = \begin{cases} \mathscr{A}(x) \text{ if } x \in [\mathscr{A}]_{0.5}, \\ k \quad \text{if } x \in [\mathscr{A}]_{t_2} \setminus [\mathscr{A}]_{0.5}, \\ t_3 \quad \text{if } x \in [\mathscr{A}]_{t_3} \setminus [\mathscr{A}]_{t_2}, \\ \dots \\ t_r \quad \text{if } x \in [\mathscr{A}]_{t_r} \setminus [\mathscr{A}]_{t_{r-1}}, \end{cases}$$

respectively, where $t_3 < k < t_2$. Then \mathscr{B} and \mathscr{C} are $(\in, \in \lor q)$ -fuzzy B-algebras of X; and $\mathscr{B}, \mathscr{C} \leq \mathscr{A}$. The chains of $(\in \lor q)$ -level B-subalgebras of \mathscr{B} and \mathscr{C} are, respectively, given by

 $\left[\mathscr{A}\right]_{t_1} \subseteq \left[\mathscr{A}\right]_{t_2} \subseteq \ldots \subseteq \left[\mathscr{A}\right]_{t_r}$

$$[\mathscr{A}]_{0.5} \subseteq [\mathscr{A}]_{t_2} \subseteq \ldots \subseteq [\mathscr{A}]_{t_r}.$$

Therefore \mathcal{B} and \mathcal{C} are non-equivalent and clearly $\mathcal{A} = \mathcal{B} \cup \mathcal{C}$. This completes the proof.

REFERENCES

- P. J. Allen, J. Neggers and H. S. Kim, *B-algebras and groups*, Sci. Math. Jpn. Online 9 (2993), 179-185.
- [2] S. A. Bhatti, M. A. Chaudhry and B. Ahmad, On classification of BCI-algebras, Math. Jpn. 34 (1989), no. 6, 865-876.

- [3] S. K. Bhakat and P. Das, $(\in, \in \lor q)$ -fuzzy subgroup, Fuzzy Sets and Systems 80 (1996), 359-368.
- [4] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems 8 (2001), 1-6.
- [5] Q. P. Hu and X. Li, *On BCH-algebras*, Math. Seminar Notes **11** (1983), 313-320.
- [6] Q. P. Hu and X. Li, *On proper BCH-algebras*, Math. Japonica **30** (1985), 659-661.
- [7] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [8] K. Iséki and S. Tanaka, *An introduction to theory of BCK-algebras*, Math. Japonica 23 (1978), 1-26.
- [9] Y. B. Jun, E. H. Roh and H. S. Kim, *On BH-algebras*, Sci. Mathematicae 1 (1998), 347-354.
- [10] Y. B. Jun, E. H. Roh and H. S. Kim, On fuzzy B-algebras, Czechoslovak Math. J. 52 (2002), 375-384.
- [11] Y. B. Jun, $On(\alpha, \beta)$ -fuzzy subalgerbas of BCK/BCI-algebras, Bull. Korean Math. Soc. **42** (2005), no. 4, 703-711.
- [12] J. Meng and Y. B. Jun, *BCK-algebras*, Kyungmoon Sa Co., Korea (1994).
- [13] J. Neggers and H. S. Kim, On B-algebras, Mat. Vesnik 54 (2002), 21-29.
- [14] J. Neggers and H.S. Kim, *A fundamental theorem of B-homomorphism for B-algebras*, Intern. Math. J. **2(3)** (2002), 207-214.
- [15] P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599.

Young Bae Jun

Department of Mathematics Education (and RINS) Gyeongsang National University, Chinju 660-701, Korea E-mail: *ybjun@gnu.ac.kr jamjana@korea.com*

Hee Sik Kim

Department of Mathematics Hanyang University, Seoul 133-791, Korea E-mail: *heekim@hanyang.ac.kr*

Eun Hwan Roh

Department of Mathematics Education Chinju National University of Education Chinju 660-756, Korea E-mail: *ehroh@cue.ac.kr*