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Abstract: The article solves the Jeffery–Hamel flow with analytically method and the effect of external
magnetic field is studied. The traditional Navier-Stoks equation of fluid mechanics and Maxwell’s
electromagnetism governing equations reduce to nonlinear ordinary differential equations to model
this problem. Differential transformation is applied in order to obtain analytical solution of the
governing nonlinear differential equations. The velocity profile of the conductive fluid inside the
divergent channel studied for various values of Hartmann number.

The obtained results are finally compared through the illustrative graphs and tables with the
numerical solution (Runge-Kutta method).This comparison is shown differential transformation method
is a capable tool to solve this nonlinear problem for different á, Hartmann number and Reynolds
numbers.

Keywords: Magneto hydrodynamic, Jeffery–Hamel flow, Differential transformation, Nonlinear
ordinary differential equation.
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Kinematic viscosity

Angle of the channel

Any angle

Dimensionless angle

 
( ) A function

The flow of fluid through a divergent channel has been called Jeffery-Hamel flow after
introducing this problem by Jeffery (1915) and Hamel (1916), respectively. On the other hand,
the term of Magneto hydrodynamic (MHD) was first introduced by Alfvén in 1970 (L. Bansal
1994). The theory of Magneto hydrodynamics is inducing current in a moving conductive fluid
in the presence of magnetic field; Such induced current result force on ions of the conductive
fluid. The theoretical study of magnetohydrodynamic (MHD) channel has been a subject of
great interest due to its extensive applications in designing cooling systems with liquid metals,
MHD generators, accelerators, pumps and flow meters. (J. E. Cha, Y. C. Ahn, Moo-Hwan Kim
2002; M. Tendler 1983; J. Mossino 1979; R. Nijsing, W. Eifler 1980).

In fluid mechanics most of problems are non-linear. It is very important to develop efficient
methods to solve them. Up to now, it has been very difficult to obtain analytical approximations
of non-linear partial differential equations, even though there are high-performance computers
and computation software.

The small disturbance stability of hydromagnetic steady flow between two parallel plates
has been investigated by Makinde and Motsa (2001)and Makinde (2003) for plane Poiseuille
flow, Kakutani (1964) for plane Couette flow and Makinde and Motsa (2002) for generalized
plane Couette flow. Their results show that magnetic field has stabilizing effects on the flow.

Considerable efforts have been done to study the MHD theory for technological application
of fluid pumping system in which electrical energy forces the working conductive fluid. damping
and controling of electrically conducting fluid can be achieved by means of an electromagnetic
body force (Lorentz force) produced by the interaction of an applied magnetic field and an
electric current that usually is externally supplied. Harada et al., (2002). Studied the fundamental
characteristics of linear Faraday MHD theoretically and numerically. In 2005, Anwari
(2005)continued the Harada et al., (2002) work numerically and theoretically, for various loading
configurations. Kim et al., (1997), Ben Salah (1999), and Jang et al., (2000)emphasized on the
idea that in such problems, the moving ions drag the bulk fluid with themselves and such MHD
system induces continues pumping of conductive fluid without any moving part. Lemoff et al.,
(2000) and Homsy et al., (2005) worked and developed the same idea mentioned above.

In recent years some researchers used new methods to solve these kinds of problems
(D. D. Ganji 2006; D. D. Ganji et al., 2008; D. D. Ganji et al., 2008; M. Gorji, D. D. Ganji,
S. Soleimani 2007).

Integral transform methods such as the Laplace and the Fourier transform methods are
widely used in engineering problems. These methods transform differential equations into
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algebraic equations which are easier to deal with. However, integral transform methods are
more complex and difficult when applying to nonlinear problems. The Differential
Transformation Method was first applied in the engineering domain by Zhou (1986). The
differential transform method is based on Taylor expansion. It constructs an analytical solution
in the form of polynomial. It is different from the traditional high order Taylor series method,
which requires symbolic computation of the necessary derivatives of the data functions.

The Taylor series method is computationally taken long time for large orders. The differential
transform is an iterative procedure for obtaining analytic Taylor series solutions of differential
equations.

Differential transform has the inherent ability to deal with nonlinear problems, and
consequently Chiou (1996) applied the Taylor transform to solve non-linear vibration problems.
Furthermore, the method may be employed for the solution of both ordinary and partial
differential equations. Jang et al., (2001) applied the two-dimensional differential transform
method to the solution of partial differential equations. Finally, Hassan (2002) adopted the
Differential Transformation Method to solve some problems. This method was successfully
applied to various application problems (S. Momania, V. Suat Ertürk 2008; R. Abazari,
A. Borhanifar 2010; A. A. Joneidi, D. D. Ganji, M. Babaelahi 2009). Recently this kind of
problem has been analyzed by some researchers using different methods (M. Esmaeilpour,
D. D. Ganji 2010; Z. Z. Ganji, D. D. Ganji, M. Esmaeilpour 2009; S. S. Ganji, A. Barari, L. B.
Ibsen, G. Domairry 2010; A. Sadighi, D. D. Ganji 2008; K. Hooman et al., 2007).

In this paper, we have applied DTM to find the approximate solutions of nonlinear
differential equations governing the MHD Jeffery–Hamel flow, and a comparison between the
results and the numerical solution has been provided. The numerical results of this problem are
done using Maple 12.

Consider a system of cylindrical polar coordinates (r, , z) with steady two-dimensional flow
of an incompressible conducting viscous fluid from a source or sink at channel walls lie in
planes, and intersect in the axis of z. Assuming purely radial motion which means that there is
no change in the flow parameter along the z direction. The flow depends on r,  and further
assume that there is no magnetic field in the z-direction. The reduced form of continuity, Navier-
Stoks and Maxwell’s equations are (W. I. Axford 1961):
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Where B
0
 is the electromagnetic induction,  the conductivity of the fluid, u

 
(r) is the

velocity along radial direction, P is the fluid pressure,  the coefficient of kinematic viscosity
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and  the fluid density. Considering u  = 0 for purely radial flow, one can define the velocity
parameter as:

( ) ( )f ru r� � . (4)

Introducing the �
�� �  as the dimensionless degree, the dimensionless form of the velocity

parameter can be obtained by dividing that to its maximum value as :

max

( )
( )

f
f

f

�
� � . (5)

Substituting Eq. (5) into Eqs. (2) and (3), and eliminating P, one can obtain the ordinary
differential equation for the normalized function profile as (T. Kakutani 1964)

2( ) 2 Re ( ) ( ) (4 ) ( ) 0f f f Ha f��� � �� � � � � � � � � � . (6)

With the following reduced form of boundary conditions

(0) 1, (0) 0, (1) 0f f f�� � � . (7)

Introducing the Reynolds number and the Hartmann number based on the electromagnetic
parameter as following, respectively:

maxmax max
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We suppose 
 
( ) to be analytic function in a domain D and  = 

i
 represent any point in D. The

function 
 
( ) is then represented by one power series whose center is located at . The Taylor

series expansion function of 
 
( ) is of the form ( C.K. Chen, SH. Ho 1999; F. Ayaz 2004):
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The particular case of Eq. (10) when  = 
i
 is referred to as the Maclaurin series of 

 
( ) and

is expressed as:

0 0

( )
( )

!

k k

k
k

d
D

k dt

�

� � �

� �� � �
� � � ���� �

� �
� . (11)

As explained in the differential transformation of the function 
 
( ) is defined as follows:
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Where 
 
( ) is the original function and is the transformed function. The differential spectrum

of is confined within the interval, where H is a constant. The differential inverse transform of is
defined as follows:

0

( ) ( )
k

k

k
H

�

�

�� �� � � �� �
� �

� . (13)

It is clear that the concept of differential transformation is based upon the Taylor series
expansion. The values of function 

 
( ) at values of argument k are referred to as discrete, i.e.

 
(0) is known as the zero discrete, 

 
(1) as the first discrete, etc. The more discrete available,

the more precise it is possible to restore the unknown function. The function 
 
( ) consists of

the T-function 
 
(k) and its value is given by the sum of the T-function with ( /H)k as its

coefficient. In real applications, at the right choice of constant H, the larger values of argument
k the discrete of spectrum reduce rapidly. Mathematical operations performed by differential
transform method are listed in Table 1.

Table 1
Some of the Basic Operations of Differential Transformation Method
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Now we apply Differential Transformation Method into Eq. (6) Taking the differential transform
of Eq. (6) with respect to and considering H = 1 gives:

2

0

( 1) ( 2) ( 3) [ 3]

2 Re (( 1) ( ) [ 1]) (4 ) ( 1) [ 1] 0
k

r

k k k F k

k r F r F k r H k F k
�
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� � � � � � � � � � � �� (14)
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(0) 1, (1) 0, (2)F F F� � � � (15)

Where F
 
(k) is the differential transformation of F

 
( ) and  is a constant which can be

obtained through boundary condition, Eq. (7)

0

(1) 0, ( ) 0
N

k

f F k
�

� �� . (16)

This problem can be solved for different values of Ha;
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6 6 6 2 6 31 1 1 1

315 420 1680 20160
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F
 
(9) = 0. (17)

The above process is continuous. Substituting Eq. (17) into the main equation based on
DTM. it can be obtained that the closed form of the solutions is:

2 42 2

2 2 3 3 2

64 4 4 2

1 1 1
( ) 1 Re

6 3 12

1 2 1
Re Re Re

90 45 30

2 1 1
...

45 45 360

F Ha

Ha

Ha Ha

�� �� � � �� � �� � � � � � � �� �
� �

�� � � � � � � � ��
�

�� � �� � � � � � � � �
�

(18)

To obtain the value of . we substitute the boundary condition from Eq. (7) into Eq. (18) in
point  = 1. So. we have:
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2 42 2
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64 4 4 2

1 1 1
(1) 1 Re

6 3 12

1 2 1
Re Re Re
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... 0

45 45 360

F Ha
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�� � � �� � � � � � � � �
�

. (19)

Solving Eq. (19) gives the value of . This value is too long that are not shown in this paper
we can find the expressions of F

 
( ).

The objective of the present study was to apply Differential Transformation Method to obtain
an explicit analytic solution of the MHD Jeffery–Hamel problem (Fig 1). The magnetic field
acts as a control parameter such as the flow Reynolds number and the angle of the walls, in
MHD Jeffery–Hamel problems. There is an additional non-dimensional parameter that
determines the solutions, namely the Hartmann number.

Figure 1: Geometry of the MHD Jeffery-Hamel Flow

Table 2 shows the value of constant  for different , Ha, Re numbers at the divergent channel.

Table 2
Value of  at Various Re, Ha, 

Re Ha  = f (0)

50 7.5° 250 –
 
1.308020083

50 7.5° 500 –
 
1.093709496

50 7.5° 1000 –
 
0.658867751

50 5° 250 –
 
1.328682532

50 5° 500 –
 
1.203891148

50 5° 1000 –
 
0.955049766

25 7.5° 250 –
 
1.067023522

25 7.5° 500 –
 
0.793987963

25 7.5° 1000 –
 
0.448221153
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For comparison, a few limited cases of the DTM solutions are compared with the numerical
results.

The comparison between the numerical results and DTM solution for velocity when Re = 25
and  = 5* shows in Table 3.

Table 3
Comparison Between the Numerical Results and DTM Solution for

Velocity when Re = 25 and  = 5°

Ha = 500 Ha = 750

NM DTM Error NM DTM Error

0 1 1 0 1 1 0
0.1 0.99022 0.99023 0.00001 0.991573 0.991488 0.00008
0.2 0.960933 0.960973 0.000039 0.966177 0.965837 0.00034
0.3 0.912273 0.912363 0.000089 0.92345 0.922682 0.000768
0.4 0.844383 0.84454 0.000157 0.862719 0.861344 0.001375
0.5 0.757286 0.757521 0.000235 0.782888 0.780732 0.002156
0.6 0.650719 0.651026 0.000307 0.682271 0.679198 0.003073
0.7 0.523909 0.524246 0.000336 0.558343 0.554355 0.003988
0.8 0.37529 0.375567 0.000277 0.40738 0.402851 0.004529
0.9 0.202125 0.202239 0.000115 0.223928 0.220105 0.003824
1 0 0 0 0 0 0

Also for Ha = 1000 and  = 5* this comparison are shown in Table 4. The error bar shows
an acceptable agreement between the results observed, which confirms the validity of the DTM.

Table 4
Comparison Between the Numerical Results and DTM Solution for

Velocity when Ha = 1000 and  = 5°

Re = 25 Re = 50

NM DTM Error NM DTM Error

0 1 1 0 1 1 0
0.1 0.992712 0.992576 0.000136 0.990424 0.990458 0.0000343
0.2 0.970609 0.970061 0.000548 0.961798 0.961935 0.000137
0.3 0.932958 0.931709 0.001249 0.914379 0.914684 0.000306
0.4 0.878458 0.876201 0.002258 0.848433 0.848967 0.000535
0.5 0.805116 0.801534 0.003582 0.764006 0.764807 0.0008
0.6 0.710041 0.704875 0.005167 0.660605 0.661643 0.001038
0.7 0.589131 0.582351 0.00678 0.536772 0.537895 0.001124
0.8 0.436589 0.428818 0.007771 0.389525 0.390421 0.000896
0.9 0.244172 0.237567 0.006605 0.213557 0.213881 0.000323
1 0 0 0 0 0 0

In these tables error is introduced as fallow:

Error = ( ) ( )NM DTMf f� � � .

108



The results show moderate increases in the velocity with increasing Hartmann numbers at
small angle (  = 25°) and difference between velocity profiles are more noticeable at greater angles.
For specified opening angle, after a critical Reynolds number, we observe that separation and
backflow is started. Backflow is excluded in converging channels but is may occur for large Reynolds
numbers in diverging channels, see also (Z. Z. Ganji, D. D. Ganji, M. Esmaeilpour 2009).

As shows in Fig. 2 at  = 25° no separation occurs for all Hartmann numbers but when 
increases 5° the separation observes and with more increasing of  stranger backflow occurs in
near region of wall channel.

Figure 2 shows the magnetic field effect on the velocity profiles for divergent channels.
There are good agreements between the numerical solution obtained by the fourth-order Runge-
Kutta method and differential transformation method.

(a) (b)

(c)

Figure 2: The DTM Solution for Velocity in Divergent Channel for (a)  = 2.5°, Re = 50, (b)  = 5°, Re = 50,
(c)  = 7.5°, Re = 50
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By considering the parameters on the velocity profile, it can be seen in Fig. 3(a) that
increasing the angle has more visible effects on this profile. Under magnetic field the lorentz
force affect in opposite of the momentum’s direction that stabilize the velocity profile. (Fig. 3(b))
By increasing á the velocity become closer to the maximum value in more expanded region.
Increasing Reynolds numbers lead to adverse pressure gradient which cause velocity reduction
at near the walls. (Fig. 3(c))

In this paper, magneto hydrodynamic Jeffery-Hamel flow has been solved via a sort of analytical
method, Differential Transformation Method (DTM), Also this problem is solved by a numerical

(c)

(a) (b)

Figure 3: The DTM Solution for Velocity in Divergent Channel for (a) H = 1000, Re = 25, (b)  = 5°, Re = 25,
(c) H = 1000,  = 5°

As shows in Fig. 2 increasing Hartmann number will lead to backflow reduction. In greater
angles high Hartmann number needed to reduction of backflow.
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method (the Runge-Kutta method of order 4) and the following conclusions have been obtained:a.
Differential Transformation Method is a powerful approach for solving MHD Jeffery-Hamel
flow in high magnetic field Also it can be observed that there is a good agreement between the
present and numerical result. b. Increasing the Reynolds numbers leads to adverse pressure
gradient causeing velocity reduction at near the walls.c. Increasing Hartmann number will lead
to backflow reduction. In greater angles high Hartmann number needed to reduction of backflow.
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