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Abstract: In this paper, homotopy perturbation Method (HPM) has been applied to solve a nonlinear
heat transfer problem. Natural convection around an isothermal horizontal cylinder was studied.
Heat transfer coefficient and specific heat coefficient was assumed to be dependent on temperature.
Outcomes were compared with solution of heat transfer equation with constant properties. Solutions
of HPM were compared with numerical results for different cases, Also variation of Nusselt number
obtained and investigated.
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Many familiar heat transfer application involve natural convection as the primary mechanism
of heat transfer. Some examples are cooling of electronic equipments such as power transistors,
TVs and VCRs; heat transfer in electronic baseboard heaters or steam radiators; heat transfer
phenomena in the refrigeration coils and power transmission lines.

The fluid velocities associated with natural convection are low; typically less than 1 m/s
therefore, the heat transfer coefficient encountered in natural convection are usually much
lower than those encountered in forced convection [1-3].

So, studying natural convection that rises in applicable engineering problems, help to
manipulate better natural convection as one of the heat transfer mechanism. Cooling cylindrical
fin with natural convection is a good application of this heat transfer mechanism.

The boundary layer over a hot horizontal cylinder start to develop at the bottom, increasing
in thickness along the circumference, and forming a rising plum at the top, as shown in Fig. (1).
Therefore, the local Nusselt number is highest at the bottom and lowest at the top of cylinder
when the boundary layer flow remains laminar [4].

Most of problems arising in heat transfer area are nonlinear and through the majority of
them only a limited numbers of them have exact analytical solution so these nonlinear equations
should be solved using other methods. Other methods include numerical and semi exact methods,
scientists believe that the combination of these two methods can be more cost effective method
and also lead to useful results.

One of the semi-exact methods is the homotopy perturbation method (HPM), which is
established by He in 1999 [5]. This method has been applied by many authors to solve a wide
variety of scientific and engineering problems. Ganji [6-8] use this method and other semi
exact methods to solve nonlinear heat transfer problems. Ghasemi [9] solve a nonlinear and
inhomogeneous two-dimensial wave equation problem by HPM. It was shown by many authors
such as Ganji and He that this method provides improvements over existing numerical techniques
[10-11].

In this paper, the mathematical model of this method is introduced and then its application
in natural convection flow over a horizontal hot cylinder is studied.

The aim of this study is to consider the variation of temperature with the time in an isothermal
horizontal cylinder that has been cooled with the natural convection of airflow. In recent years,
much attention has been devoted to the newly developed methods to construct an analytic
solution of some heat transfer equation; such methods include the HPM [6-8].

Therefore in the present work we study the influence of heat transfer coefficient, h, and
specific heat coefficient, c, when they are variable with temperature or they are constant on
isothermal cylinder, and how long it takes to be cooled. We find solution for these kinds of
problems by HPM and compare it with numerical method (NM).

The Homotopy perturbation method is a combination of the classical perturbation technique
and Homotopy technique. To explain the basic idea of the HPM for solving nonlinear differential
equations we consider the following nonlinear differential equation:
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( ) ( ) 0,A u f r r Ω� � � . (1)

Subject to boundary condition

( , ) 0 ,B u u n r� � � �� . (2)

where A is a general differential operator, B a boundary operator, f
 
(r) is a known analytical

function,  is the boundary of domain  and u/ n denotes differentiation along the normal
drawn outwards from . The operator A can, generally speaking, be divided into two parts: a
linear part L and a nonlinear part N. Eq. (1) therefore can be rewritten as follows:

( ) ( ) ( ) 0L u N u f r� � � . (3)

In case that the nonlinear Eq. (1) has no “small parameter”, we can construct the following
Homotopy:

0 0( , ) ( ) ( ) ( ) ( ( ) ( )) 0H v p L v L u pL u p N v f r� � � � � � , (4)

where

� �( , ) : 0,1r p R� �� � . (5)

In Eq. (7), p  [0, 1] is an embedding parameter and u
0
 is the first approximation that

satisfies the boundary condition. We can assume that the solution of Eq. (4) can be written as a
power series in p, as following:

2
0 1 2 ...p p� � � � � � � � . (6)

And the best approximation for solution is:

1 0 1 2lim ...pu �� � � � � � � � � . (7)

When, Eq. (4) correspond to Eq. (1) and Eq. (7) becomes the approximate solution of
Eq. (1). Some interesting results have been attained using this method. Convergence and
stability of this method is shown in [9].

The aim of this study is to consider the temperature variation of a small hot isothermal horizontal
cylinder in Fig. 1. with diameter and length of 1

 
cm that is being cooled with natural convection

of air flow.

In this article, 3 cases have been investigated which are presented in Table. (1)

Table 1
An Isothermal Horizontal Cylinder

Case h c

1 variable variable

2 constant variable

3 constant constant
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In each case parameters and the following equations have been introduced:

In this case heat transfer coefficient, h, and specific heat coefficient, c, are variable with
temperature. Eq. (8) represents the heat equation of a lump system [14]:

( ) ( ( ) ) 0
d

V c T t hA T t T
dt �

� �� � � �� �
� �

. (8)

Which c is the quality of temperature dependency of specific heat on temperature.

0 (1 ( ))c c T T�� � � � . (9)

The average Nusselt number over the entire surface can be determined from [15] for an
isothermal horizontal cylinder:

21/6

8 / 279 /16

0.387
0.6

0.559
1

Pr

dRaNu
� �

� �� �
� �� �� �� ��� �� �� �� �� �� �� �

. (10)

Where Rayleigh number and heat transfer coefficient are as follow:

3 ( )
d

g d T T
Ra �� �

�
��

, (11)

k
h Nu

d
� . (12)

Figure 1: An Isothermal Horizontal Cylinder
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From Eq. (13), the variation of h against  could be found as follow:

21
3 6

1

6
8

9 27
16

0.387

0.6 ( )

0.559
1

g d

k
h t

d

pr

� �
� �� ��
� �� �� ���� �� �� � �

� �
� �� �

� �� �� �� � �� �� �� �� �� �� �� �

. (13)

Substituting Esq. (13) and (9) in (8), we have:

7 /6 2 4/3
0 0( ) ( ) ( ) 0.36 ( ) 1.2 ( ) ( ) 0

d d
b t b t t e t a e t ea t
dt dt

� � � �� � �� � � � � � � � �� � � �
� � � �

, (14)

where:

b = Vc
0

(15)

e =
Ak

d
(16)

a
0
 =

1/63

8/279/16

0.387

0.559
1

Pr

g d� ��
� �� ���� �

� �� ��� �� �� �� �� �

(17)

Solving this equation for a real condition with the air as a cooling flow so we reach to the
following coefficients and equation:

b = 1.5 (18)

e = 0.000208 (19)

a
0
 = 0.0192 (20)

6 8 4/3

1.57 ( ) 0.005181 ( ) ( ) 0.00007488 ( )

4.79232 10 7.667712 10 ( ) 0.

d d
t t t t

dt dt

t� �

� � � �� � � � � �� � � �
� � � �

� � � � � � (21)

Consider heat transfer in a lumped system, Eq. (8), with constant h and variable c. The specific
heat coefficient varies linearly with temperature as shown in Eq. (9).

Substituting Eq. (9) in Eq. (8), we have:

( ) ( ) ( ) ( ) 0
d d

b t b t t f t
dt dt

� � � �� � �� � � � �� � � �
� � � �

. (22)
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Where:

b = Vc
0

(23)

f = hA (24)

For a real condition with the air as a cooling flow, we reached the following coefficients:

b = 1.57 (25)

f 
 
= 1.13097  10– 4 (26)

 = 0.0033 (27)

So we have Eq. (35):

3 41.57 ( ) 5.181 10 ( ) ( ) 1.13097 10 ( ) 0
d d

t t t t
dt dt

� �� � � �� � � � � � � � �� � � �
� � � �

. (28)

In this case both h and c are constant.

We solve this equation for a real condition with the air as a cooling flow. So, we reach the
following coefficients and equation:

Vc = 1.57, (29)

hA = 1.13097  10– 4, (30)

41.57 ( ) 1.13097 10 ( ) 0
d

t t
dt

�� �� � � � �� �
� �

. (31)

In this section, we will apply the HPM to nonlinear ordinary differential Eq. (21). According to
the HPM, we can construct a homotopy of Eq. (21) as follows:

5

6 8 4/3

( , ) (1 ) 1.57 ( ) 7.488 10 ( )

1.57 ( ) 0.005181 ( ) ( ) 0.00007488 ( )

4.79232 10 7.667712 10 ( ) .

d
H p p t t

dt

d d
p t t t t

dt dt

t

�

� �

� �� �� � � � � � �� �� �
� �� �

� � � � �� � � � � � �� � � � �
� � � ��

� � � � �

(32)

2
0 1 2( ) ( ) ( ) ( )t t p t p t� � � � � � � � � . (33)

Substituting Eq. (33) into Eq. (32) and collect H
 
( , p) and then put the coefficients of p

equal to zero, we have:

0 5
0 0 0: 1.57 ( ) 7.488 10 ( ) 0 (0) 100

d
p t t

dt
�� �� � � � � � �� �

� �
. (34)
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1
0 0 1

8 4/3 6 7/6
0 0 1

: 0.005181 ( ) ( ) 1.57 ( )

7.667712 10 ( ) 4.79232 10 ( ) 0 (0) 0

d d
p t t t

dt dt

t t� �

� � � �� � � �� � � �
� � � �

� � � � � � � � � . (35)

2 5 3
2 0 1 2

3 6 4/3
1 0 1 2

: 7.488 10 ( ) 5.181 10 ( ) ( ) 1.57 ( )

5.181 10 ( ) ( ) 7.667712 10 ( ) 0 (0) 0

d d
p t t t t

dt dt

d
t t t
dt

� �

� �

� � � �� � � � � � � �� � � �
� � � �

� �� � � � � � � � � �� �
� �

. (36)

Solving Esq. (34-36) with initial conditions, we have:

117

2453125
0( ) 100

t
t e

�
� � (37)

� � � �
74
63 12

3 3

1 1
3 3

234 117 117
2453125 2453125 2453125

1
33 48 192

( ) 10 10
2 625 35

33 48 192
10 10 .

2 625 35

t t t
t e e e

� � �
� � � � � � �

� � � � � (38)

2 ( ) 0.t� � (39)

So:

0 1 2( ) ( ) ( ) ( ).t t t t� � � � � � � (40)

� � � �
74
63 12

3 3

1 1
3 3

234 117 117

2453125 2453125 2453125

117

2453125

33 48 192
( ) 10 10

2 625 35

33 48 192
10 10 100 .

2 625 35

t t t

t

t e e e

e

� � �

�

� � � � � � �

� � � � � � (41)

By applying the HPM to nonlinear ordinary differential Eq. (28) According to the HPM, we
can construct a homotopy of Eq. (28) as follows:

4

3 4

( , ) (1 ) 1.57 ( ) 11.309724 10 ( )

1.57 ( ) 5.181 10 ( ) ( ) 11.309724 10 ( ).

d
H p p t t

dt

d d
p t t t t

dt dt

�

� �

� �� �� � � � � � �� �� �
� �� �

� � � � �� � � � � � � � �� � � � �
� � � ��

(42)

2
0 1 2( ) ( ) ( ) ( )t t p t p t� � � � � � � � � (43)

Substituting Eq. (43) into Eq. (42) and collect H
 
( , p) and then put the coefficients of p

equal zero, we have:
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0 4
0 0 0: 1.57 ( ) 11.309724 10 ( ) 0 (0) 100

d
p t t

dt
�� �� � � � � � �� �

� �
. (44)

41
1 1

3
0 1

: 1.57 ( ) 11.309724 10 ( )

5.181 10 ( ) 0 (0) 0

d
p t t

dt

d
t

dt

�

�

� �� � � �� �
� �

� �� � � � � �� �
� �

. (45)

2 4 4
2 2 1

3
0 1 2

3
0 1

3
1 0 2

: 1.57 ( ) 11.309724 10 ( ) 1.309724 10 ( )

5.181 10 ( ) ( ) 1.57 ( )

5.181 10 ( ) ( )

5.181 10 ( ) ( ) 0 (0) 0

d
p t t t

dt

d d
t t t
dt dt

d
t t
dt

d
t t
dt

� �

�

�

�

� �� � � � � � �� �
� �

� � � �� � � � � �� � � �
� � � �
� �� � � �� �
� �
� �� � � � � � �� �
� �

. (46)

Solving Eqs. (44-46) with initial conditions, we have:

2827431

39250000000
0 ( ) 100

t
t e

�
� � . (47)

353429 282743

4906250000 3925000000
1

93305223 93305223
( )

2827432 2827432

t t
t e e

� �� �
� �� � � �
� �
� �

. (48)

282743 353429
39250000000 4906250000

2

5654863

39250000000

6158143629 26381407997213
( )

282743200 7994371714624

26381407997213 26117593917239187

110976706000000000 1598874060181600

6228400385156

t t

t

t e e

t e

� �

�

�
�� � � �
�
�

� �

�
282743

3925000000744314971
.

226035384086369082560

t
e
��

�
�

. (49)

So:

0 1 2( ) ( ) ( ) ( ).t t t t� � � � � � � (50)
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2827431 353429 282743
39250000000 4906250000 3925000000

282743 353429

39250000000 4906250000

93305223 93305223
( ) 100

2827432 2827432

6158143629 26381407997213

282743200 7994371714624

t t t

t t

t e e e

e e

� � �

� �

� �
� �� � � � �
� �
� �

�
�� � �
�
�

5654863
39250000000

282743

3925000000

26381407997213 26117593917239187

110976706000000000 1598874060181600

6228400385156744314971
.

226035384086369082560

t

t

t e

e

�

�

� �

�� �
�

(51)

4

4

( , ) (1 ) 1.57 ( ) 11.309724 10 ( )

1.57 ( ) 11.309724 10 ( ).

d
H p p t t

dt

d
p t t

dt

�

�

� �� �� � � � � � �� �� �
� �� �

� � �� � � � �� � �
� ��

(52)

2
0 1 2( ) ( ) ( ) ( )t t p t p t� � � � � � � � � . (53)

Substituting Eq. (53) into Eq. (52) and collect H
 
( , p) and then put the coefficients of p

equal zero, we have:

0 5
0 0 0: 1.57 ( ) 7.488 10 ( ) 0 (0) 100

d
p t t

dt
�� �� � � � � � �� �

� �
. (54)

1 5
1 1 1: 1.57 ( ) 7.488 10 ( ) 0 (0) 0

d
p t t

dt
�� �� � � � � � �� �

� �
. (55)

2 5
2 2 0: 1.57 ( ) 7.488 10 ( ) 0 (0) 0

d
p t t

dt
�� �� � � � � � �� �

� �
. (56)

Solving Esq. (634-66) with initial conditions, we have:

2827431

39250000000
0 ( ) 100 .

t
t e

�
� � (57)

1( ) 0.t� � (58)

2 ( ) 0.t� � (59)

So we have:

0 1 2( ) ( ) ( ) ( ).t t t t� � � � � � � (60)

2827431

39250000000( ) 100 .
t

t e
�

� � (61)
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In Fig. 1. The temperature distribution is compared with numerical solution. The heat transfer
coefficient and heat specific is taken variable. It can be seen that there is good agreement
between them.

Figure 2:
 
(t) – t, h  cte, c  cte

In Fig. 2, the temperature gradient is depicted. It is increased with increasing time.

Figure 3: ( ) , ,
d

t t h cte c cte
dt
� � � �

In Fig. 3, the temperature distribution for case of constant heat transfer coefficient and
variable specific heat is drawn.
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In Fig. 5, the temperature distribution for the case of variable heat transfer coefficient and
constant specific heat with both Numerical method and HPM is depicted. With growth of time
the temperature of cylinder closes to ambient temperature.

Figure 4:
 
(t) – t, h  cte, c  cte, Solved by HPM

For this case the temperature gradient is depicted also. It is depicted in Fig. 4.

Figure 5: ( ) , ,
d

t t h cte c cte
dt
� � � � , Solved by HPM
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For case of constant thermal properties the temperature distribution and gradient of is
depicted in Figs. 7 and 8.

Figure 6:
 
(t) – t, h  cte, c = cte

Figure 7: ( ) , ,
d

t t h cte c cte
dt
� � � �

For this case the temperature gradient is depicted also in Fig. 6.
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In Figs. 9 and 10. The result of constant properties and variable properties is compared .it
can be seen in the case of variable properties cylinder reach the ambient temperature at a
shorter time and temperature gradient tend to zero faster.

Figure 8:
 
(t) – t, h = cte, c = cte

Figure 9: ( ) , ,
d

t t h cte c cte
dt
� � � �
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In Figs. 11 and 12. The result of variable properties and case of constant heat transfer
coefficient and variable specific heat are compared . It can be seen in the case of variable
properties cylinder reach the ambient temperature at a shorter time and temperature gradient
tend to zero faster.

Figure 10: Compare 
 
(t) – t, h, c  cte, c = cte and h, c = cte

Figure 11: Compare ( ) , , , and ,
d

t t h c cte h c cte
dt
� � � �
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In Fig. 13. Average Nusselt number in each time is shown. At the beginning time because
of high gradient temperature Nusselt number is great. With growth of time Nusselt number
tend to zero, because of zero temperature gradient.

Figure 13: Compare ( ) , , , and ,
d

t t h c cte h cte c cte
dt
� � � � �

Figure 12: Compare 
 
(t) – t, h, c  cte and h = cte, c  cte
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In the present work, we have analyzed natural convection flow over a hot isothermal horizontal
cylinder. We study the influence of variable h and c, and solved the nonlinear equation that is
extracted by He’s Homotopy Perturbation Method (HPM). These considered equations are
easily solved by mentioned analytical method. Consequently, these equations are solved by the
numerical method (Runge-Kutta fourth-order) using the software Maple 12® and the results of
the HPM and NM are compared in Figs. 2, 6, 10, 11, 12, 13. Then effects of h and c when they

Figure 14: Nu, h, c  cte

For case of constant heat transfer properties the Nusselt number is zero because it related
to heat transfer coefficient and thermal conductivity and they are constant.

Figure 15: Nu, h, c = cte, h  cte, c  cte
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are variable or constant are shown in Fig.3, 4, 5, 7, 8 and 8. Also the variations of Nusselt
number are shown in Figs.14 and 15. So the following results are obtained:

(i) The effect of c is stronger than h when temperature is decreasing.

(ii) With increasing h and decreasing c, the time of cooling approach will be decreased.

(iii) The natural convection is not appropriate in industry that time is an important parameter.

(iv) Obtained results from case 1, 2 and 3 are approximately similar.
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