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Abstract: This work employed a simple analytical method to study the performance of porous and
solid fins in a natural convection environment called homotopy perturbation. Also energy balance
and Darcy’s model used to formulate the heat transfer equation. To study the thermal performance, a
type case considered is finite-length fin with insulated tip.

In through of analysis, the effects of different parameters such as Rayleigh number (Ra), darcy number
(Da), thermal conductivity ratio (Kr), and Length thickness ratio on the temperature distribution
along the fin are considered, and appears on newly parameter called porosity parameter (S

h
). The

effects of the S
h
, convection parameter (m) on the dimensionless temperature distribution and heat

transfer rate are discussed. The fins used in this article are Titanium, Nickel and Steel and heat
transfer convectivity discussed for air and water.

Keyword: Porous, Finite-length fin with insulated tip, Heat transfer, Natural convection, Homotopy
perturbation method (HPM).

High rate of heat transfer with reduced size and cost is in demand for a number of engineering
applications such as heat exchangers, economizers, superheaters, conventional furnaces, gas
turbines, etc. Some engineering applications also require lighter fin with higher rate of heat
transfer where they use high thermal conductivity metals in applications such as airplane and
motorcycle applications. However, cost of high thermal conductivity metals is also high. Thus,
the optimum situation is enhancement of heat transfer by increasing the heat transfer rate and
decreasing the size, weight and cost of fin.

Fins are frequently used in many heat transfer applications. Extensive research has been
done in this area and many references are available especially for heat transfer in porous fins.
Described below are a few papers relevant to the study described herein.
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Kiwan and Al-Nmr [1] conducted thermal analysis of natural convection porous fins. They
grouped all the geometric and flow parameters that influence the temperature distribution in to
one parameter called Sh. Three cases of fin types were considered: the infinite fin, finite fin
with insulated tip and finite fin with un-insulated tip. Further investigation of S

h
 effect for all

cases revealed that increasing S
h
 by increasing either Da or Ra increases the heat transfer from

the fin. They also found that there is limit to increasing both Kr and L/t that effect the heat
transfer rate from the porous fin. Nguyen and Aziz [2] compared the heat transfer rates from
convecting-radiating fins for different profile shapes. They used finite difference approach to
study this performance. They used rectangular, trapezoidal, triangular and concave parabolic
shapes to compare heat transfer rates. Taludkar and Mishra [3] studied the effect of combined
radiation and convection heat transfer in a porous channel bounded by isothermal parallel plates.
Both the radiation Nusselt number and convection Nusselt number are reciprocal to porous
medium shape parameter (PMSP). Mueller and Abu-Mulaweh [4] studied the efficiency of
horizontal single pin fin subjected to free convection and radiation heat transfer. Mokheimer
[5] investigated locally variable heat transfer coefficient on the performance of extended surfaces
subject to natural convection. Kang and Look [6] presented optimum designs of a thermally
asymmetric convecting and radiating rectangular annular fin. Razelos and Kakatsios [7]
determined the optimum dimensions of convecting-radiating heat transfer fins. Yu and Chen
[8] performed a study on optimization of circular fins with variable hermal parameters. They
considered rectangular profile circular fin for optimization. Yih [9] studied the radiative effect
on natural convection over an isothermal vertical cylinder embedded in a porous medium. The
obtained results are for dimensionless temperature profiles for various values of  with constant
values of surface temperature excess ratio H and conduction-radiation parameter Rd. Rao and
Venkateshan [10] conducted experiments to study the natural convection and radiation in
horizontal fin arrays. Kobus and Oshio [11] studied the mixed convection and radiation effects
on a vertical fin array. Popiel et al., [12] analyzed the combined effects of natural convection
and radiation on fin efficiency. Poulikakos and Bejan [13] optimized the fin geometry for
minimum entropy production. Snider and Kraus [14] presented an analysis for the optimization
of fin geometry.

Heat transfer equations are such phenomena which mostly occur non-linearly; hence solving
them has been one of the most time consuming and difficult affairs among researchers of heat
transfer. Therefore, many researchers and scientist of both heat transfer and mathematics have
recently paid much attention to find and develop approximate solutions. Perturbation method
is a traditional method which has got some limitations (clearly mentioned throughout this work).
To overcome the difficulties and limitations of the above method many new ones have recently
been introduced, two of which are Homotopy Perturbation Method (HPM) and Variational
Iteration Method (VIM). That in this work used Homotopy Perturbation Method (HPM). This
method was first introduced by He [15]. Because this method continuously deforms a difficult
problem into a simple one, which is easy to solve, this method has been used by many authors
such as Ganji [16-19] and the references therein to handle a wide variety of scientific and
engineering applications such as linear and nonlinear, homogeneous equations as well.

In this study, the basic idea of the simple analytical method that called homotopy perturbation
method (HPM) is introduced and then is applied to solve the nonlinear equations. The effects
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of convection heat transfer in porous media are considered. The geometry considered is that of
a rectangular profile fin. The porous fin allows the flow to infiltrate through it and solid–fluid
interaction takes place. This study is performed using energy balance and Darcy’s model to
formulate heat transfer equation. To study the thermal performance, one type of cases are
considered finite- length fin with insulated tip. The effects of the porosity parameter (Sh),
convection parameter (m) on the dimensionless temperature distribution and heat transfer rate
are discussed. The results suggest that the convection transfers more heat than a similar model
without convection.

Cp Specific heat
Da Darcy number, K/t2
G gravity constant
Gr Grashof number
k Thermal conductivity
Kr Thermal conductivity ratio, (k

eff 
/k

f
)

K Permeability of porous fin
L Length
Nu Nusselt number, (hL/k

f
)

m convection parameter
Pr Prandtl number, ( / )
q Heat transfer rate
Ra Rayleigh number, Gr × Pr
Sh Porous parameter
T

 
(x) Temperature at any point

Tb Temperature at fin base
t Thickness of the fin
Bi Biot Number, (hL

c 
/kb)

V
W (X)

Velocity of fluid passing through the
fin any point

W Width of the fin
x Axial coordinate
X Dimensionless axial coordinate,

Thermal diffusivity
Coefficient of volumetric thermal
expansion
Temperature difference
Porosity or void ratio
Stephen–Boltzmann constant,
Dimensionless temperature,

b Base temperature difference, (T
b
 – T )

Kinematic viscosity
Density

s Solid properties
f Fluid properties
eff Porous propertie

As shown in Fig. 1, a rectangular fin profile is considered.

The dimensions of the fin are Length L, width w and thickness t. The cross section area of
the fin is constant. This fin is porous to allow the flow of infiltrate through it.

The following assumptions are made to solve this problem.

• The porous medium is isotropic and homogenous.

• The porous medium is saturated with single-phase fluid.

• The surface radiant exchange is neglected.
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Apply an energy balance to the slice segment of the fin of thickness x shown in Fig. 1,
requires that

( ) ( ) ( ( ) ) ( . ) ( ( ) )pq x q x x mc T x T h p x T x T� �� � � � � � � �� . (1)

The mass flow rate of the fluid passing through the porous material can be written as,

wm xW� �� �� . (2)

From the Darcy’s model we have:

( )w
gk

T T�

�
� �

� �
(3)

• Physical properties of both fluid and solid matrix are constant.

• The temperature inside fin is only function of x.

• There is no temperature variation across the fin thickness.

• The solid matrix and fluid are assumed to be at local thermal equilibrium with each
other.

• The interactions between the porous medium and the clear fluid can be simulated by
the Darcy formulation.

Figure 1: Schematic Diagram of Fin Profile Under Consideration

Figure 2: Energy Balance in Fin Profile
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Substitutions of Eqs. (2) and (3) into Eq. (1) yields,

2( ) ( )
( ( ) ) ( ( ) )pc gk wq x q x x
T x T hp T x T

x � �
� �� � �

� � � �
� �

. (4)

As, x  0 Equation (4) becomes

2( ( ) ) ( ( ) )pc gk wdq
T x T hp T x T

dx � �
� �

� � � �
�

. (5)

From Fourier‘s Law of conduction, we have

eff
dT

q k A
dx

� � . (6)

Where A is the cross-sectional area of the fin (A = W.t) and k
eff

 is the effective thermal
conductivity of the porous fin given by k

eff
 = k

f
 + (1 – )

 
k

s
 Substitution Eq. (6) into Eq. (5)

gives,

2
2

2
( ( ) ) ( ( ) ) 0

eff eff

pc gkd T hp
T x T T x T

tk k Adx
� �

� �
� � � � �

�
. (7)

 Hence, with applying energy balance equation at steady state condition as shown in Fig. 2,

and Introducing non-dimensional temperature function Where, ( )X

b

T T

T T
�

�

�
�� �  and x

L
X �  into

Eq. (7) we have;

2
2 2 2

2
0h

d
L S m

dx

�
� � � � � . (8)

Porous parameter, � �2.

r

Dax Ra L
h tk

S �  and Convection parameter, � �1/2

s

hp
k Am � .

Here, S
h
 is a porous parameter that indicates the effect of the permeability of the porous

medium as well as buoyancy effect so Higher value of S
h
 indicate higher permeability of the

porous medium or higher buoyancy forces. m is a convection parameter that indicates the
effect of surface convecting of the fin.

Here is the summary of case to be considered for this research.

Case: finite-length fin with insulated tip (
 
(0) = 1, d /dx

 | x = 1 = 0).

In this Letter, we apply the homotopy perturbation method [20, 21, 22-28] to the discussed
problem. To illustrate the basic ideas of this method, we consider the following nonlinear
differential equation,

A
 
(u) – f

 
(r) = 0, r  , (9)

with the boundary condition of:

, 0
u

B u
n

� ��
�� ��� �

, r  , (10)
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where A is a general differential operator, B a boundary operator, f
 
(r) a known analytical function

and  is the boundary of the domain . A can be divided into two parts, which are L and N,
where L is linear and N is nonlinear. Eq. (6) can therefore be rewritten as follows:

L
 
(u) + N

 
(u) – f

 
(r) = 0, r  , (11)

Homotopy perturbation structure is shown as follows:

H
 
( , p) = (1 – p) [L

 
( ) – L

 
(u

o
)] + p

 
[A

 
( ) – f

 
(r)] = 0, (12)

where,

 
(r, p) :   [0, 1]  R. (13)

In Eq. (12), p  [0, 1] is an embedding parameter and u
0
 is the first approximation that

satisfies the boundary condition. We can assume that the solution of Eq. (6) can be written as a
power series in p, as following:

2
0 1 2

0

n
i

i
i

p p p
�

� � � � � � � � � ��� , (14)

and the best approximation for solution is:

u = lim
p  1 

 = 
0
 + 

1
 + 

2
 + ... (15)

In this section, we will apply the HPM to nonlinear ordinary differential Eq. (8) with a boundary
condition (24). According to the HPM, we can construct homotopy of Eq. (8) as follows:

2(1 ) ( ( ) ( )) ( ( ) ( ) ( )) 0P x x p x x x�� ��� � � � � � � � � � � . (16)

We consider è as follows:

0 1 2
0

( ) ( ) ( ) ( ) ( )
n

i
i

x x x x x
�

� � � � � � � � � � � � �� . (17)

From Eq. (14), if the two terms approximations are sufficient, we will obtain with substituting
 from Eq. (17) into Eq. (16) and some simplification and rearranging based on powers of

p-terms, we have:

0
0 0

0 0

: ( ) + ( ) 0

(0) 1, (1) 0.

p x x��� � � �
� � � � (18)

1 2
1 1 0

1 1

: ( ) ( ) 0

(0) 0, 1)

)

0

(

( .

p xx x��� � � � �
� � � �

�

(19)

Solving Eqs. (18)-(19) with boundary conditions, we have:

1

0

1

1 1
( )

x xe e e e
x

e e e e

� �

� ��
� �

� �
� �

, (20)
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6 4 4 4 2
1 2 2 2 2

4 2 2 2 2 2 2 4 2

2 2 6 2 4 2 2 2

1
( ) ( 2 8 ( )

(1 ) (1 ) (4 ( ) 1)

8 ( ) 8 ( ) 8 ( ) 2 2 2

).

x x x

x x x

x x x x x x

x e e e e Ln e
e e Ln e

e Ln e e Ln e e Ln e e e e

e e e e e e

� � � �

� � �

� � � � � � �

� � � � � �
� � �

� � � � � �

� � � � � � (21)

The solution of this equation, when p  1, will be as follows:

0 1( ) ( ) ( )x x x� � � � � �� . (22)

The governing Eq. (8) is a non-Linear second order ordinary differential equation. The equation
is solved by using the homotopy perturbation method. Depending on the tip condition of the
fin, we have three different types of cases, that in this research we only study finite-length fin
with insulated tip.

Table 1
The Values of h, k and Constants to Use in Research

air 2
25

.

w
h

m k
� water 2

100
.

w
h

m k
� 7.44

.ti
w

k
m k

� 16.27
.st

w
k

m k
� 91.74

.Ni
w

k
m k

�

L = 5 m t = 0.025 m w = 1 204
.s

w
k

m k
�

2
15

.
s

w
h

m k
�

For this case, the second boundary condition at x = L will be d /dx
 | x = l  = 0. If we introduce

the dimensionless axial coordinate X = x/L, the second boundary condition becomes
d /dx

 | x = 1 = 0

Therefore, we may write:

d /dx = 0 when x = 1

The boundary conditions may be written as;

1
(0) 1, 0

x
d dx �� � � � . (23)

Eq. (8) was solved using these two boundary conditions given by Eq. (23) for different
values of S

h
 and m. Figure 1 shows the variation of dimensionless temperature distribution with

the axial distance along the fin when the value of S
h
 is varying and of m was kept constant.

From Fig. 3 we can see that the value of dimensionless temperature decreases along the fin
Length. It should be noted that as the value of S

h
 increases, the temperature decreases rapidly

and the fin quickly reaches the surrounding temperature. As the value of S
h
 increases, the fins

cool down rapidly.
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Figure 5, shows the results for the effect of variation of m on dimensionless temperature
distribution. The values of m were varied from 0.15, 0.8 and 1.2, while keeping S

h
 = 1. From

Fig. 5, it is observed that if h
water

 and different k be considered, variation of m has more effect on
temperature distribution of fin.

Figure 3: The Distribution of Axial Non-Dimensional Temperature
Along the Finite Fin for Different Values of S

h

Figure 4, Shows the results for the effect of variation of m on dimensionless temperature
distribution. The values of m were varied from 0.04, 0.2 and 0.4, while keeping S

h
 = 1. From Fig.

4, it is observed that if hair and different k be considered, variation of m has minor effect on
temperature distribution of fin. As m increases the temperature of a given axial location decrease.

Figure 4: The Distribution of Axial Non-Dimensional Temperature
Along the Finite Fin for Different Values of m & h

air
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All condition of solid fin, equal will be by said condition in first paper. By applying energy
balance equation at steady state condition, we have;

Figure 5: The Distribution of Axial Non-Dimensional Temperature
Along the Finite Fin for Different Values of m & h

water

From Fig. 6 By comparison Figs 4, 5 we can see that by increase h, the convection parameter
m will increase. Hence, by increase of m and S

h
 = 1, the temperature distribution rapidly

descending process to go and fin quickly reaches the surrounding temperature. As the value of
m increases, the fins cool down rapidly.

Figure 6: The Distribution of Axial Non-Dimensional Temperature
Along the Finite Fin for Different Values of m
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2
2

2
( ) 0

d
m x

dx

�
� � � . (24)

The boundary conditions may be written as:

1
(0) 1, 0

x
d dx

�
� � � � . (25)

Eq.24 was solved using these two boundary conditions given by Eq. (25) for different
values of m.

Figure 7, shows the variation of the dimensionless temperature distribution at the base of
the fin with the variation of the m parameter. From Fig. 7, it is observed that if hair and different
k be considered, variation of m has minor effect on temperature distribution of fin.

Figure 7: The Distribution of Axial Non-Dimensional Temperature
Along the Finite Fin for Different Values of m

Figure 8: Compare the Distribution of Axial Non-Dimensional Temperature
Along the Finite Fin for Different Values of m

54



Maximum possible heat transfer rate obtained using porous fin is:

0
eff

x
p b

dT
q k A

dx �

� �
� � � �

� �
(26)

Maximum possible heat transfer rate obtained using solid fin is

( )bs s T Tq hA ���� (27)

Therefore, ratio of porous fin to solid fin heat transfer rate is;

0

( )

eff
x

b
p

s b

dT
k A

dxq

q hA T Ts

�

��

� �
� � �

� �
�

�
(28)

Figure 8, shows the variation of the dimensionless temperature distribution at the base of
the fin with the variation of the m parameter. From Fig. 8, it is observed that if h

water 
and differents

k be considered, variation of m has more effect on temperature distribution of fin. By comparison
Figs. 6, 7 we can see that by increase h, the convection parameter m will increase. By increase
of m, the temperature distribution rapidly descending process to go.

Figure 9, to compare temperature distribution in porous and solid fins.

From Fig. 9 observed that by h
air

 = 25 w/m2.k and different k in according to porosity
parameter, velocity of temperature decrease in porous fin was more than solid fin, and fin
quickly reaches the surrounding temperature and the fins cool down rapidly.

Figure 9: Compare Temperature Distribution in Porous and
Solid Fins for Different Values of m
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This work introduces a simple method to analysis the performance of a porous fin and solid fin.
It is found that the problem of heat transfer through the porous fin is governed by a second
order nonlinear, ordinary, differential equation. It is also found that all geometric and flow
parameters influencing the temperature distribution have been grouped in two parameters called
S

h
 and m. This thermal analysis was performed on one type of fin case: the finite-length fin

with insulated tip. The effect of these all two parameters has been investigated. It was found
that increasing S

h
 by increasing either Da or Ra increases the heat transfer from fin. Increasing

m (h
air

 = 25 w/m2.k and different k) has minor effect on temperature distribution of fin. In
addition, increasing the parameter m (h

water
 = 100 w/m2.k and different k) has more effect on

temperature distribution of fin. The ratio of heat transfer rate for porous fin to solid fin is
compared for both the cases of with convection and without convection.
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Figure 10: The Variation of the Ratio of Porous Fin to
Solid Fin Heat Transfer Rate with Kr
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