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Abstract: We solve for temperature distribution of annular fins with time-dependent thermal
conductivity. To this end, Homotopy Perturbation Method (HPM) and Variational Iteration Method
(VIM) are employed to deter mine temper ature distribution of the annular fin when thermal conductivity
variesintime. Theresults of HPM and VIM are compared with numerical results obtained by using
direct integration Runge-Kutta method.

Since thermal conductivity plays an important role on fin efficiency, we tried to solve heat transfer
eguation with thermal conductivity as a functi on of temperature. In thisresearch, some new analytical
methods called Homotopy perturbation method (HPM), Variational iteration method (VIM) are
introduced to be applied to evaluate the temperature distribution of annular fin with temperature-
dependent thermal conductivity and to deter mine thetemperature distribution within thefin and al so
the comparison of the applied methods (together) are shown graphically. The validity of the solutions
were veriled by comparison with numerical results obtained using a Runge—Kutta method.

Keywords: Heat transfer, Annular fin, Homotopy perturbation method (HPM), Variational iteration
method (VIM)

1. INTRODUCTION

Advanced technological applications require highly efficient cooling systems which improves
cooling rates while the cost and weight of the corresponding mechanical system is kept at a
reasonable level. As a result, developing new heat transfer technol ogies has played a key role
inadvancing engineering components whose performance is directly associated with heat transfer
and cooling rate. The early method of increasing external surfaces of industrial components is
widely used in various applications. The reader isreferred to the extensive review by Kern and
Kraus on the extended surface method for further details.

As technology improves, it was realized that devices have to be cooled in a more effective
ways and require high-performance heat transfer componentswith progressively smaller weights,
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volumes, and costs. So, one of the most significant importance is the optimization of the design
of fins for high performance, light weight, and compact heat transfer components. Kern and
Kraus [1] have presented an extensive review on this topic.

Except for a limited number of nonlinear scientific problems and heat transfer, finding
their exact analytical solutionsisdifficult. Perturbation method is one of thewell-known methods
to solve the nonlinear egquations which were studied by a large number of researchers such as
Bellman [2], Cole [3] and O’ Malley [4]. The common perturbation methods are restricted, and
also because the basis of the common perturbation method was upon the existence of a small
parameter, developing the method for different applications is exceedingly difficult. Yu and
Chen[5] investigated the optimal Gnlength of a convective—radiative straight inwith rectangular
prolle under convective boundary conditions and variable thermal conductivity. Yu and Chen
[6] assumed that the linear variation of the thermal conductivity and exponential function with
thedistanceof the heat transfer coefficient and then, solved the nonlinear conducting-convecting-
radiating heat transfer equation by the differential transformation method. Bouaziz et al., [7]
presented the efficiency of longitudinal (ns with temperature-dependent thermo-physical
properties[8, 9].

Hence, among approximate anal ytical solutions, variational iteration method (VIM) [10-14]
and homotopy—perturbation method (HPM) [15-23] are the most effective and convenient ones
for both weakly and strongly nonlinear equations. For more information one may follow Refs.
[24, 25] to see a concise comparison between VIM, HPM and HAM which strongly reveal that
He's method are far effective and accurate.

Therefore, we present an analytical solution of nonlinear problem of heat transfer inannular
finswithtime-dependent thermal conductivity and examinetheresults of HPM and VIM methods
in contrast with numerical results computed using Runge-K utta integration scheme. The aim of
this paper is to give the analytic solution of the nonlinear equation of the annular fins with
time-dependent thermal conductivity and compare the HPM and VIM results with numerical
results given [27].

NOMENCLATURE
A Fin surface area (m?)
A Cross-sectional area of the fin (md)
h Coefficient of natural convection (W/meK)
r Radius (m)
B, Biot number (%)
t Thickness of the annular fin (m)
r Inner radius of the annular fin (m)
r, Outer radius of the annular fin (m)
K(T) Therma conductivity (W/mK)
K, Thermal conductivity inT=T_ (W/mK)
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Fin length (m)
Temperature (K)
Environment temperature (K)
Temperature at the base (K)

o

—

o

Greek Symbols
Dimensionless parameter describing variation of the thermal conductivity
Theradius ratio, (r_/r,)
Dimensionless radia coordinate
Dimensionless temperature
Parameter describing the variation of the thermal conductivity
00 Dimensionless thickness of the fin, t/ri

AR @ > ™

Subscripts
Ambient
Surface
Base
Number of iteration

S5 T un o

2. APPLICATION OF VIM AND HPM IN HEAT TRANSFER

In this section, we will apply HPM and VIM to the nonlinear equation of annular fins with
temperature-dependent thermal conductivity. The example to be studied is the one-dimensional
heat transfer in a cylindrical fin with the length of L, thickness of t, radius of the finr, interior
radius of the fin r, and the cross section area of A_and the perimeter of A_(see Fig. 1). Thefin
surface transfers heat through convection. Suppose the temperature of the surrounding air isT_.
We assume that base temperature of the fin, T, and convection heat transfer coefficient, h, are
constant while conduction coefficient, k, can be variable.

B . |
— -

.

r
i

Figure 1: Geometry of a Cylindrical Fin
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The energy equation and the boundary conditions for the fin are as follows:

t % {so it's temperature dependent r Z—I} =2hr(T-T)) (@)
T-inf =Ta
T=T,6 a r=r, 2
ar =0 a r=r, 3
dr
Assuming k as a linear function of temperature, we have:
k(M) =k, [1+B(T-T)] (4)

where 3 represents the rate of effectiveness of temperature variation on thermal conductivity
coefficient, k(T).

And:
A, =2nrt, )

{ A, =2nrdr + 2nLt

— 2nrd 6
ZnLt;0(henceitisneg|igible)}:>AS e ©)

Using dimensionless parameters.

(T_Too)
o= =) 7
(Tb_Too) ( )
hr,
B K ®
B=k(T, -T,) ©
R:@ (10)
p=1o (12)
fi
5=L (12)
r.

And substituting Egs. (4-12) in Eq. (1) we have:

2 2 .
HJFB(@}F 9%4_ B e@+ 1 @—@6:0,0<R<k—1 (13)
dr? drR dR? (1+R) dR (@(+R)dR 3§
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=1 a R=0, (14)
99 o a r=A-1 (15)
drR

3. BASIC IDEA OF THE METHODS
To illustrate the basic concepts of the methods, we consider the following differential equation:

{Lu+Nu:Au

Au= (1) }:>Lu+Nu:f(r) (16)

where L is a linear differential operator, N is a nonlinear analytic operator, and f (r) an
inhomogeneous term.

3.1.  Homotopy Perturbation Method
Now we will apply HPM to the nonlinear equation (16) as follows:

u=u,+p'u +pu,+ -, (17)
0= rI’iLnlu, (18)
H(u,p) = (1-p) [L(U) =L (6)] +pP[A(W)-f(R] =0 (19)

where L (u) isthe linear part of the equation and L () is the initial approximation.
Substituting Eg. (18) into Eg. (19), we have:

d? ’
H(p,u)=(1- p){?z (R)— (R)}p{ﬁu(mﬁ{ u(R)}

B 2Bi
+Bu(R){ u(R)} in (R)[— u( )] R—l{ﬁ (R)}—— (R)} 0. (20)

Substituting (17) in (20) and collecting like powers of p, we obtain the foll owing sequence
of expressions for coefficients of the parameter p:

d2 d?

0
P7)= 1+R 1+R @+R) @+R) S (1)
R=0-uy(R)=1 (22)
d
R:k—leﬁu(R)zo (23)
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d2 d 2 d d
N EL (L w®) L (£ w®)uw® PG
1+ R 1+ R 1+ R 1+ R
d2 R R d2
_2Biu(RIR P [dRZ UO(R)j (R (dRz ul(R)j
@+R) 1+R 1+R
d 2 d? j R
N B(dR UO(R)) R 2Biu(R) N B[dRz Up(R) | Uo(R) N
1+R @+R) 3 1+R (24)
R=0-Uy(R) =0 (25)
Rzk—l»%u(R):O (26)

Now we start with an arbitrary initial approximation that satisfies the initial condition:
The solutions of Egs. (21, 24) are:

_V2Bi(.-1) V24BiR V2yBi( -1  J2VBiR
e Vi e Vo e Vo e W
Uo(R) = : _ + _ . (27)
V24Bi(.-1)  V2JBi(r-1) V2JBi(.-1)  V2VBi(A-1)
e o +e Vs e o +e Vs
1. (J2VBiR
u,(R)==sinh| 22X =" |2 +-.. 28
(R =3 [ 7 jf + (28)
And finally:
0=u,+u, (29)
_V2JBi(r-) J2JBR V24Bi(.-1)  J2JBR
NG V3 NG NG ;
0= _ € e V¥ 1gp[Y2ER) 5 (30)
V2JBi(h-1)  N2VBi-1)  2VBi-)  V2VBi-1) 2 Js
e V8 e V5 e V8 e Vs
3.2. Variational lteration Method
According to the VIM, we can construct a correction functional as follows:
0=3" Uy (31)
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R ~
Un,1(R) = U, (R) + IO AfLup (1) + NG, (1) = f(0)] dt (32)
where ) is a general Lagrange multiplier, which can be identify optimally via the variational

theory, the subscript n denotes the nth-order approximation, U is considered as a restricted
variation, i.e., U .

Andalso according totheVIM, we can construct the correction functional of (14) asfollows:

R | d2 d 2 d?
Un+1(R):Un+1(R)+J.O }{d_rzun(T)JrB(d_run(r)j +Buy (1) [d—rzun(f)j

ﬁ( n()j (1;[)( n()j——U()} (33)

Its stationary conditions can be obtained as follows:

i _2BiA(1) _

e A(7) s =0 (34)

—{ik(r)}+1=0 (35)
dr

A(R) = 0. (36)

The Lagrangian multiplier can therefore be identified as:

1 \E\@t_ﬁ\@t \f Bit \frt
rv=——=|11c % B _lo v Vo2 . (37)
VBi ({4 4
As aresult, we abtain the following iteration formula:
R J24Bit J24/Bit J24/Bit I\Ft
1 _ _

u . (R=lu®+[—=—||1. V% N PN 5 5~/2
n+1( ) [n( ) _l\/a{[4e _4e

2 2
+ j—rz Un(1) + B (d% un(r)j +Bu, (1) [(;j_; un(r)j

(1+) n()( U()) (1i)( n()J u()} (39)
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Now we start with an arbitrary initial approximation that satisfies the initial condition:

_V2Bi(.-1) J24BiR V2B -1)  J2VBiR
B e 6 e B o
Uo(R) = ff(x R T R P T N T
e V8 +e Vs e V8 +e Vs

(39)

Using the above variational formula (39), we have:

% | g2 d 2 d?
u,,1(R) =u,(R) +J(;}{F U, () +B(d—T un(r)) + Bu, (1) [P un(r)j

0w (e Rwe |

I d 2 d?
U3(R) = Uy (R) + J(; 7{? Up(t) +P (d_‘c Uo(T)j +BUp(t) [W Uo(T)J

g O g o(f))——Uo(ﬂ}dr (40)

Substituting Eg. (39) into Eq. (40) and after some simplifications, we have:

1 JV2VBR _ V2JBIR _2V2VBi(A-1-R)
U(R)——\/_{_[O[ 1t R[(_e oL e B j(4BBie Js

2\24/Bi (L-1-R) _242VBi(.-1-R) 24/24/Bi (L-1-R)
+4pBie  V® +4pBie Vs R+4pBie Vo R

_2/2JBi(.-1-R) 242JBi (L.-1-R) _J2BiR
+Bv2Bise S _pJ2Bise B 12Bifoe VO
V24/Bi (2, - 2-R) V24/BiR

+2VBise B _2JBise

i e\/ix/ﬁ(j%— 2-R) D] de . (1)

And so on. In the same way the rest of the components of the iteration formula can be
obtained.
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Finally, we obtain following formula:
f=u,+u, (42
_V2yBi(A-1) J2/BiR V2VBi(.-)  J2JBIR
e NEEEPNINA e W o B

im0y By | Jalme-)  JadEe
e Vs +e Vs e V8 +e V8

1\/5 X 1 JV2VBiR  V24BiR _2J24Bi(A-1-R)
2 Jo "1 Rll-e Y& e 5 Jl4pBie Vs
2\24/Bi (L-1-R) _242JBi(.-1-R) 24/2Bi(L-1-R)
+4pBie  V® +4pBie Vs R+4pBie Vo R
_2J/2JBi(.-1-R) 2J2JBi (A\-1-R) _J2/BiR
+Bv2y/Bioe Vs ~pJ2Bise fs +J/2\BiJse o
_J2VBi(2r-2-R) _J2VBiR
++2Bise Vo ~J2/Bi\se o
J24Bi (2. - 2-R)
V2JBise B ]D dR]- 43

4. NUMERICAL METHOD

The analytical solution is verified using direct inegration Runge-K utta method. To this end,
the second order differential equation is expressed in terms of a set of first order differential
equation as follows. The next method to be used is the Runge-Kutta method. Second-order
differential equations can usually be changed into first-order equations and then it is solved
through Runge—Kutta method.

Assuming that u” = w, we have:

0'=w=f(X,0,w)
w=-F(X,06,w)=g(X,6,w)
w(Xy)=a
wW(Xo) =B

Then, the system of first order ordinary differential equations are solved by using

Runge-K utta numerical integration scheme. Therefore, the system of equations can be solved
through the Runge—K utta method.

(44)

5. RESULTS AND DISCUSSION

In this section we will compare the two applied methods. The results show that, the shape of
temperature contour changes with the variation of . If 3 < O then the concavity of temperature
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contour will be upturned, while [3 is reaching (going to be) zero, the concavity will change to
zero too, and at last for § > O the concavity will be down turned, (See Fig. 2,3).

10 4 10 rugp,
g,
* 4 e,
* 0.9 4
* 4 %,
09 - *+ 0.8 1 LN
* 1 =
**- 07 -< -..
* =
08 - ** 0.6 .
° ~*. <4
0 * 0 o5 %
*3-‘:* 1 -l
074 N 0.4 .
e i "
Ry 03 ]
R ] =
e s
06 **.‘;ﬁ . 02 ] .l-
* 01 1
T M T T o %“"P = il 3 ) T T T T -..
C 02 04 06 08 1 0 02 04 056 03 1

r I
[ vim - NM HPM | = NM =+ VIM HPM |

Figure 3: The Comparison of the Three Methods for
Temperature Distribution, at A = 2,
Bi=156=0.15 =03

Figure 2: The Comparison of the Three Methods for
Temperature Distribution, at A = 2,
Bi=156=015p=-0.3

Figures 4 to 5 show 0 (R) that is obtained by using Homotopy perturbation method (HPM)
and Variational iteration method (VIM) for variousvalues of Bi and 8 whenA =2 and 3 =-0.3.
Finally, as shown in Table 1, it has been attempted to show the accuracy, capabilities, and
wide-range applications of the HPM and VIM in comparison with the numerical solution of
nonlinear temperature distribution of annular fin with temperature-dependent thermal
conductivity.

Table1
The Comparison Between HAM and ADM with Numerical
Method for 8 (R) for A =2,8=0.15,and Bi =15

8 (R)
=03 B=-0.3

R HPM VIM NM[26] R HPM VIM NM [26]
0 1 1 1 0 1 1 1

0.1 0.9479 0.9473 09477 0.1 0.9150 0.9152 0.9157
0.2 0.9038 0.9032 09036 0.2 0.8479 0.8481 0.8483
0.3 0.8664 0.8661 08668 0.3 0.7940 0.7942 0.7943
0.4 0.8369 0.8364 08365 0.4 0.7508 0.7510 0.7512
0.5 0.8118 0.8115 08119 05 0.7178 0.7175 0.7172
0.6 0.7922 0.7920 07927 06 0.6903 0.6909 0.6911
0.7 0.7780 0.7779 07782 0.7 0.6711 0.6717 0.6719
0.8 0.7685 0.7681 07682 0.8 0.6580 0.6583 0.6587
0.9 0.7629 0.7622 07624 0.9 0.6502 0.6515 0.6511
1 0.7603 0.7601 07607 1 0.6483 0.6490 0.6487
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Figure 4: Temperature Distribution 8 (§) by HPM for Figure 5: Temperature Distribution 6 (£) by VIM for
Various Bi when A =2, 6=0.15,  =-0.3 Various Bi when A =2, Bi = 1.5, =-0.3

6. CONCLUSIONS

Inthis survey, the authors have studied a nonlinear equation through Variational iterati on method
(VIM) and Homoatopy perturbation method (HPM). We have solved the nonlinear heat transfer
equation of annular fins by using HPM and VIM methods. We have verified the results of
analytical approximation methods with direct numerical solution of the governing differential
equation obtained by employing Runge-K utta method.

The results show that these two methods are capable of solving a large class of nonlinear
equations with rapid convergent successive approximations without any restrictive assumptions
or transformations that may change the physical behavior of the problem and also adding up
the number of iterations cause one to attain the exact solution of the problem if it exists. Also
the methods can be applied to the nonlinear equations with boundary or initial conditions defined
in different points just with developing the correction functional using the extra parameters, as
used in this Letter.
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