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Abstract: In [T. A. Abassy, M. A. El-Tawil, H. El-Zoheiry, Exact solutions of some nonlinear partial
differential equations using the variational iteration method linked with Laplace transforms and the
Padé technique, Comput. Math. Appl. 54 (2007) 940-954] an efficient modification of the variational
iteration method (VIM) was presented by using Laplace transforms and Padé approximants. In this
paper, standard and modified variational iteration methods are applied to solve the strongly nonlinear
oscillators, which has rich mathematical structures and many important applications in physics and
mathematics. In some cases, the solution of VIM is adequate only in a small region when the exact
solution is not reached. To overcome the drawback, Laplace transforms and Padé approximants, are
applied to the approximate solution to improve the accuracy and enlarge the convergence domain. By
using this modified, the solution of the strongly nonlinear oscillator is constructed with better accuracy
and better convergence than by using the VIM alone. The current results are compared with those
derived from the established Runge-Kutta method in order to verify the accuracy of the modified VIM.
Numerical and figurative illustrations show that it is a promising tool for solving strongly nonlinear
oscillators.

Keywords: Nonlinear oscillators, Approximate solutions, Variational iteration method, Laplace
transform, Padé approximants.

 In science and engineering there exist many nonlinear differential equations and even strongly
nonlinear problems which are still very difficult to solve either analytically or numerically.
Nonlinear oscillation in physics and applied mathematics has been a topic to intensive research
for many years. There are many approaches for approximating solutions to strongly nonlinear
oscillators. Some of these well-known methods are such as: harmonic balance method [1],
multiple scales method [2], Krylov-Bogoliubov-Mitropolsky method [3, 4], modified Lindstedt-
Poincare method [5], linearized perturbation method [6], energy balance method [7, 13, 14],
iteration perturbation method [8], bookkeeping parameter perturbation method [9], amplitude
frequency formulation [10] max-min approach [11, 15], Mickens iteration procedure [12],
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rational harmonic balance method [17], adomian decomposition method [18], variational iteration
method [19, 16], homotopy perturbation method [20, 16], and etc.

In this paper we consider the following general second-order nonlinear oscillator differential
equation:

y (t) + F
 
(y

 
(t), y (t), t) = 0, (1)

with initial conditions

y (0) = A, y (0) = B, (2)

where  need not be small, and F
 
(y

 
(t), y (t), t) is nonlinear analytic function of the displacement

y
 
(t), the velocity y (t), and the time t.

 In [22], a modified variational iteration method (VIM) has been presented by using taylor
series method [21], laplace transform [23] and padé approximates [24]. The purpose of this
paper is to consider the numerical solution of strongly nonlinear oscillators by using standard
and modified variational iteration methods.

 The organization of this paper is as follows. In Section 2 we describe the standard variational
iteration method and briefly discuss Padé approximants. In Section 3, we present the modification
technique of variational iteration method. In Section 4, the methods are applied to a variety of
examples to show the efficiency and simplicity of the methods. At the end of the paper, there is
a summary of the main conclusions.

The variational iteration method is a method for solving linear and nonlinear problems. This
method is introduced by the Chinese researcher He [25] by modifying the general Lagrange
multiplier method [26]. The method constructs an iterative sequence of functions converging
to exact solution. In the case of linear problems by determining exact Lagrange multiplier,
approximate solution turns into exact solution and is available by only one iteration. To illustrate
the method, let us consider the following nonlinear equation:

L
 
(y

 
(t)) + N

 
(y

 
(t)) = g

 
(t), (3)

where L is a linear operator, N is a nonlinear operator and g
 
(t) is a known analytical function.

According to the variational iteration method, we can construct the following correction functional:

1 0
( ) ( ) ( ) ( ( ( )) ( ( )) ( ))

t

n n n ny t y t L y N y g d� � � � � � � � � � �� � , (4)

where  is a general Lagrange multiplier which can be identified via variational theory, y
0
(t) is

an initial approximation with possible unknowns, and y~
n
 is considered as restricted variation

[27], i.e. y~
n
 = 0. Consequently, the solution is given by

( ) lim ( )n
n

y t y t
��

� . (5)

According to the variational iteration method, we can construct the correction functional
of (1) as follows:

1 0
( ) ( ) ( ) ( ( ) ( ( ), ( ), ))

t

n n n n ny t y t y F y y d� �� �� � � � � � � � � � �� � � , (6)



where  is general Lagrange multiplier, y~
n
 and y~

n
 denote restricted variation, i.e. y~

n
 = y~

n
 = 0.

Making the above correction functional as the initial guess, we can begin with the following
stationary conditions:

1 – |  = t
 = 0, (7)

|  = t
 = 0, (8)

 = 0. (9)

This in turn gives

 =  – t. (10)

Substituting this value of the Lagrangian multiplier into functional (6) gives the iteration
formula

1 0
( ) ( ) ( ) ( ( ) ( ( ), ( ), ))

t

n n n n ny t y t t y F y y d� �� �� � � � � � � � � � �� , (11)

According to (2) we start with initial approximation y
0
(t) = A + Bt, and using (11) we obtain

the following successive approximations:

y
0
(t) = A + Bt,

y
1
(t) = 0 0 00

( ) ( ( ) ( ( ), ( ), ))
t

A Bt t y F y y d�� �� � � � � � � � � � �� ,

y
2
(t) = 1 1 1 10

( ) ( ) ( ( ) ( ( ), ( ), ))
t

y t t y F y y d�� �� � � � � � � � � �� ,

�

y
n + 1

(t) =
0

( ) ( ) ( ( ) ( ( ), ( ), ))
t

n n n ny t t y F y y d�� �� � � � � � � � � �� .

 Recall that

1( ) lim ( )n
n

y t y t�
��

� . (12)

A Padé approximant is the ratio of two polynomials constructed from the coefficients of the
Taylor series expansion of a function u

 
(t). The [L/M ] Padé approximants to a function u

 
(t) is

given by [24, 28]:

( )

( )
L

M

P tL
Q tM

� � �� �� �
, (13)

where P
L 
(t) is a polynomial of degree at most L and Q

M 
(t) is a polynomial of degree at most M.

The formal power series

1( )
( ) 0( )

( )
L ML

M

P t
u t t

Q t
� �� � , (14)



0
( ) i

ii
u t a t

�
�

�� , (15)

determine the coefficients of P
L 
(t) and Q

M 
(t).

Since we can obviously multiply the numerator and denominator by constant and leave
[L/M ] unchanged, we impose the normalization condition

Q
M 

(t) = 1. (16)

Finally we require that P
L 
(t) and Q

M 
(t) have no common factors.

If we write the coefficients of P
L 
(t) and Q

M 
(t) as

P
L 
(t) = p

0
 + p

1 
t + p

2 
t2 + ... + p

L 
tL,

Q
M 

(t) = q
0
 + q

1 
t + q

2 
t2 + ... + p

M 
tM. (17)

Then by (16) and (17) we may multiply (14) by Q
M 

(t), which linearizes the coefficient
equations. We can write out (14) in more detail as

1 1 1

2 1 1 2

1 1

0,

0,

0,

L L L M M

L L L M M

L M L M L M

a a q a q

a a q a q

a a q a q

� � �

� � � �

� � �

� � � ��
�

� � � ��
�
�
� � � � ��

�

�

�

�

(18)

0 0

1 0 1 1

2 1 1 0 2 2

1 1 0

,

,

,

.L L L L

a p

a a q p

a a q a q p

a a q a q p�

��
� � ��� � � ��
�
�

� � � ���

�

�

(19)

Once, the q‘s are known from (18), (19) can be solved easily. If (18) and (19) are nonsingular,
then they can be solved directly as follows:

1 2 1

1

11 0

1 2 1

1
1

det

det

1

L M L M L

L L L M
L L Lj j j
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L L L M
M m

a a a
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�
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�

�

. (20)

To obtain diagonal Padé approximants of different order like [2/2], [4/4] or [6/6] MAPLE
can be efficiently used.



In some cases, the solution of variational iteration method converges in a limited interval, and
outside it, its error is high. Furthermore this solution does not exhibit the periodic behavior
which is characteristic of oscillator equations. In order to improve the accuracy of VIM, we
have used the method given in [22] for solving nonlinear oscillators. This method can be done
by using the following algorithm:

Algorithm:

Step 1: Solve the differential equation using VIM and convert the obtained solution to
Taylor series.

Step 2: Take the Laplace transform of the truncated series.

Step 3: Find the Padé approximation of the step 2.

Step 4: Take the inverse Laplace transform.

Remark 3.1: The main reason for utilizing this modified method in solution of nonlinear
oscillator equations are the use of Padé approximation and the Laplace transform. Because,
Padé approximation gives fractional expressions and moreover the inverse Laplace transform
of such expressions usually generates trigonometric or exponential expressions. So this modified
method generates approximate periodic or damping solutions. These instances will become
evident in the examples given in the next section.

In this section three examples are given to demonstrate the applicability and accuracy of our
methods. All the results are calculated by MAPLE 13 with digits precision on a Personal
Computer.

Example 4.1: Consider the following Duffing equation [29, 30]:

y (t) + y
 
(t) + y3(t) = 0, 0  t  100, (21)

subject to the initial conditions

y (0) = A, y (0) = 0. (22)

The solution of (21) is only defined for A2 > –
 
1. We set the parameter  = –

 
0.1 and A = 0.5

for this example. Now, we will solve (21) by using the above algorithm as follows:

Step 1: Solve the differential equation (21) using VIM.

From (11) and (21), we obtain following iteration formula

3
1 0
( ) ( ) ( ) ( ( ) ( ) ( ))

t

n n n n ny t y t t y y y d� ��� � � � � � � � � � �� . (23)

 According to (22) we start with initial approximation y
0
(t) = 0.5, and we can get the following

successive approximations:

y
0
(t) = 0.500000,

y
1
(t) = 0.500000 – 0.243750

 
t2,

y
2
(t) = 0.500000 –  0.243750

 
t 2 + 0.0187891

 
t 4 + 0.000297070

 
t 6 – 0.0000258610

 
t 8,

�



and so on. In a similar manner the rest of the components can be obtained by using (23). After
ten iterative the approximate solution for (21) is given by

y
 
(t)  y

10
(t) = 0.500000 –  0.243750

 
t 2 + 0.0187891

 
t 4 + 0.000297070

 
t 6

– 0.0000258610
 
t 8 + 0.00000510722

 
t 10 – 0.000000245471

 
t 8 + O

 
(t 14). (24)

This series solution does not exhibit the periodic behavior which is characteristic of the
oscillatory equation (21). Comparison of the approximate solution (24) and the solution obtained
by the fourth-order Runge-Kutta method in Fig. 1.

Figure 1: Plots of Displacement y versus Time t. Solid Line: Runge-Kutta Method; Dashed Line: VIM.

Step 2: Take the Laplace transform of the equations (24).

Applying the Laplace transformation to the series solution (24) yields

3 5 7 11 13

0.500000 0.487500 0.450938 0.203227 18.5331 117.581
£[ ( )]y t

s s s s s s
� � � � � � . (25)

Step 3: Find the Padé approximation of the equation (25).

For simplicity, let 1
t

s � , then from (25) we have

£
 
[y

 
(t)] 0.500000

 
t  –  0.487500

 
t 3 + 0.450938

 
t 5 – 0.0203227

 
t 7

– 1.84398
 
t 9 + 18.5331

 
t 11 – 117.581

 
t 13. (26)

The [4/4] Padé approximation gives

3

2 4

0.500000 4.362504

4 1.0 9.6999 8.55562

t t

t t

�� � �� �� � � �
. (27)

Recalling 1
s

t � , we obtain in terms of

3

4 2

0.500000 4.3624504

4 1.0 9.6999 8.55562

s s

s s

�� � �� �� � � �
. (28)

Step 4: Take the inverse Laplace transform of the equation (28).

By using the inverse Laplace transformation to the Padé approximation, we obtain

y
 
(t)  0.500407 cos

 
(0.990604

 
t ) – 0.000406818 cos

 
(2.95275

 
t ). (29)



The graphs of the displacement y
 
(t) and phase diagram are sketched in Figs. 2 and 3 and

are compared with the numerical solution of the fourth-order Runge-Kutta method with time
step t = 0.001.

Example 4.2: Consider the following Van der Pol oscillator [31]

y (t) + 
 
(y2(t) – 1)

 
y (t) + y (t) = 0, 0  t  100, (30)

subject to the initial conditions

y (0) = 0.1, y (0) = 0. (31)

We choose  = –
 
0.1 for this example.

Step 1: Solve the differential equation (30) using VIM.

From (11) and (30), we obtain following iteration formula

2
1 0
( ) ( ) ( ) ( ( ) ( ( ) 1) ( ) ( ))

t

n n n n n ny t y t t y y y y d� �� �� � � � � � � � � � � � �� . (32)

 According to (31) we start with initial approximation y
0
(t) = 0.1, and we can get the

following successive approximations:

Figure 2: Plots of Displacement y versus Time t for Example 4.1. Solid Line: Presented Method; Diamond: RK4

Figure 3: Plots of Phase Plane Diagram for Example 4.1. Solid Line: Presented Method; Diamond: RK4



y
0
(t) = 0.100000,

y
1
(t) = 0.100000 – 0.0500000

 
t2,

y
2
(t) = 0.100000 –  0.0500000

 
t 2 + 0.00165000

 
t 3 + 0.00416667

 
t 4 – 0.000005

 
t 5

– 5.95238  10– 7
 
t 7,

�

and so on. In a similar manner the rest of the components can be obtained by using (32). After
five iterative the approximate solution for (30) is given by

y
 
(t)  y

5
(t) = 0.100000 –  0.0500000

 
t 2 + 0.00165000

 
t 3 + 0.00412583

 
t 4

– 0.000159191
 
t 5 – 0.000135175

 
t 6 + 4.52110

  
10– 6

 
t 7 + 2.44519

  
10– 6

 
t 8

 + 5.40753  10– 8
 
t 9 + O

 
(t 10). (33)

Comparison of the approximate solution (33) and the solution obtained by the fourth-order
Runge-Kutta method in Fig. 4.

Figure 4: Plots of Displacement y versus Time t. Solid Line: Runge-Kutta Method; Dashed Line: VIM

Step 2: Take the Laplace transform of the equations (33).

Applying the Laplace transformation to the series solution (33) yields

3 4 5 6

7 8 9 10

0.100000 0.100000 0.00990000 0.0999199 0.0191029
£[ ( )];

0.0973267 0.0227864 0.0985904 0.0196229
.

y t
s s s s s

s s s s

� � � �

� � � � (34)

Step 3: Find the Padé approximation of the equation (34).

Setting 1
t

s �  in (34) and calculating the [4/4] Padé approximant gives

2 3 4

2 3 4

0.100000 0.0329999 0.902963 0.08976694

4 1.0 0.329999 10.0296 1.12867 9.00676

t t t t

t t t t

� � �� � �� �� � � � � �
. (35)



Recalling 1
s

t � , we obtain in terms of s

3 2

4 3 2

0.100000 0.0329999 0.032999 0.08976694

4 0.0329999 10.0296 1.12867 9.00676

s s s

s s s s

� � �� � �� �� � � � � �
(36)

Step 4: Take the inverse Laplace transform of the equation (36).

By using the inverse Laplace transformation to the [4/4] Padé approximation, we obtain

y
 
(t) –

 
1.53099  10– 7 e(– 0.115124 – 2.99889 i) t + 1.55508  10– 6 i

 
e(– 0.115124 – 2.99889 i) t

–
 
1.53099  10– 7 e(– 0.115124 + 2.99889 i) t – 1.55508  10– 6 i

 
e(– 0.115124 + 2.99889 i) t

+
 
0.0500002 e(– 0.0498751 – 0.998761 i) t + 0.00249217 i

 
e(– 0.098751 – 0.998761 i) t

+
 
0.0500002 e(– 0.0498751 – 0.998761 i) t + 0.00249217 i

 
e(– 0.098751 – 0.998761 i) t (37)

The graphs of the displacement y
 
(t) and phase diagram are sketched in Figs. 5 and 6 and

are compared with the numerical solution of the fourth-order Runge-Kutta method with time
step t = 0.001.

Figure 5: Plots of Displacement y versus Time t for Example 4.2. Solid Line: Presented Method; Diamond: RK4

Figure 6: Plots of Phase Plane Diagram for Example 4.2. Solid Line: Presented Method; Diamond: RK4



Example 4.3: Consider the following initial-value problem [32]:

2

( )
( ) 0

1 ( )

y t
y t

y t
�� � �

� �
, 0  t  100, (38)

subject to the initial conditions

y (0) = 1, y (0) = 0. (39)

We rewrite equation (38) in the form

y (t) + y (t) + 
 
y (t)

 
y2 (t) = 0, (40)

and set  = 0.1 for this example.

Step 1: Solve the differential equation (40) using VIM.

From (11) and (40), we obtain following iteration formula

2
1 0
( ) ( ) ( ) ( ( ) ( ) ( ) ( ))

t

n n n n n ny t y t t y y y y d� �� ��� � � � � � � � � � � �� . (41)

According to (39) we start with initial approximation y (t) = 1, and we can get the following
successive approximations:

y
0
(t) = 1.00000,

y
1
(t) = 1.00000 – 0.500000

 
t2,

y
2
(t) = 1.00000 – 0.450000

 
t 2 + 0.033333

 
t 4 + 0.000833333

 
t 6

�

and so on. In a similar manner the rest of the components can be obtained by using (41). After
five iterative the approximate solution for (40) is given by

y
 
(t)  y

5
(t) = 1.00000 – 0.454550

 
t 2 + 0.0281619

 
t 4 + 0.000803118

– 0.000159429
 
t 8 – 3.80710

 
t 6 

 
10– 6

 
t 10 + 1.39159

  
10– 8

 
t 12 + O

 
(t 14). (42)

Comparison of the approximate solution (42) and the solution obtained by the fourth-order
Runge-Kutta method in Fig. 7.

Figure 7: Plots of Displacement y versus Time t. Solid Line: Runge-Kutta Method; Dashed Line: VIM



Step 2: Take the Laplace transform of the equations (42).

Applying the Laplace transformation to the series solution (42) yields

3 5 7 9 11 13

1.00000 0.909100 0.675886 0.578245 6.42819 13.8152 666.575
£[ ( )] .y t

s s s s s s s
� � � � � � � (43)

Step 3: Find the Padé approximation of the equation (43).

Setting 1
t

s �  in (43) and calculating the [4/4] Padé approximant gives

3

2 4

1.0 7.0011724

4 1.0 7.92082 6.52493

t t

t t

�� � �� �� � � �
. (44)

 Recalling 1
t

s � , we obtain [4/4] in terms of s

3

4 2

7.011724

4 7.92082 6.52493

s s

s s

�� � �� �� � � �
. (45)

Step 4: Take the inverse Laplace transform of the equation (45).

By using the inverse Laplace transformation to the [4/4] Padé approximation, we obtain

y
 
(t)  1.00409 cos

 
(0.966372

 
t ) – 0.000409292 cos

 
(2.64328

 
t ). (46)

The graphs of the displacement and phase diagram are sketched in Figs. 8 and 9 and are
compared with the numerical solution of the fourth-order Runge-Kutta method with time step

t = 0.001.

Figure 8: Plots of Displacement y versus Time t for Example 4.3. Solid Line: Presented Method; Diamond: RK4



In this work, we used a simple but effective modification of the variational iteration method to
handle strongly nonlinear oscillators. Some examples were given to illustrate the effectiveness
and convenience of this method. The results anticipated were compared with the standard
variational iteration method and the fourth-order Runge-Kutta (RK4). The obtained results
show that:

1. The modification of the variational iteration method is more accurate than the
standard one,

2. This modified method is valid for larger region,

3. This modified method generates approximate periodic or damping solutions.

Moreover, the present work can be used as paradigms for many other applications in
searching for periodic solutions of nonlinear oscillations and so can be found widely applicable
in engineering and science.
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