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Abstract: This paper introduces the use of nonlinear controller to convert the unstable periodic
solution to a stable one. The idea is altering the subcritical Hopf bifurcation to supercritical. The
second system of the IEEE second benchmark model of Subsynchronous Resonance (SSR) is
considered. The system can be mathematically modeled as a set of first order nonlinear ordinary
differential equations with the compensation factor (µ = X

C
/X

L
) as a control parameter. Therefore,

bifurcation theory can be applied to nonlinear dynamical systems, which can be written as
dx/dt=F(x;µ). The dynamics of the damper winding, automatic voltage regulator (AVR), and power
system stabilizer (PSS) on SSR in power system are included. Nonlinear state feedback controller
(Static Feedback Controller) with a form of 3 3

1 1( )ru K= − ω − ω can be used together with a small AVR
gain to stabilize the system. It requires measurements in only two state variables. On the other hand,
based on bifurcation theory and center manifold theory, a nonlinear controller is used to control a
Hopf bifurcation and chaos.
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1. INTRODUCTION

Power systems have rich bifurcation phenomena. Recently, power system dynamics has been
studied using the nonlinear dynamics point of view, which utilizes the bifurcation theory.
Bifurcation is used to indicate a qualitative change in the features of a system, such as the
number and types of solution upon a small variation in the parameters of a system. The
objectives of typical bifurcation control are: introducing a new bifurcation at preferable parameter
value, delaying the onset of an inherent bifurcation, stabilizing a bifurcation solution or branch,
modifying the shape or type of a bifurcation chain, changing the parameter value of an existing
bifurcation point, optimizing the system performance near a bifurcation point and monitoring
the multiplicity, amplitude and frequency of some limit cycles emerging from bifurcation.

The concept of bifurcation control has many practical applications in various science
fields. These include chemical engineering, mechanical engineering, electrical engineering,
biology, physics and chemistry and meteorology. There are several feedback control methods

Published by Global Research Publications, New Delhi, India

Received:  13th May 2016,  Accepted:  12th  September2016



116 International Journal of Nonlinear Dynamics in Engineering and Sciences

which can be used to adjust bifurcation properties. Such methods utilize linear or nonlinear
state feedback controls, harmonic balance approximations, and a washout filter-aided dynamic
feedback controller.

In power systems series compensation is considered as a powerful technique based on
economic and technical considerations for increasing effectively the power transfer capability
as well as improving the stability of these systems. However, this introduces problems as well
as with the benefits, namely the electromechanical interaction between electrical resonant
circuits of the transmission system and the torsional natural frequencies of the turbine-generator
rotor. This phenomenon is called subsynchronous resonance (SSR), and it can cause shaft
fatigue and possible damage or failure. SSR has been studied extensively since 1970, when a
major transmission network in southern California experienced shaft failure to its turbine-
generator unit with series compensation. The phenomenon of subsynchronous resonance
occurs mainly in series capacitor-compensated transmission systems.

The objectives of typical bifurcation control are: introducing a new bifurcation at preferable
parameter value [1 and 2], delaying the onset of an inherent bifurcation [3 and 4], stabilizing a
bifurcation solution or branch [5 and 6], modifying the shape or type of a bifurcation chain
[4], changing the parameter value of an existing bifurcation point [7 and 8], optimizing the
system performance near a bifurcation point [9] and monitoring the multiplicity [10], amplitude
[11] and frequency of some limit cycles emerging from bifurcation [12].

Tomim et al. [13] proposed an index that identifies Hopf bifurcation points in power
systems susceptible to subsynchronous resonance. Abed and Fu [14 and 15] illustrated how
the static feedback controller u can be chosen to suppress discontinuous bifurcations of fixed
points such as subcritical Hopf bifurcations. They showed that subcritical Hopf bifurcation is
converted to supercritical Hopf bifurcation by using a nonlinear static feedback. Nayfeh et. al.
[16] used a nonlinear state feedback controller in the form of u=Kx3 to change the subcritical
to a supercritical Hopf bifurcation.

Also, they used this controller to reduce the amplitude of the limit cycle born near the
bifurcation value as the controller gain value increases. Shahrestani and Hill [17] used a linear
controller to delay the inception of a bifurcation. Furthermore, they showed that when the
critical modes are not controllable or when the control objective is set as the stabilization of
periodic solutions, nonlinear controller must be considered. They also derived control laws
utilizing nonlinear feedback of critical states.

In this study, we use bifurcation theory and center manifold theory to investigate the
complex dynamics of the considered system. The type of the Hopf bifurcation is determined
by numerical integration of the system, with specific amount of initial disturbances, slightly
before and after the bifurcation value. On further increase of the compensation factor, the
system experiences chaos via torus attractor. Chaos is a bounded steady-state behavior that is
not an equilibrium solution or a periodic solution or a quasiperiodic solution [18]. We focus on
the torsional interaction effect, which results from the interaction of the electrical
subsynchronous mode with the torsional mode.
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2. SYSTEM DESCRIPTION

The system considered is the two different machine infinite bus system, shown in Figure 1.
The two machines have a common torsional mode connected to a single series compensated
transmission line. The model and the parameters are provided in the second system of the
IEEE second benchmark model. The electro-mechanical systems for the first and second
units are shown in Figure 2. The first unit consists of exciter (EX.), generator (Gen.1), low-
pressure (LP1) and high-pressure (HP1) turbine sections. And the second unit consists of
generator (Gen.2), low-pressure (LP2) and high-pressure (HP2) turbine sections. Every section
has its own angular momentum constant M and damping coefficient D, and every pair of
successive masses have their own shaft stiffness constant K, as shown in Figure 2. The data
for electrical and mechanical system are provided in [19]. Replacement of these generators
with a single equivalent generator will change the resonance characteristics and therefore is
not justified. Consequently, each generator is represented in its own rotor frame of reference
and suitable transformation is made.

Figure 1: Electrical System (Two different Machine Infinite Bus System)

Figure 2: Electro-mechanical Systems for the First and Second Units

3. MATHEMATICAL MODEL

The mathematical model of the electrical and mechanical system will be presented in this
section. Actually, the electrical system includes the dynamic nonlinear mathematical model of
a synchronous generator and that of the transmission line. The generator model considered in



118 International Journal of Nonlinear Dynamics in Engineering and Sciences

this study includes five equations, d-axis stator winding, q- axis stator winding, d-axis rotor
field winding, q-axis rotor damper winding and d-axis rotor damper winding equations. Each
mass of the mechanical system can be modeled by a second order ordinary differential equation
(swing equation), which is presented in state space model as two first order ordinary differential
equations [20]. Using the direct and quadrature d-q axes and Park’s transformation, we can
write the complete mathematical model that describes the dynamics of the system as follows:
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Similarly, for the second generator the generator model includes five equations as follows:
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Mechanical System:
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The mathematical models of AVR and PSS (shown in Figure 3) can be written as follows:
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Therefore, these systems can be mathematically modeled as a set of first order nonlinear
ordinary differential equations with the compensation factor (µ = X

c
/X

L
) as a bifurcation

(control) parameter. So, bifurcation theory can be applied to nonlinear dynamical systems,
which can be written in the form dx/dt=F(x; µ).

4. SYSTEM RESPONSE WITHOUT CONTROLLER

In this section we investigate the case of adding damper windings, automatic voltage regulator
(AVR) and power system stabilizer (PSS) to the first generator. Figure 3 shows the block
diagram of the use of AVR together with the PSS [21].

The operating point stability regions in the δ
r1

 plane together with two Hopf bifurcation
points are depicted in Figure 4. We observe that the power system has a stable operating point
to the left of H

1
≈ 0.198377and to the right of H

2
≈ 0.824135, and has an unstable operating

point between H
1
 and H

2
. The operating point loses stability at a Hopf bifurcation point, namely

µ = H
1
. It regains stability at a reverse Hopf bifurcation, namely µ = H

2
.
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Figure 3: Block Diagram of the use of AVR and PSS to the First Generator

In this case a pair of complex conjugate eigenvalues will transversally cross from left half
to right half of the complex plane, and then back to the left half. To determine whether the limit
cycles created due to the Hopf bifurcation are stable or unstable, we obtain the time response
o f  t h e  s y s t e m  b y  n u m e r i c a l  i n t e g r a t i o n  w i t h  s m a l l  d i s t u r b a n c e  s l i g h t l y  b e f o r e  H

1
. Figure 5

shows the response of the system with 7% initial disturbance on the speed of the generator at
µ = 0.182265, which is less than H

1
. It can be observed that the system is unstable. Therefore,

the type of this Hopf bifurcation is subcritical. So, the periodic solution emanating at the
bifurcation point is unstable.

Figure 4: Bifurcation Diagram Showing Variation of the First Generator Rotor Angle δ
r1

 with the Compensation
Factor µ (for the Case of no Controller).

5. CONTROL OF HOPF BIFURCATION AND CHAOS

Consider the nonlinear dynamical system presented in the form:

x = ( , ; )f x u µ
y = g(x) (31)
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Where x is a state variables vector, f is the field vector, µ is the control parameter of the
system, y is the system outputs and u is the system state feedback control inputs. At any value
of compensation factor µ, the operating points (equilibrium solutions) are obtained by setting
the derivatives of the state variables in the system equal to zero.

( , ; )e ef x u µ = 0 (32)

Where u
e
 represents the control input value when the system is at the equilibrium. The

stability of the equilibrium solution is studied by examination of the eigenvalues of the Jacobian
matrix evaluated at the operating point. Consider the system undergoing a Hopf bifurcation at
the considered equilibrium point. That is, the critical eigenvalues of A cross imaginary axis at
±jβ, while all other eigenvalues have strictly negative real part. In this study, the case of
including the dynamics of the two axes damper windings, AVR and PSS is considered.

Figure 5: Rotor Speed of the Generator at µ = 0.182265 with 7% Initial Disturbance in Rotor Speed of
Generator (for the Case of no Controller).

5.1. Nonlinear State Feedback Controller (Static Feedback Control)

The state feedback controller law in this method is nonlinear. It is used to achieve desirable
nonlinear dynamics. This type of controller has been utilized by Nayfeh et al. [22].

For instance, consider the nonlinear dynamical system presented in the form:

x = ( ; )F x uµ + (33)

Based on the nonlinearity of the system and by using trial and error criterion, we consider
a nonlinear controller of the form:

u =
3 3

1 1( )rK− ω − ω (34)

Figure 6 shows the block diagram of the AVR, PSS together with the considered nonlinear
controller.
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Figure 6: Block Diagram of the AVR, PSS Together with the Considered Nonlinear Controller

Figure 7: Rotor Speed of the Generators at µ  = 0.7 with 1% Initial Disturbance in Rotor Speed of Generators.
(For the Case of Adding Damper Windings, AVR and PSS with Nonlinear State Feedback Controller
with a Gain K = 6000 and the Nominal Value of AVR Gain K

R
= 4).

In this study, the two state signals of the system: the rotor speed of the first generator ω
r1

and the first turbine-generator section speed ω
1
, must be measured. The result of subtraction

of ω
1

3 from ω
r1

3 will be obtained. The nonlinear controller will not affect the equilibrium of the
system because ω

r1
= ω

1
 at steady state. But it will affect the Jacobian matrix of the system, as

a result, the eigenvalues of the linearized model will change by this controller at different
values of µ. Then, the result is multiplied by a gain K. This gain must be carefully adjusted
such that it will make a significant effect on the equilibrium stability of the system. Figure 7
shows the system response after 1% initial disturbance in generator rotor speed at µ = 0.7
when the nonlinear state feedback controller is applied. It can be observed that, the nonlinear
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controller with a gain K = 6000 together with a small value of AVR gain K
R

= 4 stabilizes the
system. The time history of the nonlinear controller u after 1% initial disturbance in generator
rotor speed at µ = 0.7 is shown in Figure 8.

Figure 8: Nonlinear Controller u at µ = 0.7 after 1% Initial Disturbance in Rotor Speed of Generators with
Nonlinear State Feedback Controller with a Gain K= 6000)

5.2. Control of Hopf Bifurcation

The bifurcation point is transferred to the origin via simple change of coordinates, with m =
µ – µ

o
and w = u – u

e
 [17]. By utilizing appropriate similarity linear transformations, the

Jacobian is transformed to diagonal form, with a 2 × 2 block for the critical complex eigenvalues.
The system can be expressed in the form:

cx = ( ), , ;c c c c sJ X f x x w m+

sx = ( ), , ;s s s c sJ X f x x w m+ (35)

Where J
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 is a matrix whose eigenvalues all have negative real parts (i.e., J

s
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matrix) and the matrix J
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=
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 β 

(36)
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c
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s
and their derivatives vanish at the origin. By the center manifold

theorem [23] it can be ascertain that in the vicinity of origin (i.e., x
s
, m, w: small) a smooth

invariant manifold x
s
=h(x

c
,m,w) for (35) exists. This center manifold is tangent to the eigenspace

of the linearized system J
c
,with h(0,m,w) = h'(0,m,w) = 0. Substituting the manifold constraint

into the first part of (35), the bifurcation equations can be obtained as:

cx = ( )( ), , , , ,c c c c cJ x f x h x m w m w+ (37)
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For the purpose of notational simplicity, let [ ]T

cx x z= , the bifurcation equations can
now be considered as:
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In the case of no control effort (i.e. w = 0), the bifurcation parameter dependent eigenvalues
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The Hopf bifurcation theorem establishes that in these circumstances, if the genericity
condition

0
0

x z m
S = = = ≠ , is also satisfied a curve of periodic solutions bifurcates from the origin
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into m < 0 provided Sα
1
 is positive or into m > 0 if Sα

1
 is negative. If α

1
 is negative, the origin

is stable for m > 0 and unstable for m < 0; conversely for α
1
 positive, the origin is stable for

m<0 and unstable for m>0. The periodic solutions on the side of m = 0 for which they exist,
are stable if the origin is unstable and vice versa. On other words, for α

1
> 0, a supercritical

Hopf bifurcation occurs if S<0; the origin is stable for m<0 and unstable for m>0. As m passes
through zero, the stable periodic solutions bifurcate into m<0. On the other hand, with α

1

positive, if S>0, the origin is stable and a subcritical Hopf bifurcation is displayed, with unstable
periodic orbits bifurcating into m<0. In case of α

1
<0, situation is similar with the sign of m

changed.

To study the possibility of rendering a subcritical Hopf bifurcation supercritical, the effects
of control on S in (44) must also be investigated. For nonzero control effort, the new stability
coefficient S

w
 to be evaluated at origin will be:

( ) ( )
( )( ) ( )2 2 2 2

1

16
1

16

w x x x x z z w z z z x x z w

x z w w x x z z w w z z x x

S S w w f w w g

w f g w w f g w w

 = + + + + 

 + − + + − β
(45)

From S
w
 and λ

1,2
(m,w) it is clear that only the feedback of critical variables up to cubic

terms, may have any effect on the existence of a Hopf bifurcation or changing its stability
attitude. The elimination of subcritical bifurcation requires that á(m,w) in (41) be always negative.
Nonlinear control (quadratic and/or cubic) can change the subcritical Hopf bifurcation to
supercritical.

The quadratic feedback control law

w = 2 2
1 2k x k z+ (46)

Will change the subcritical Hopf bifurcation to supercritical, provided the critical modes
are controllable and the feedback gains k

1
 and k

2
 are chosen such that

2 2
2 1( )

4
w wf g

k k−
β < –S (47)

Where S is defined by (44). The quadratic feedback will make the stability coefficient
negative and hence changing the bifurcation to supercritical.

On the other hand, the cubic feedback control law

w = 3 3
1 2k x k z+ (48)

Will change the subcritical Hopf bifurcation to supercritical, where the feedback gains k
1

and k
2
 are chosen such that

1 2

6
( )

16 w wk f k g+ < –S (49)

The cubic feedback will change the sign of the stability coefficient (45) resulting in a
supercritical Hopf bifurcation.

For instance, consider the nonlinear dynamical system presented in the form:

x = ( ; )F x uµ + (50)
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To facilitate the use of previous results, the center manifold needs to be approximated.
The new variables

y = 1.V x− δ (51)

are now introduced, where V is the transformation identified such that the Jacobian of

y = 1V x− ⋅  (52)

evaluated near the bifurcation point is:

J =

1

25

0 0 0

0 0 0

0 0 0 00

00

0

0 0 0 0

c

s

J

J

−β 
 β 
 − λ 

=   
   

 
 

− λ  

 
 


   
   



(53)

Substituting the approximate center manifold constraint h in (35), it can be seen that it
must satisfy the differential equation

. .
' ( ) c sch x x x⋅ − = 0 (54)

By utilizing the center manifold theorem and using (53), the bifurcation equations in the
form of (37) can be identified. On the other hand, by using (43) and (44) α

1
 is calculated to be

0.7426 and the stability coefficient S is 0.1235. So, for the control established by quadratic
feedback of critical variables 2 2

1 2w k x k z= + , the condition which is going to be achieved must
be met will be

2 2
2 11.245( )k k− < 0.1235− (55)

With k
1
= 1 and k

2
= 0.25, this will correspond to a negative value; resulting in stabilized

oscillatory responses. Hence, the Hopf bifurcation will be changed from subcritical to
supercritical. Figure 9 shows the system response after a 2% initial disturbance in generator
rotor speed at µ = 0.401525, which is greater than H

1C
. It can be observed that the system

routes to a periodic solution giving rise to oscillations. Hence, the type of this Hopf bifurcation
is supercritical. So, the periodic solution emanating at the bifurcation point is stable. Figure 9
shows the system response after 2% initial disturbance in generator rotor speed at
µ = H ≈ 0.401525 when the nonlinear (quadratic) controller is applied.

The same type of results in the quadratic feedback controller can be obtained by cubic
feedback of critical variables 3 3

1 2w k x k z= + . In this case, the condition that must be met will
be

1 22.254 3.165k k+ < –0.1235 (56)

By choosing the feedback gains as k
1
= 1 and k

2
= –0.8, this coefficient will be negative to

render the subcritical Hopf bifurcation supercritical. Figure 10 shows the system response
after a 2% initial disturbance in generator rotor speed at µ = H ≈ 0.401525, which is greater
than H

1C
. It can be observed that the system routes to a periodic solution giving rise to oscillations.

Hence, the type of this Hopf bifurcation is supercritical. So, the periodic solution emanating at
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the bifurcation point is stable. Figure 10 shows the system response after 2% initial disturbance
in generator rotor speed at µ = H ≈ 0.401525 when the nonlinear (cubic) controller is applied.

Figure 9: Rotor Speed of the First Generator at µ =H ≈ 0.401525 with 2% Initial Disturbance in Rotor Speed
of Generator (for the Case of Adding Nonlinear (Quadratic) Controller).

Figure 10: Rotor Speed of the First Generator at µ=H ≈ 0.401525 with 2% Initial Disturbance in Rotor Speed
of Generator (for the Case of Adding Nonlinear (Cubic) Controller).

6. CONCLUSIONS

Bifurcation theory is applied to the second system of the IEEE second benchmark model of
SSR to investigate the complex dynamics of the system. The case of adding damper windings,
AVR and PSS is considered. The results show that as the compensation factor (µ = X

c
/X

L
)

increases the operating point loses stability via Hopf bifurcation point. Also, the results showed
that the type of this Hopf bifurcation is subcritical. Nonlinear controllers are used to control
the Hopf bifurcation and chaos. The results show that nonlinear controller can alter the subcritical
Hopf bifurcation to supercritical (that is stabilizing the periodic solution). We start with a
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nonlinear controller based on the nonlinearity of the system and by using trial and error criterion.
Then Based on bifurcation theory and center manifold theory, nonlinear controllers are used to
control a Hopf bifurcation and chaos. Still, either of these controllers can be used to stabilize
the system.
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