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Abstract: In this research, the second order fluid flow in a curved circular pipe is studied analytically
using perturbation method to solve the governing equations in the fully developed condition. For
calculating drag variations of flow in curved pipes, high order perturbation series have to be
considered. Taking into account this point, the drag reduction of fluid flow due to the retardation
time of viscoelastic material is affirmed analytically. Also, based on these high order perturbation
series, the flow field characteristics such as the axial velocity, stream function of secondary flows and
stress components are calculated accurately. Furthermore, the performance mechanism of retardation
time on drag reduction and secondary flows enhancement is investigated.
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1. INTRODUCTION

Investigation of fluid flow in a curved pipe has been an interesting subject of many researchers
using experimental, numerical and analytical approaches. This kind of flow is very important
in medical treatment, industries, engineering systems, etc. The most of previous studies are
restricted to investigation of Newtonian fluid flow in curved pipe and few researches have
been done on the non-Newtonian fluid flow. It is important to mention that the non-Newtonian
fluid flow in a curved pipe as viscoelastic fluid has numerous applications in petrochemical
industries, food production, medical treatment, and injection of polymeric materials.

Dean [1, 2] was the first pioneer who find an analytical perturbation solution for fully
developed flow of Newtonian fluids in curved pipes of circular cross-section. He found Taylor
secondary flows generated due to centrifugal forces resulting from the pipe radius of curvature.
Also, he introduced the Dean number specifying the behavior of flow inside the curved pipe.
Dean number has direct relation with the intensity, shape of secondary flows, and subsequently
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the stability criteria of flow. Topakoglu [3] improved Dean’s work by calculating the higher
order terms of perturbation series for flow field parameters and obtained analytical relation for
the flow rate of Newtonian fluid in a curved pipe.

Various numerical investigations were carried out on the non-Newtonian fluid flow in
curved pipes. Zhang et al. [4] used Galerkin method to study Oldroyd-B fluid flow in circular
curved pipes. They obtained the flow field in high Dean and Weissenberg numbers. Phan-
Thien and Zheng [5] obtained self-similar solution for the flow of Oldroyd-B fluid between
two curved plates. They presented numerical and approximate analytical solutions for self-
similar equations and showed that these two solutions have a good agreement with each other
at Reynolds number below 1000. The study by Fan et al. [6] has used a finite volume method
to find a solution for fully developed creeping and inertial flow of Oldroyd-B and UCMN

2
 fluids

in a curved pipe. They showed that the first normal stress difference amplifies the intensity of
secondary flows and decreases the pressure drop value. They expressed that this phenomenon
is due to the effect of axial normal stress called hoop stress. They used order of magnitude
technique to show how centrifugal forces are balanced with radial pressure gradient and hoop
stress in the core region of the flow. Also, they proved that the effect of negative second
normal stress difference neutralize the effect of first normal stress difference, and the increment
in the second normal stress difference results in the decrement of the secondary flows intensity
and flow resistance ratio. Their results have a good agreement with experimental results [7-9].
Chen et al. [10] used the numerical and perturbation method for solving fully developed flow
of Oldroyd-B fluid in a rotating circular curved pipe. As they have shown, the dynamic pressure
distribution in cross-section of pipe is balanced with Coriolis force shifting the maximum axial
velocity from the centre to outer side of curvature. They also investigated the effects of co and
counter-rotation and showed that in counter-rotation case, weaker Taylor vortices are visible.
There is a critical situation in counter-rotation condition in which the secondary flow intensity
is the lowest. They affirmed that the critical counter-rotation number is four times of the
Weissenberg number in curvature ratio. However, very few works have been done on non-
Newtonian fluid flows in curved duct with square cross-section. For example, Zhang et al.
[11] worked on Oldroyd-B fluid in a rotating curved duct. Helin et al. [12] and Boutabaa et al.
[13] studied PTT and Oldroyd-B fluids in curved duct and investigated the effects of Deborah
number on the formation of Dean vortices.

Besides numerical investigations, analytical solutions especially via perturbation method
are used to study the flow of non-Newtonian fluids in circular curved pipes. The first research
about this kind of fluids was done by Thomas and Walters [14]. They studied fully developed
flow of Oldroyd-B fluid in a curved pipe by the perturbation technique and showed that the
intensity of secondary flows has direct relation with elastic properties of Oldroyd-B fluid.
Sarin [15, 16] and Robertson and Muller [17] have carried out similar works on the Oldroyd-
B fluids. Sarin confirmed that the secondary flows intensity is related to the fourth order of
Deborah number. He also explained the relation between the maximum value of axial velocity
and the central position of vortices on the Debroah number. Robertson and Muller [17] studied
fully developed creeping and inertial flow of Oldroyd-B fluid in a curved pipe and solved it

mailto:mnorouzi@shahroodut.ac.ir


An Analytical Investigation of Second Order Fluid Flow inside a Curved Circular Pipe 95

analytically using perturbation method. They showed that for creeping flow, the flow rate in a
curved pipe is slightly larger than in a straight pipe at low Weissenberg numbers. By increasing
the Weissenberg number and decreasing the viscosity of Newtonian solvent in inertial flow, an
obvious decrement in the resistance ratio is observable. Imeto et al. [18, 19] investigated the
power law and White-Metzner fluid flow inside different shapes of curved circular pipes such
as sinusoid, parabolic and hyperbolic. They obtained that the sooner adaptation with curvature
occurs when the elastic property of fluids increases. The study by Das [20] has considered
Bingham fluid flow in curved pipes. By analytical study on the viscoelastic fluid flow, Zhang et
al. [21] and Shen et al. [22] have paid attention to heat transfer phenomenon using Oldroyd-B
model as the constitutive equations.

Some researchers studied the second order fluid flow in curved pipes via perturbation
method. Sharma and Prakash [23] studied the first normal stress difference (considered zero
value for second normal stress difference) and found that the intensity of the secondary flows
will increase with the increment of first normal stress difference. Bowen et al. [24] studied
creeping flow of upper convected Maxwell (UCM) and the second order fluid (SOF) in curved
pipe to calculate the higher order terms of axial velocity and its effect on the flow rate in a
curved pipe. They showed that in the creeping flow of viscoelastic fluid flow inside the curved
pipes, the flow rate ratio can be more than one comparing with the straight pipes for similar
pressure gradient. They affirmed that for the creeping flow of the second order and UCM
fluids, the drag reduction and enhancement are observed at large Weissenberg number
respectively. Jitchote and Robertson [25] studied the inertial flow of the second order fluid in
a curved pipe and considered negative second normal stress difference. They affirmed that it
is not possible to find a unique solution for this problem except for some special cases. Also,
they found secondary flows in their research using first order term of perturbation series.
They have not considered the higher order terms of the axial velocity and stream function for
their perturbation solution and subsequently no flow rate has been reported.

In this paper, an analytical solution for fully developed second order fluid flow in a curved
circular pipe is presented using a perturbation method to solve the governing equations. Fig. 1
shows the geometry of curved pipe which is used in current research. Here, the toroidal
coordinate system ( , ,r sφ ) is used for studying the flow. According to the picture, r

0
 is the

radius of the pipe and the R is the pitch radius of curvature. Due to the complication of the
solution, the MAPLE software has been used in representing the expressions. According to the
result of Jitchote and Robertson [25], the solution of this problem is available analytically in
absence of second normal stress difference. Here, unlike the research of Jitchote and Robertson
[25], the solution is carried out using the high order terms of perturbation series. It is important
to emphasize that it is not possible to find a relation for flow rate based on the first order terms
of perturbation series. By calculating second order terms, an analytical relation for the flow
rate of the second order fluid in a curved pipe is obtained and based on this solution, the effect
of retardation time on the drag reduction of flow in a curved pipe is investigated and compared
with the effect of relaxation time that reported in research of Robertson and Muller [17]. Also,
in the presence of the high order terms, the axial velocity, secondary flows and stress
components are studied in detail.
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2. MATHEMATICAL MODELING

2.1. Non-dimensional Parameter

The non-dimensional parameters of the current study are:

0

0 0 0 0 0 0

2
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0 0 0

. . .
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  (1)

Where, r and s are the toroidal coordinates, r
0
 the radius of pipe, W

0
 the reference velocity,

v  the velocity vector, τ the stress, λ the time constant of fluid, η the viscosity,, γ and∇
γ the

first and the second contravariant convected derivative of the shear rate tensor, Re the Reynolds
number, δ the curvature ratio, R the curvature radius of the curved pipe, and We the Weissenberg
number. Also, λ introduce the time constant of fluid. Note that in the upper convected Maxwell
fluid and the second order fluid, λ is defined based on the relaxation and retardation time of
material respectively.

2.2. Constitutive Equation

The second order fluid flow considered here is similar to the Criminale-Eriksen-Filbey (CEF)
viscoelastic model except that the rheological functions in the second order fluid are independent
of shear rate. This constitutive equation is suitable for modeling of steady shear flow of
viscoelastic materials and it is current for industrial calculations [26]. Stress tensor for
incompressible SOF can be written as [27]:

τ = ( )1 2

1
.

2

∇
ηγ − Ψ γ + Ψ γ γ      (2)

Where,
1Ψ and

2Ψ are the first and the second normal stress difference coefficient. In
steady state condition, the first and the second order of contravariant convected derivative of
the shear rate tensors are defined as below [27]:

γ = TV V∇ + ∇  (3-1)

∇
γ = ( ) ( ).V V V

Τ ∇γ − ∇ ⋅ γ + γ ⋅ ∇  
     (3-2)

Substituting
1Ψ  = 0 into Eq. (2), Reiner-Rivlin model is obtained and both

1Ψ and
2Ψ set

equal to zero, the Newtonian fluid model is achieved. In the second order fluid, the relaxation
time is zero and the retardation time (λ) is directly proportional to the first normal stress
difference [27]:

λ =
1

2

Ψ
η


 (4)

As shown by Jitchote et al. [25], the singularity in the perturbation solution appears when
the

2Ψ is included in Eq. (2). Therefore, the effect of the second normal stress difference is
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neglected in the current work. By using relations (1), (2), and (4), the dimensionless constitutive
equation of the second order fluid is obtained:

τ = We
∇

γ − γ (5)

The detailed expression of the above relation in toroidal coordinate system is presented in
appendix section of current paper.

2.3. Governing Equations

In the fully developed flow, the derivatives of all the parameters of the flow respect to the angle
of curvature path (ζ) except static pressure are zero. According to Fig. 1, in the fully developed
situation, the pressure gradient can be expressed as:

P∂
∂ζ


= cte < 0 (6)

By considering G as the absolute value of the axial pressure drop, it can be written:

1P P

s R

∂ ∂=
∂ ∂ζ


 = –G (7)

In relation (7), G is the constant value indicating the axial pressure drop. To non-
dimensionalize the governing equations, the maximum velocity of the fully developed Newtonian
fluid flow in a straight circular pipe with same pressure gradient, viscosity and hydraulic
diameter is considered as the reference velocity [17]:

W
0

=
2

0

4

G r

η (8)

The non-dimensional axial pressure gradient of Newtonian fluid flow in a straight pipe is
as follows [17]:

p

s

∂
∂ = –4 (9)

It is important to knowing that the reference velocity is defined based on the equality of
the pressure gradient in curved pipe with a Newtonian fluid flow in straight duct. Therefore,
the relation (9) can be generalized to the pressure gradient of curved pipe in pitch direction.

The continuity equation and momentum equations in r, φ and s directions for the steady
fully developed flow in toroidal coordinate system are as follows:

( ) ( )u r B v B

r

∂ ∂
+

∂ ∂φ = 0 (10-1)

2 2 cos
Re

u v u v w
u

r r r B

 ∂ ∂ φ+ − − δ ∂ ∂φ 
= ( )1 1r r r

r r

p

r r r r
φ

φφ

∂τ ∂τ∂− + + + τ − τ
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( )cos sin cosr r r s sB φ
δ+ τ φ − τ φ − τ φ (10-2)
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Where, B is curvature radius of each point expressed as

B = 1 cos( )r+ δ φ (11)

Also in the toroidal coordinate system, the relations between the lateral velocity components
and the stream function of secondary flows are:

u =
1 1

, v
r B B r

∂ψ ∂ψ− = −
∂φ ∂ (12)

Where, ψ is the stream function. By substituting relation (12) into Eq. (10-1), the continuity
equation is satisfied. Also, the momentum equation in main flow direction (Eq. (10-4)) is
expressed as

2

1 1
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By deducing the φ derivative of Eq. (10-2) and r derivative of equation (10-3) from each
other, the equation in terms of stream function is obtained:
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Therefore, the governing equations are reduced into Eqs. (13) and (14) where 2∇ denotes
the Laplacian operator defined as:

2∇ =
2 2

2 2 2

1 1

r r r r

∂ ∂ ∂+ +
∂ ∂ ∂φ (15)

Also, the no slip condition is valid as boundary condition at the walls:

w = 0
r

∂ψψ = =
∂  at r = 1 (16)

3. PERTURBATION SOLUTION

In this section, the perturbation method is used to obtain the solution of w and ψ for the fully
developed flow of second order fluid inside a curved pipe. The forms of perturbation series for
flow field parameters are as follows

w =
( ) ( ) ( )

0 1 0

( , ), ( , ), ( , )n n n n n n

n n n

w r r r
∞ ∞ ∞

= = =

δ φ ψ = δ ψ φ τ = δ τ φ∑ ∑ ∑ (17)

Where, δ is the curvature ratio and is considered as perturbation parameter. Due to lack of
secondary flows in the stationary straight pipe, the zero order term of the stream function
which introducing the secondary flows in straight pipe is zero (ψ(0) = 0).

3.1. Solution to Order δ0

The zero order stress components are necessary to find the first term of the axial velocity in
relation (17). Arranging the coefficients of δ0 in Eq. (13) yields below expression:

(0) (0) (0)
1r s s r s

r r r
φ∂τ ∂τ τ

+ +
∂ ∂ φ = –4 (18)

Using relation (17) and the constitutive equation of the second order fluid presented in
Appendix, it can be expressed:

(0)
r sτ =

(0) (0)
(0) 1

, s

w w

r rφ
∂ ∂τ =
∂ ∂φ (19)

By substituting relation (19) into Eq. (18) yields, the characteristic equation of zero order
equation is obtained:

2 (0)w∇ = –4 (20)
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The solution of w(0) which satisfies the boundary condition (relation (16)) is:

w(0) = 1 – r2 (21)

This result is exactly similar to the axial velocity of Newtonian fluids in the straight pipe.

3.2. Solution to Order δ1

By substituting the terms δ1 of order in the stress components and rearranging the same order
terms of Eq. (14), the characteristic equation of ψ(1) is obtained. Due to large size of the
characteristic equation that related to the higher order terms, these equations are not represented
in this paper. The general solution of the characteristic equation of ψ(1) is:

(1)ψ = 1( )sin( )g r φ (22)

Where,

g
1
(r) = ( )2(0) 21

Re( 4) 24
288

r w r We− − (23)

After rearranging the terms of order δ1 in Eq. (14), the characteristic equation of w(1) is
obtained. The close form of the solution of this equation is as follows:

w(1) = 1( )cos( )f r φ (24)

Where,

f
1
(r) =

2 6 4 2 2 2
(0)

4 2

8640 Re ( 9 21 19) 1920( 1)1

11520 Re( 120 520 440)

r r r r We
r w

r r We

 + − + − + −
−  + − + −  (25)

The similar relations were obtained previously by Jitchote and Robertson [25] for the
second order fluid flow in a curved pipe, but the higher order terms are not considered in their
research. Calculation of the first order terms is only suitable for the exhibition of secondary
flows in the curved pipes not for the accurate expression for velocity field. It is obvious that
the integral of relation (25) over the cross-section of the pipe is equal to zero. Therefore, using
the first order approximation of the axial velocity is not sufficient for calculation of flow rate
in the curved pipe in comparison with the straight pipe. Therefore, the calculation of the higher
order terms leads to obtaining more accurate expression for the secondary flows and axial
velocity. Thus, unlike the Jitchote and Robertson’s research [25], the current study goes
beyond the first order term. Note that the derivation of these expressions is more difficult and
leads to more complicated solutions.

3.3. Solution to order δ2

The higher order terms in the series solution can be obtained using the same method employed
for obtaining the first order terms of the axial velocity and stream function. The characteristic
equations are obtained by substituting the stress components of the second order fluid with
order δ0 to δ2 into the governing equations (Eqs. (13) and (14)) and rearranging the second
order terms. The solutions of these equations which satisfy the boundary conditions are:
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(2)ψ = 2 ( )sin(2 )g r φ (26-1)
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4. SOLUTION OF FLOW RATE

In this section, an analytical solution for the flow rate of the second order fluid flow in curved
pipe is presented. The flow rate through a pipe can be obtained as:

Q =

2 1

0 0

wr dr d
π

φ∫ ∫ (28)

Where the three terms of the perturbation expansion for w are:

w = ( )(0) 2
1 20 22( ) ( )cos ( ) ( )cos 2 .w r f r f r f r+ δ φ + δ + φ (29)

By substituting relations (21), (25) and (27) into relation (29), and substituting the result
into relation (28), the following relation for the flow rate is obtained:

Q
c
 =

2 4 3

2

2 2 3 4

1 11 1541 1 1
Re Re Re Re

48 17280 4180377600 1290240 240
1

1 691 11 1
Re Re

18 2903040 4320 135

s

We

Q

We We We

   − − + +    
  + δ
       + + + +              

Where, Q
s
 is the non-dimensional flow rate in the straight pipe under the same axial pressure

gradient and equal to π/2. Dimensional magnitude of this flow rate is

sQ =
2

8
or G

π
η (31)

Relation (30) is valid for the small curvature ratio. If We in relation (30) is set equal to zero,
the solution is reduced to:
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Q
c

=
2 2 41 11 1541

1 Re Re
48 17280 4180377600sQ

  + δ − −     (32)

The above relation is obtained by Topakoglu [3] for Newtonian fluid flow in a curved pipe.
The flow rate of the creeping flow of the second order fluid in a curved pipe is obtained by
considering the zero value for Reynolds number in relation (30):

Q
c

=
2 2 41 1 1

1
48 18 135sQ We We

  + δ + +     (33)

This relation was presented by Bowen et al. [24] previously. Therefore, it is evident that
relation (30) presented in the current research for the flow rate of inertial flow of the second
order fluid in a curved pipe covers the solution of both Topakoglu [3] and Bowen et al. [24].

5. RESULTS AND DISCUSSION

In this section, based on the perturbation solution that presented in sections 3 and 4, the
second order fluid flow in a curved pipe is studied. In the flow of UCM and the second order
fluids under constant pressure gradient with the same viscosity and hydraulic diameter, the
Weissenberg number depends on the relaxation and the retardation time respectively. The
effect of these times constant on the viscoelastic flow in the curved pipe is investigated using
the results of the second order fluid flow obtained from the current research and the UCM
fluid presented in Robertson and Muller’s [17] work.

Figure. 1: Geometry of the Problem
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Figure. 2: Stream Function of Secondary Flows (Upper Half) and Axial Velocity (Lower Half) of Second
Order Fluid Flow at different Values of Weissenberg Number (Re = 50 and δ = 0.1)

In Fig. 2, the secondary flows in upper half and the axial velocity in lower half of the
second order fluid flow at different Weissenberg numbers have been shown for Re=50 and d
δ = 0.1. In Newtonian fluid, the effect of centrifugal force generates a pair of secondary flows
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called Taylor vortices. According to Fig. 2, by increasing Weissenberg number of the second
order fluid, the maximum of axial velocity and secondary flows intensity are increased and the
position of axial velocity shifts to the outer curved pipe region.

Figure. 3: Effect of Weissenberg Number on Maximum Value of Axial Velocity Profile of Second Order Fluid
Flow in Curved Pipe

Fig. 3 illustrates the effect of Weissenberg number on the maximum main flow velocity.
According to this figure, in creeping ( Re 0 ) and inertial flow, the increasing of Weissenbergg
number enhances the maximum of axial velocity. Also, the effect of Weissenberg number
becomes stronger at large Reynolds number. This effect is due to the second order dependency
of non-Newtonian part of the second order fluid to the shear rate.

Figure. 4: Effect of Weissenberg Number on Maximum Value of Stream Function of Second Order Fluid Flow
in Curved Pipe
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Figure. 5: Effect of Weissenberg Number on Position of Maximum Value of Axial Velocity
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Figure. 6: Effect of Weissenberg Number on Position of Secondary Flow Center

Similarly, Fig. 4 shows the effect of Weissenberg number on the maximum value of
stream function. As is evident, the intensity of the secondary flow in creeping Newtonian fluid
( Re 0 and We = 0.0) is equal to zero. In this case, the effects of the centrifugal force and the
fluid elasticity are trivial due to lack of secondary flow. But by increasing of Weissenberg
number, the secondary flow intensifies similar to the inertial flow. The effect of Weissenberg
number on the position of maximum axial velocity (X

max
) is shown in Fig. 5. Regarding to this

figure, the position of maximum axial velocity stays on the symmetric line of the flow. It
should be noticed that at Reynolds number less than 10 and small Weissenberg number, the
position of maximum axial velocity tends to the inner side of curved pipe (X

max
is negative). In

this case, the centrifugal force and the elastic force are infinitesimal resulting in very weak
secondary flow.

Therefore, in the absence of secondary flows and due to the larger value of the axial
pressure gradient near the inner side in comparison to outer side of the curved pipe, the
distribution of the axial velocity gets closer to the inner side. By increasing Reynolds number
and Weissenberg number (increasing of centrifugal and elastic forces), the secondary flow
intensity increases and the position of axial velocity shifts to the outer side of curved pipe. Fig.
6 shows the effect of Weissenberg number on the longitudinal (X

Min
) and the lateral positions

(Y
Min

) of secondary flows centre. According to this figure, increasing of Weissenberg number
raises the X

Min
. It is showing that the center of secondary flows shifts to the outer side of

curvature. The effect of Weissenberg number on the lateral position of vortices is trivial, by
increasing Weissenberg number first the Y

Min
increases then it starts decreasing.

According to the research of Robertson and Muller [17], the relation of flow rate for UCM
fluid flow in a curved pipe is as follow:

Q
c
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( )

2 2 2 2
2

2 2 2 3

11 1541 8 1
1 Re Re 1

360 87091200 3 15
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Figure. 7: Flow Rate difference Ratio of Newtonian, Upper Convected Maxwell and Second Order Fluid
Versus Reynolds Number

Fig. 7 shows the flow rate difference ratio of Newtonian, UCM and the second order fluid
versus Reynolds number at different values of Weissenberg number. According to the
perturbation solution, the flow rate difference ratio for these fluids is in the second order of
curvature ratio. It should be noticed that the second order dependency of flow rate ratio is only
valid in low Dean Number and due to the restrictions of the perturbation method; it is impossible
to extend it to the high Dean numbers. According to the figure, as the Reynolds number
increases, the flow rate difference ratio of Newtonian fluid decreases. For UCM fluid at large
Weissenberg number (large relaxation time), the flow rate is lower than the Newtonian fluid.
Unlike the UCM fluid, by increasing Weissenberg number (increasing retardation time) of the
second order fluid, the flow rate ratio becomes larger than the Newtonian fluid. In the other
hand, by increasing the retardation time of fluid, the drag reduction is caused in viscoelastic
flow in curved pipes while the effect of relaxation time is reveres at We > 2.1. It should be
mentioned that Bowen et al. [24] observed similar effect for the drag reduction/enhancement
for creeping flow of the UCM and the second order fluids but in the current research, this
effect is proved for the inertial flows analytically. The effect of the retardation time on the
secondary flows and on the flow rate of the second order fluid flow in a curved pipe have been
studied here. According to Eq. (4), retardation time of second order fluid has a direct relation
with the first normal stress difference. In the core region, the order of axial velocity is larger
than the order of secondary flows. Fan et al. [6] obtained force balance relation in the core
region of viscoelastic fluid flow by using this specification and neglecting the second normal
stress difference:

2

Re
w

B
≈ ssP

n B

τ∂ +
∂ (35)
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Figure. 8: Contours of τ
ss
, τ

rs
 and τϕs

 at Re = 50 and δ = 0.1

According to Eq. (35), the effect of centrifugal force is balanced by the effect of pressure
g r a d i e n t  i n  t h e  d i r e c t i o n  o f  t h e  c u r v a t u r e  r a d i u s  a n d  h o o p  s t r e s s  e f f e c t  ( τ

ss
) in the core region

of flow. Fig. 8 shows the hoop stress (τ
ss
) distribution for the Newtonian fluid flow and the

second order fluid flow in two Weissenberg numbers of 1 and 3. Here, the curvature ratio is
equal to 0.1 and the Reynolds number is equal to 50. Mashelkar and Devarajan [28] showed
that in the core region of the inertial flow of the Newtonian fluid in the curved duct, the
pressure gradient is balanced by the effect of centrifugal force. In other hand, in Newtonian
fluid, the hoop stress does not play main role in the secondary flow generation. According to
Fig. 8, the amount of hoop stress in the Newtonian fluid is very small, but in the second order
fluid flow the amount of hoop stress is enhanced noticeably by increasing the Weissenberg
number. Therefore, the maximum amount of the hoop stress in the second order fluid flow at
We = 3 is 5000 times larger than the Newtonian fluid flow. This result has a good accordance
with the relation for the hoop stress that has been obtained based on the order of magnitude
technique by Fan et al. [6]. Regarding to their studies, the hoop stress is in ε order for the
Newtonian fluid but largely dependent on the first normal stress difference. Near the outer side
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of the curved pipe and in the vicinity of it, the amount of axial velocity and the effect of
centrifugal force is small. According to Fig. 8, the amount of the hoop stress of the second
order fluid flow is very large in this region. Therefore, the relation (35) for balance force is not
valid in this region. For keeping the balance, the momentum mechanism acts and secondary
flows in the direction of Taylor vortices are generated. Therefore by increasing the Weissenberg
number, the intensity of the resultant secondary flow increases. Fig. 8 shows the stress
components of τ

rs
 and τφs

of the second order fluid flow. These two stress components are
effective in the axial flow equation and regarding to their distribution, Weissenberg number
effect on increasing flow rate of second order fluid flow can be affirmed. According to this
figure, by increasing the Weissenberg number, unlike τ

rs
, the distribution of τφs

changes noticeably
and the maximum of absolute amount of this stress component at We = 3 is 100 times larger
than the Newtonian fluid flow. Thus, it is clear that in the second order fluid flow, the large
variation in τφs

increases the axial velocity and flow rate in comparison with the Newtonian
fluid flow.

6. CONCLUSION

In this paper, the inertial flow of the second order fluid flow in a circular curved pipe has been
studied using perturbation method to present an analytical solution for the flow field. Under the
specific pressure gradient, Weissenberg number of the second order and the UCM fluid flows
are the criterion of the retardation time and relaxation time respectively. Therefore, by comparing
the results of the current research with the results of previous works for UCM fluid, the
effects of these two time constants of materials on the viscoelastic flow in curved pipes are
investigated.

Most important results of this research can be outlined as below:

• Increasing the Weissenberg number of second order fluid amplifies the secondary
flow intensity. Increasing the retardation time shifts the centre of Taylor vortices
towards the outer region of curved pipe and its effect on the changes of the centre
position of these vortices respective to the lateral side is trivial.

• In the core region of the second order fluid flow, the centrifugal force is balanced by
the pressure gradient in the curvature direction and by the hoop stress (τ

ss
). Increasing

the retardation time of the second order fluid generates the strength hoop stress near
the outer wall where the value of axial velocity and centrifugal force is small and the
momentum mechanism controls the balance and generates the strong secondary flows
in the direction of Taylor vortices.

• Increasing the relaxation time and retardation time shifts the position of maximum
axial velocity towards the outer curved region of the pipe.

• Increasing the retardation time of the second order fluid is accompanied by the drag
reduction in the flow inside the curved pipes. In the UCM fluid, the drag reduction
behavior is observed in the small amount of the relaxation time while the drag
enhancement behavior is observed in the large amount of relaxation time (We > 2.1).
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• Increasing the retardation time of the second order fluid strengthens the τφs
 which

increases the flow rate in the curved pipes.

Appendix: Stress Components of the Second Order Fluid

Stress components of the second order fluid in toroidal coordinate system can be expressed in

the form of τ = We
∇

γ − γ , where:
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