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Abstract: In this paper, the (G'/G)-expansion method is applied to seek traveling wave solutions of
two nonlinear evolution equations. This traveling wave solutions are expressed by the hyperbolic
functions, the trigonometric functions and the rational functions. It is shown that the proposed
method is direct, effective and can be used for many other nonlinear evolution equations in
mathematical physics.
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1. INTRODUCTION

The investigation of the travelling wave solutions for nonlinear partial differential equations
playsanimportant rolein the study of nonlinear physical phenomena. Nonlinear wave phenomena
appears in various scientific and engineering fields, such as fluid mechanics, plasma physics,
optical fibers, biology, solid state physics, chemical kinematics, chemical physics and
geochemistry. Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and
convection are very important in nonlinear wave equations. In the past several decades, new
exact solutions have helped to find new phenomena. A variety of powerful methods, such as
inverse scattering method [1], the tanh-sech method [2-4], extended tanh method [5-7], sine-
cosine method [8, 9], homogeneous balance method [10], Exp-function method [11, 12],
improved tanh-function method[13] and modified tanh-coth method [14, 15] have been used
to develop nonlinear dispersive and dissipative problems. Recently, Wang et al. [16] proposed
the (G'/G)-expansion method and showed that it is powerful for finding analytic solutions of
PDEs. Next, Bekir [17] applied the method to some nonlinear evolution equations gaining
traveling wave solutions. Later, Zhang et al. [18] further extended the method to solve an
evolution equation with variable coefficients. In this paper we apply the (G/G)-expansion
method to the Kuramoto-Sivashinsky (KS) and The Benjamin-Bona-Mahony (BBM) equations.

* Corresponding Author: h-kheiri @tabrizu.ac.ir, n_jabbari302@yahoo.com

INTERNATIONAL JOURNAL OF NONLINEAR DYNAMICS IN ENGINEERING AND SCIENCES,
2:1(2010): 57—67



58 International Journal of Nonlinear Dynamics in Engineering and Sciences

The KS equation describes the fluctuations of the position of a flame front, the motion of a
fluid going down a vertical wall, or a spatialy uniform oscillating chemical reaction in a
homogeneous medium [19]. This equation was examined as a prototypical example of
spatiotemporal chaos in one space dimension [20]. Moreover, this equation was originally
derived in the context of plasmainstabilities, flame front propagation, and phase turbulence in
reaction diffusion system [20]. The BBM equation, was first proposed in 1972 by Benjamin et
al [21]. Thisequation is an aternative to the Kortewegde Vries (KdV) equation, and describes
the unidirectional propagation of small-amplitude long waves on the surface of water in a
channel. The BBM equation is not only convenient for shallow water waves but aso for
hydromagnetic and acoustic waves, and therefore it has some advantages compared to the
KdV equation.

2. DESCRIPTION OF THE (G'/G)-EXPANSION METHOD
We suppose that the given nonlinear partial differential equation for u(x, t) isin the form
P(u,u,u,u,,u,,u.,..) =0, (1)
Where P is a polynomial in its arguments. The essence of the (G'/G) -expansion method
can be presented in the following steps:
Sep 1: Seek traveling wave solutions of Eg. (1) by taking u(x,t) =U (€),& = x—ct, and
transform Eq. (1) to the ordinary differential equation
Qu,U'uU".) =0, (2
Where prime denotes the derivative with respect to &.

Sep 2: If possible, integrate Eq. (2) term by term one or more times. If possible this
yields constant(s) of integration. For simplicity, the integration constant(s) can be set to zero.

Sep 3: Introduce the solution U(§) of Eq. (2) in the finite series form

G'@)y
= (o)
uE) = Z ey 3)
Where a are rea constants with a # 0 to be determined, N is a positive integer to be
determined. Thefunction G(§) isthe solution of the auxiliary linear ordinary differential equation

G'(§) +AG(E) + HG(E) = O, 4)
Where A and | are real constants to be determined.

Sep 4: Determine N. This, usually, can be accomplished by balancing the linear term (s)
of highest order with the highest order nonlinear term(s) in Eg. (2).

Sep 5: Substituting (3) and (4) into Eq. (2) yields an algebraic equation involving powers
of (G/G). Equating the coefficients of each power of (G'/G) to zero gives a system of algebraic
equations for a, A, 1 and c. Then, we solve the system with the aid of a computer algebra
system, such as Maple, to determine these constants. On the other hand, depending on the
sign of the discriminate A = A2 - 4y the solutions of Eq. (4) are well known to us. Then, as a
final step, we can obtain exact solutions of the given Eqg. (1).
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3. APPLICATIONS

In this section, we will apply the (G'/G)-expansion method on two of the well-known non-
linear evolution equations, namely, the (KS) and (BBM) equations.

3.1. The Kuramoto-Sivashinsky Equation
We consider the KS equation

u, +auu, +bu, +ku,, = 0, (5)
where a, b and k are nonzero real constants. Make the transformationu(x,t) =U (§),& = x — ct,
where c is constant. Integrating once with respect to &, Eq. (5) becomes

—cU +%U2+bu +kU” = 0, (6)

where prime denote the derivative with respect to . Now, we make an ansatz (3) for the
solution of Eg. (6). Balancing the highest order derivative term U™ with the highest power
nonlinear term U2, yields the leading order N = 3. Therefore, we can write the solution of Eq.
(6) in the form

uE = a+rarrarealr.aze @)
By using (4) and (7) we derive that

UtE) = al() +2aa(0) + (2an +a)( D) + (28 + 22)( )
+(a + 2%%)(%)2 +2aa, (%) +a,°, (8)
UTE) = -3a(0)" ~(28,+3a0)(2) - (3 + 23 + 3 L)’
-(@aA +220(2) -3k, (9
UmE) = —(30;33(%)6 - (243, +144a3)\)(%)5 +...

—(@Ap + B’ + 2, p, + 6at’), (10)

Gy,
Substituting (7)-(10) into (6), setting coefficients of (E)' (i=01...,6)to zero, we obtain
the following under-determined system of algebraic equations for a,,a,,a,,8;,C,A and

(%)o :—ca, + %aao2 - ka A\’ — 6ka,u*A —bau — 2kap® - 6ka,u° = 0,

G!
(E)l 1 —Ca, +aa,a, —ba - 2ba,p — ka\’ —16ka,u” — 8kaAu—14ka,A % — 36kap? = 0,
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(%)2 :-ca, + %aaf - ba, + aa,a, — 2ba,\ —3ba,u — 7Tka,\? — 8ka,u — 8ka,\*
—52ka, A\l — 60ka,u* — 57ka A’ =0,
(%)3 :—ca, + 2ba, + aa,a, + aa,a, — 3ba,\ — 38ka,A* — 40ka, 1 — 27ka \® —12ka A
-168ka,Ap =0,
(%)4 3%61&122 —3ba, - 6ka, +aaa, —111ka,A* - 114kau - 54ka,\ =0,
(%)5 1 —24ka, + aa,a, - 114ka\ =0,
G6.1l_ o

—) = - 60ka, =0,

( G ) 532 3,

Solving this system by Maple, gives
first solution set:

— +£‘b __b :g_Ob =0 :_120k
~ T19aV19k’ & 19a’ =0 & a
:+£b __b :l —<0 11
19 19k’ ’”76k’k » (11)
second solution set:
30b |11 -270b 120k
=+— [—, alz—, :O, =—,
19a \ 19k 19a a

:+3_Ob E A=0 :ﬂ B>O 12
“10 V19K’ B R O

where A and [ are arbitrary constants. Substituting Eq. (11) and Eq. (12) into Eqg. (7) yields
N 30b [-b  90b G', 120k G

= +x—— —+——+——3,
u(€) 19a\19k "19ac’ " a (G (13)
whereg = x - (32 | Py ang
19 V19K
_ .30 (b _270b Gy 120k G, y
U® = *loa\1k 192 G’ a )@ (14
30b [11b
= x— (22 |22t
where& ( T 19k)

Substituting general solutions of Eq. (4) into (13) and (14) we have three types of traveling
wave solutions of the KS equation as follows:
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When\? -4u >0,

30b -b  45b\  15kA°

U@ = *loa\1k 192 a

45b 45k)\2)\/7(clsinh%«/)\2—4u§+czcosh%\/)\2—4pE)
clcoshimi+c sinhl\/)ﬁi
(180k}\u 45k}\3)(clsmh1\/)\2—4 € +c, coshiA? - 4u 2
a a ccoshi A\’ —4u€+c, smhl\/ﬁé
+(%_%)F(qsnhh/)\z—4 & +c, coshiA? - 4u v,
a a ¢ coshi A% —4p& +c,sinhi A% - E

30b

wheref = x— (+=—
§=x—(x 0 )
_ +30b 11b ib | 1350A  15kA°
U8 = 19a\19% 19 a
45k\*  135b, c,sinh2 A2 = 4pE +c, cosh /A2 - 4uE
HE = T - 4 a e
a 19 ¢, coshi A% = 4u +c,sinh A2 - 4p¢

(180k)\u 45k)\3)(clsmh1«/)\2—4 HE +c,cosh1A2 - 4u v

a a ¢ coshiyA? —4pg +c,sinh 3 A - 4ug

2 inhi A2 -4 LN -4
+(15I;)\ _GO:u)\/m(clsn : ug +c, cosh; ui)a

¢ cosh/A% - 4uE + ¢, sinh /A% - 4pE

' (16)

30b
where, X—(x——
E=x-(z 19 )

When A% -4y <0,

30b [-b 450\ 15KA®

- += —_—
uy(& 19a\19% 19a a

(4_5b+&k)\2)m( csind m&+c coslmﬁ
19a a G, COS1/4p — A2E + ¢, sin \[4u - A2 E
(180k)\p 45k)\3)(—clsnlmz+c coslm 2
a a clcoslmz+c smlmé
+(45k)\2 _%)\/7( —¢,Sin1/4p - \%E +c, cosd\[au - A2 v,
a a clcoslm2+c smlmz
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30b
where X—(x—— t.
E=x—(& 9 )

u§) = -~

30b (11b 45b)\ _15kA°
19a 19k a a

45k)\2 _13% \/7 —C Sini 4 - N?E +c, cosi/4u —A\? E
a 19 C, cosi /4 — A28 +c,sint \[4u - A2 E
(180k)\u 45k)\3)(—clsn1\/4u A?E +c, cosi/au—A? 2
a C COSEA[AU A€ +C,sint /4 —A? E

2 1 1
+15k)\ _60ku)\/7 —C,Sin3\J4u - A% +c, cosif4u —\° "

(
a a c cosi/4u-A*E +c,sint /4u - )\E
30b
h +—
where& = x—(+ T )

When A\ —4u =0,
15 K(&)

W@ = 3lac +cl) (19

Where

K(E) = ¥2b /%chl F6b /%cfczﬁ F 6b, /%gbclczzéz 72b /%chﬁ?, +57bAc]

+171bAc’c,€ +171bAcc,’E* —114bc,c? — 2280c,°c & —114bc,’E” + 57bc,’AE®
+361kA\°c,® — 2166kA°c,’c, +1083kA°c °c,€ + 4332kAc,c,” — 4332kA*c,c,E
+1083KA%G,C,2E2 — 2888KC,? + 4332ke,2\E — 2166Ke, A 22 + 361ke, A%,

whereg = x - (_:%) )t
__15 L(&)
Us (&) = 361806, + ) (20)

Where

L(§) =F2b, /%gbcf’ F6b /%gbcfczﬁ F 6D, /&kgbclczzﬁ2 F2b /%gbcfﬁs -171bAc?

—513bAc,*C,€ — 5130AcCc,7E? + 342bc,c” + 684bc,’c € + 342bc,’E” —171bc,’AE®
+361kA°%c® — 2166kA°c,’c, +1083kA°c,’c,€ + 4332kAc,c,” — 4332kA°c.C, 7€
+1083K\°c,C, %% — 2888k, + 4332KC,°NE — 2166Ke, 2\ %€ + 361ke, A%,
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Where& = x - (_i—%b )t and c, and c, are arbitrary constants.

Comparing our results Wlth Wazzan [15], Peng [22] and Wazwaz’s results [23] show that
our results are more general.

In particular, if,c #0,c, =0,A =0, <Othen u, becomes
L 300 / -b 45b /—b _1% /
u(é)= tanh
1(8) = 19a 19k 19a 19k ( 19a \19k @

whereg = x—-(+— 30 / t) and u, becomes

19
30b /1Jb 135b {11b 1 /11b 165b / 1b 11b
tanh(=, [— — ,
U(8) = 19a 19k 19a 19k an (2 19kE) 19a 19k ( QkE) (22)
30b
where +
E=x-(+ T )

Which are the sol utlons of the KS equation. The solutions (21) and (22) are the same as
Eqg. (16) and Eq. (19) respectively [23]. Therefore the solutions in [23] are only a special case
of the our solutions.

3.2. The Benjamin-Bona-Mahony Equation (BBM)
We consider the BBM equation
u, +au, +uu, +bu, = 0, (23)
Where a and b are nonzero real constants. Making the transformation u(x,t) =U (),
& = x —ct and integrating once with respect to &, Eq. (23) becomes

(a-c)U +%U 2-pcU" = 0, (24)

Where prime denote the derivative with respect to &. Balancing the highest derivative term
U" with the highest power nonlinear term U? gives the leading order N = 2. Therefore, we can
write the solution of Eq. (24) in the form

UE = 3 +ale)+ale) & 20 25)

Gy .
By using (4) and substituting (25) into Eq|. (24) and setting the coefficients of (E)' (i=01..,6)
to zero, we obtain the following under-determined system of algebraic equations for
a,,8,,8,,C,A and

(%)f’:aa0 ca, + - ao —bca\p - 2bca,u® =0,

(%)1 ‘aa, —ca, +aa, —bcaA? - 2bcap — 6bcaAp =0,
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(%)2 :aa, — Ca, +a,a, +%al2 - 3bca\ - 4bca,\* - 8bca,u =0,
(%)3 :a,a, — 2bca, —10bca,A =0,

G' .1 o
—)":=a,” —6bca, =0.
(g)' 152" ~6bea,
Solving this system by Maple, gives first solution set:
_ 12bap _ 12baA _ 12ba o= a
14D -4’ T 1rb(N-4w)’ 2T 14b(h —dy) C 1+bn —4p)’ (29
Second solution set:
_ —2ba(\*+2u) _ _ -—12baA B -12ba B -a
- 1+ b(\2 e 2 » & = 2 » C= 2 1 (27)
-1+b(A° - 4p) =1+b(\° - 4p) -1+b(A° - 4p) =1+b(A° - 4p)

Where A and u are arbitrary constants. Substituting Eq. (26) and Eg. (27) into Eq. (25)
yields

W)= o e an @ e e @
where& = x _Wz—“ru)t .And
; :
ue)=- —thla&A 2+—Zi)1) ) —1+t2(i?— ap) (GE) = ;(Zkbza 4p) (E) 29
where& = x + a

-1+ Db(\* - 4p)
Substituting general solutions of Eq. (4) into (28) and (29) we have three types of traveling
wave solutions of the BBM equation as follows:

WhenA? -4u >0,
0 (E) = 3ba(A? - 4p) 3ba(A2—4p) ¢, sinh1A? - 4u€ +c,cosh 1A% - 4u y
T Tr b = 4) | 1+ b(AZ - 4y) ¢, cosh /A% - 4uE +c,sinh 1 /A% - 45
a
—)t.
1+b()\2—4p))
L) = DO 4 3a( ) ¢ sinh L AZ —4pE +c, coshl\/)\2—4E
? -1+b(A\* —4u) -1+Db(A\* = 4u) "¢ cosh 1 /A% - 4u& +c,sinh 1 /\? - E

a
—)L.
—1+b(\2 —4u))

When\? -4 <0,

*(30)

whereg = x—(

whereg = x + (
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0(E) = - 3ba(4u - A?%) 3ba(4u A?) —csiniy/4u—A%E +c,cost4u - )\E)2
AT T @A) 1 b -AD) | ¢ cos) Jau—NE+c,an Jan—nee (3D

. a
1+b(\* - 4p)

U (8) = - ba(4u-A?)  3ba(4u-A?) (—Clsmlamu A2E + ¢, cosiq/4u - )\E)
ST Leb(A-A?) —1+b(A-AY) " ¢ cos) A -AZE +c,sindJap-ncg 3

where€ = x—(

).

a

whereg = x + (————)t.
E=H e — )
When\? -4 =0,
12bac,’
Us(8) =— 34
RNCRTIE (34
a
h =X-(——)t. A
where§ = X (1+ bOV2 _4u)) nd
12bac,’
Us(€) =,
3 © +CZE)2 (35)
where& = x+ (m)t and ¢, and c,are arbitrary constants.
In particular, if¢, #0, ¢,=0, A>0, p=0, then u, becomes
_ —3ba)\2 3bar? 2 A
WO = T ) (36)
and u, becomes
bah? 3bar? A
Uy (&) =— - (tanh2 5. (37)

1+bA* -1+bA?

Which are the solitary wave solutions of the BBM equation.

Comparing our results with Bekir’s results [14] and results of [24] show that our results
are more general. For instance fora=1, b=-1, c=3 and A = 2 the solution (36) is the same
asin ([24], p. 71) and fora=1,b=-1,c=%and A = 2 the solution (37) is the same as in
([24], p. 72).

4. CONCLUSIONS

In this paper, the use of the(G'/G) -expansion method is intyoduced by applying it to two
nonlinear equationsto illustrate the validity and advantages of the method. The exact traveling
wave solutions being determined in this study are more general, and it is not difficult to arrive
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at some known analytic solutions for certain choices of the parameters ¢, and c,. Compared
with the methods used in [14-15, 22-24], one can see that the (G’ / G) -expansion method is
not only simple and straightforward, but also avoids tedious calculations. This verifies that the
method can be used for many other nonlinear evolution equations.
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