
INTERNATIONAL JOURNAL OF NONLINEAR DYNAMICS IN ENGINEERING AND SCIENCES,

2 : 1 (2010): 1–15

NON-LINEAR EFFECTS OF SUSPENSION ON HUNTING AND
CRITICAL VELOCITY OF RAILWAY WHEELSET

Mahmoud Shariati*, A.K.Mohammadi & N.Ale Ali
Mechanical Department, Shahrood University of Technology, Shahrood, Iran

Abstract: In this paper the effects of non-linearity of suspension on dynamic behavior of a railway
wheelset has been studied. This wheelset has four degrees of freedom with two constraints. Therefore,
the degrees of freedom has reduced to two. The Vermeulen-Johnson theory has been used to calculate
contact forces between wheel and rail. In this study, the creep coefficients have considered constant.
Any linearization has not been used for obtaining motion equations. Lateral suspension for these
wheelset is dry friction which has been modeled by using Kolesch theory. The Runge-kutta method
has been used for solving these equations and results have been presented to obtain limit cycles due
to hunting behavior of wheelset.
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1. INTRODUCTION

The meaning of stability can be explained easily with this wheelset motion. Stability means that
for a slight lateral displacement or yaw angle the wheelset moves back into its central position
with a damped oscillatory parasitic motion. The wheelset motion is considered to be unstable
if for some small irregularities an excited vibration takes place, so that the maximum amplitudes
increase and the parasitic motion is finally only restricted by flange contact. As the geometrical
and physical relations of contact mechanics are extremely nonlinear, attempts were made to
integrate these nonlinearities at least approximately into the stability analysis. The term of
“critical speed” that has used in this paper, refers to the minimum speed of the vehicle for a
given set of system parameters and suspension characteristics beyond which hunting appears
as an undamped motion of the wheelset constrained by the wheel flange and the rail. A history
of vehicle stability implies a retrospective view on 150 or even 200 years [1]. The kinematic
motion of a single wheelset with conical profiles has been well understood at least since
Stephenson [2].

Hans True and Carsten Nordstrom Ensen investigated Cooperrider’s mathematical model
of a railway bogie running on a straight track due to its interesting nonlinear dynamics [3]. In
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their article a detailed numerical investigation was made of the dynamics in a speed range,
where many solutions existed, but only a couple of which were stable. One of them was a
chaotic attractor. Mehdi Ahmadian and Shaopu Yang presented an analytical investigation of
Hopf bifurcation and hunting behavior of a rail wheelset with nonlinear primary yaw dampers
and wheelrail contact forces [4]. They showed that the nonlinearities in the primary suspension
and flange contact contribute significantly to the hunting behavior. And they also showed that
both the critical speed and the nature of bifurcation are affected by the nonlinear elements.
Yabuno and Okamoto showed, by using the center manifold theory and the method of normal
form, that the nonlinear characteristics of the bifurcation in a wheelset model with two degrees
of freedom are governed by a single parameter, hence each nonlinear force need not be detected
when examining the nonlinear characteristics [5]. Also, they proposed a method of determining
the governing parameter from experimentally observed radiuses of the unstable limit cycle.
Next, they experimentally investigated the variation of the parameter due to the presence of
linear spring suspensions in the lateral direction and discuss the variation of the nonlinear
characteristics of the hunting motion, which depends on the lateral stiffness.

In this paper, hunting problem with four degrees of freedom wheelset has been modeled.
Two constrains are defined for wheelset and therefore, the degrees of freedom decreased to
two. The proposed model has not been studied in dynamics of wheelset, yet. This model can
be more completed by using exact definition of contact between wheel and rail. The type of
suspension in this model is dry friction that has been modeled by Kolesch theory. This theory
is used for modeling of suspension of some bogies such as Y25. In this research, the effect
parameters in hunting and critical velocity have been studied.

2. MODELING

According to figure (1), for modeling of the wheelset, four degrees of freedom have been
considered in vertical, lateral and also yaw and roll rotations. Three coordination systems,
XYZ, xyz and x'y'z' have defined for motion of wheelset. XYZ is fixed and x'y'z' exists due to
rotation of yaw around Z and xyz exists due to rotation of roll around X. In this condition,
transformation matrix for transform the fixed coordinate on earth into the fixed coordinate on
the wheelset is:

 
 
 
  

X

Y

Z
=

cos cos sin sin sin

sin cos cos sin cos

0 sin cos

ψ − ϕ ψ ψ ϕ   
   ψ ψ ϕ − ϕ ψ   
   ϕ ϕ   

x

y

z
(1)

Figure 1: The Defined Coordinates for Explanation of Wheelset Movement
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There are also two coordinates to define the contacts of wheelset that are shown in figure
(2). The left and right contact forces are defined in left and right contact coordinate respectively.
The parameters that are defined in left and right contact coordinate are determined by subscript
cl and cr respectively.

It should be noticed that wheelset moves in straight line with constant velocity V and
contact surface between wheel and rail is a point contact. Figure (2) shows details of this
contact point. Wheel moves with constant velocity, so speed of rotation of its pitch rotation is
constant. Thus, the angular velocity vector of wheelset can be shown as summation of three
following rotational velocities.

1
ˆω = ψ

  K ,
2

ˆω =ϕ
  i , 3

ˆω =


c

V
j

r
(2)

Figure 2: The Position of Wheelset on the Rail

Thus, the total angular velocity of wheelset in fixed wheelset coordinate is defined as
below:

1 2 3ω = ω + ω + ω
   

 = ˆˆ ˆ    sin     cos
 

ϕ + ψ ϕ + + ψ ϕ  
  

c

V
i j k

r
(3)

According to figure (2), we can define two constraints for this motion that first constraint
has defined according to figure (3).

Figure 3: Roll Constrain for Wheelset’s Movement

According of figure (3), we can write:

sin ϕ =
−clz crzr r

L
(4)

r
clz

 and r
crz

 are determined in (20) equations.

The second equation of constraint was obtained by defining five vectors. Where, vectors,

1


r is distance between centre of rail and contact point, 2


r is the displacement distance on the
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surface of wheel as S due to movement of wheelset and vector 3


r  is distance between contact

point and central of axel of wheelset. Vector

Gr  represents the centre of gravity of wheelset

and vector 4


r  is defined between end of 3


r  and centre of gravity of wheelset. These vectors

have defined in x'y'z' coordinate. (See figure 4)

Figure 4: Relation between 1


r , 2


r , 3


r , 4


r and


Gr Vectors

1


r = ˆ′L j

2


r = ( ) ( )( )ˆˆcos   sinϕ + γ + ϕ + γ′ ′S j k

3


r = ( )ˆˆsin    cos− ϕ + ϕ′ ′cr j k (5)

4


r = ( )ˆˆcos   sin− ϕ − ϕ′ ′L j k


Gr = ( ) ˆˆ + +′ ′ ′ ′cy j z r k

The relations of these vectors are shown as below:

1 2 3+ + +   
r r r r =


Gr (6)

From equation (6), the following equations are obtained:

cos sinϕ − ϕy z = ( )cos sin cos+ ϕ + γ − ϕ − ϕcL S r L (7)

sin cosϕ + ϕ + cy z r = ( )sin cos sinϕ + γ + ϕ − ϕcS r L

With eliminating S from equations(7), the final equation for second constraint is obtained
as equation(8):

cos γz = ( ) ( )sin cos sin cos sinγ − γ + ϕ + γ + γ − γ + ϕc cy r L r L (8)

The matrices such as T, T ', U, U' and are the transformation matrices for transform the
fixed wheelset coordinate to the left contact plane coordinate, the fixed wheelset coordinate to
the right contact plane coordinate, the left contact plane coordinate to the fixed wheelset
coordinate, and right contact plane to the fixed wheelset coordinate respectively.

For calculation of the contact forces and momentums, at first the velocity in contact point
should be calculated. For example, the velocity of left side contact point, from relative velocity
equation is defined as:


clV = + ω ×

  
G clV r (9)
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Where

GV = ˆˆ ˆ+ + V I y j z k (10)

Therefore, the velocity of left side contact point is calculated as below:

( ) ( )

( ) ( )

11 21 31

12 22 32

ˆ  sin cos
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
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 

cl clz cly clz cly cl
c

clz cly clz cly cl
c

clz c
c

V
V V r r U y r U z r U i

r

V
r r U y r U z r U j

r

V
r r

r
( ) ( )13 23 33

ˆ  
+ − ϕ + + ϕ    

  ly clz cly clU y r U z r U k

  (11)

The obtaining of velocity of right side contact is similar to left one.

Also, the rotational velocity in the left contact point coordinate is defined as following
equation:

11 21 31 12 22 32

13 23 33

ˆ ˆ   sin  cos   sin  cos

ˆ  sin  cos

      
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+ ϕ + ψ ϕ + + ψ ϕ    
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r

(12)

According to above equations, dynamics creep of wheelset is defined as below:

ξx = cxV

V

ξy =
cyV

V

ξs =
ωcz

V
(13)

In these equations, creep coefficients are assumed constant (f
11

, f
22

, f
12

, f
33

) and creep
forces are obtained as below relations:

′cxF = 33− ξxf

′cyF = 11 12− ξ − ξy spf f

′czM = 12 22ξ − ξy spf f (14)

These forces are assumed as limit factors and the limitation condition is defined according
as:

β =
2 21 +′ ′

µ cx cyF F
N
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ε =

2 31
For 3

3 27

1
For 3

  β ββ − + β <  β  

 β ≥β

(15)

Therefore, the contact forces and momentums are defined as[6]:

F
cx

= ε ′cxF

F
cy

= ε ′cyF

M
cz

= ε ′czM (16)

In this article, the contact force due to nonlinear spring which has dead band was simulated.
This modeling is expressed as following mathematical relation:

( )

( )
0

− − δ
= 
 + δ

T

T

T

K y

F

K y

> δ
−δ < < δ

< −δ

y

y

y
(17)

In this equation, K
T
 and δ are stiffness of rail and clearance of wheel flange factors

respectively. Figure (5) shows the clearance of flange that is the dead band between wheel and
rail [4].

Figure 5: The Clearance and the Lateral Distance between Wheel and Rail [4]

Also, for suspending in lateral direction, nonlinear suspension has been used that utilizes in
freight bogies Y25. In this condition, Kolesch’s method[7] has been used for modeling as
following(see section 3) :

C
0

= C
h
 – C

g

K = ( )( )0

2
1 0.5 1

 
− + 

 
 

n
K

C y sign yK
H (18)

F
sus

= +gC y K



Non-linear Effects of Suspension on Hunting and Critical Velocity of Railway Wheelset 7

According to modified Euler equations, equations of motion can be written as below [8]:

my = 12 22 12 22 32 32 sin+ + + + + + ϕ − +′ ′ ′clx cly crx cry cl cr sus TF T F T F T F T N T N T mg F F

mz = 13 23 13 23 33 33 cos+ + + + + + ϕ′ ′ ′clx cly crx cry cl crF T F T F T F T N T N T mg (19)
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I
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Where:

r
clz

= ( sin )− + γcr S

r
cly

= cos− γL S (20)

r
crz

= sin− + γcr S

r
cry

= ( cos )− + γL S

3. LATERAL SUSPENSION

For suspension modeling of some freight bogies (Y25), a special kind of friction damper has
been used. Figure (6) shows the mechanical model of this force element [9].

Figure 6: Mechanical Model of Kolesch’s Friction Damper Elements

This model contains a series spring connection with stiffness C
0
 and a frictional damper

with damping force H. This spring and frictional damper have been jointed with another spring
with stiffness C

g
as parallel. When there is a displacement in y direction(extension or

compression), the spring C
0
 will deform until the damper force H is fully created. So the

system is actions similar to a single spring which total stiffness C
h
:

C
h

= C
0
 + C

g
(21)

 If the generated force by spring (C
0
) is more than the maximum damper force, the frictional

part of system starts to slide and friction force is generated opposite to direction of motion.
The total amount of friction force is defined as below:

F
friction

= +gC y K (22)
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In this relation, K is the existed force in frictional part that is defined as:

K = ( )( )0 1 0.5 1
  − + 
  
 

n
K

C y sign yK
H

(23)

In this stage two different conditions are modeled:

a. The damper force is constant and the maximum amount of H is defined as:

H = µ ⋅s NormalF (24)

b. The damper force is not constant and it is variable as following equation that names as
force dependent.

H = ( )Prµ + +s eload gF C y K (25)

W h e r e , F
Preload

 is the force that is considered as preload frictional force. In this article, the
first condition of Kolesch’s theory is considered.

If we apply the sinusoidal displacement on this force element, we obtain hysteretic force-
displacement diagram. (See figure (7)). According to figure (7), C

g
is the slope of the slip

motion and C
h
is the slope of the stick motion in the hysteretic force-displacement diagram. n

affect on the sharpness of this diagram.

Figure 7: Hysteretic Diagram

4. SIMULATION

According to numerical values which have been shown at table (1), equations (4), (8) and (19)
have been solved simultaneously by using Runge-Kutta numerical method. A bifurcation graph
for this dynamical system has drawn in figure (8). Critical velocity of wheelset is considered
33 m/s in these conditions. Also behavior of wheelset compare to lateral displacement has been
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shown in figure (9). Figure (10) shows the limit cycle behavior. This behavior is defined as
hunting phenomena. With increasing the velocity, then limit cycle will appear. While velocity is
smaller than critical velocity, then there is no limit cycle and wheelset will return to equilibrium
or central position. Figure (11) and (12) show these behaviors. It should be mentioned that
initial displacement was 8 millimeters.

Figure 8: Bifurcation of Wheel vs. the Velocity Curve

Figure 9: Lateral Displacement Graph of Wheelset at Critical Velocity (Hunting)
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Figure 10: Limit Cycle Graph of Wheelset at Critical Velocity (Hunting)

Figure 11: Lateral displacement graph of wheelset at v = 20 m/s
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Figure 12: Limit Cycle Graph of Wheelset at v = 20 m/s

5. RESULTS AND DISCUSSION

In this section, nonlinear characteristics of suspension are investigated. While the stiffness of
spring C

g
=107500 N/m, then critical velocity is equal to 15.7 m/s and limit cycle in terms of

velocity has been shown in figure (13).

Figure 13: Limit Cycle for C
g
=107500 N/m
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Figure (14) shows critical velocity when C
g
= 215000 N/m, also figure (15) shows limit

cycle in terms of velocity when C
g
= 537500 N/m and critical velocity is equal to 36.5 m/s.

Figure 14: Limit Cycle when C
g
 = 215000 N/m

Figure 15: Limit cycle when C
g
 = 537500 N/m

Figure (16) shows limit cycle in terms of velocity when C
g
 = 645000 N/m and critical

velocity is equal to 40.1 m/s.

As results show, with increasing the C
g
, critical velocity is increased. But there are limitation

in increasing the value of C
g
. The limitation of increasing of C

g
is the increasing of frequency

of oscillation of wheelset.
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Figure 16: Limit Cycle when C
g
 = 645000 N/m

For analyzing the variations of damper forces (H), three different cases are considered
that critical velocity has been investigated according to figure (17). H depends on kinetic
friction coefficient of sliding surfaces of suspension system and weight of wheelset and the
load that is applied to axle of wheelset. Variation of the kinetic friction coefficient is small. The
variation of axle load of wheelset is more affected on value of H. Therefore the empty wagon
is more critical than the full wagon in view of velocity.

Figure 17: Bifurcation Graph for Three different Values of Dry Friction Damper Force

5. CONCLUSION

With increasing the values of H and C
g
, the critical velocity of wheelset will rise, but the effect

of C
g
on increasing of critical velocity is more than H. Therefore, the increase of slipping dry
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friction coefficient or axial load of wheelset will not change the critical velocity as an important
dynamical parameter of wheelset. Also when velocity is more than critical velocity, the limit
cycle will appear and in this condition, there is an attractor in system.

Table 1
The Values of Wheel Set’s Constants [4, 6, 7]

m Mass of wheelset 1800 kg

I
xx

roll moment of inertia of the wheelset 625.7 kg.m2

I
yy

pitch moment of inertia of the wheelset 133.92 kg.m2

r
c

Nominal weelset rolling radius 0.533 m

γ Wheel conicity 0.05

L Half of track gauge 0.7176 m

f
11

Lateral creep force coefficient 6.728×106

f
12

Lateral/spin creep force coefficient 1200

f
22

Spin creep force coefficient 1000

f
33

Longitudinal creep force coefficient 6.728×106

µ Friction coefficient 0.3

g Acceleration of gravity 9.81 m/s2

K
T

Lateral rail stiffness 1.617×108 N/m

δ flange clearance between the wheel andthe rail 0.00923 m

C
h

Stiffness of the suspension in slide motion 2.2×106 N/m

C
g

Stiffness of the suspension in stick motion 4.3×105 N/m

H Damping dry friction force 50 N

n The parameter denoting the sharpness of the 2
hysteretic force-displacement diagram of the
force element of the suspension

V Forward velocity of wheelset

S displacement distance on the surface of wheel due
to movement of wheelset

r
clz

z component of vector that is defined from center of
gravity of wheelset to left contact point

r
cly

y component of vector that is defined from center of
gravity of wheelset to left contact point

r
crz

z component of vector that is defined from center
of gravity of wheelset to right contact point

r
cry

y component of vector that is defined from center
of gravity of wheelset to right contact point

F
T

flange force

N normal force of wheelset

F
cl

Left contact force

F
cr

Right contact force

M
cl

Left contact moment

M
cr

Right contact moment
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