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In a social and dark network analysis the SNA software output provided includes
many measures and metrics. For each of these measures and metric, the output provides
the ability to obtain a rank ordering of the nodes in terms of these measures. We might
use this information in decision making concerning disrupting or deceiving a given
network. All is fine when all the measures indicate the same node as the key or
influential node. What happens when the measures indicate different key nodes? Our
goal in this paper is to explore methodologies to identify the key players or nodes in a
given network. We apply a priority average ranking scheme, AHP, and TOPSIS to analyze
these outputs to find the most influential nodes as a function of the decision makers’
inputs as a process to consider both subjective and objectives inputs through pairwise
comparison matrices. We compare these methods by illustration using the Noordin
Dark Network with seventy nine nodes. We discuss sensitivity analysis that should be
applied to these methods because of their use of subjective inputs.

Key words: social network analysis, multi-attribute decision making, average priority
ranks, Analytical hierarchy process (AHP), decision criterion, weighted criterion,
TOPSIS, node influence, sensitivity analysis

INTRODUCTION TO SOCIAL NETWORK ANALYSIS
AND DARK NETWORKS

Social network analysis (SNA) is the methodical
analysis of social networks in general and dark
networks in particular (Everton, 2012; Roberts, et al.
2011). Social network analysis is a collection of
theories and methods that assumes that the behavior
of actors (individuals, groups, organizations, etc.) is
profoundly affected by their ties to others and the
networks in which they are embedded. Rather than
viewing actors as automatons unaffected by those
around them, SNA assumes that interaction patterns
affect what actors say, do, and believe. Networks
contain nodes (representing individual actors or
entities within the network) and edges and arcs
(representing relationships between the individuals,
such as friendship, kinship, organizational position,
sexual relationships, communications, tweets,

Facebook friendships, etc.). These networks are often
depicted in two formats: graphically or matrix. We
might call the graph a social network diagram or dark
network diagram, where nodes are represented as
points or circles and arcs are represented as lines that
interconnect the nodes.

We will provide a brief background of social
network analysis. More precisely, we introduce some
of the more common metrics and measures as well as
their definitions that are used for exploratory analysis
of networks. In this paper, we assume decision makers
are only looking for the powerful and influential players
in a network. In the SNA literature there has been some
discussion as to four main measures that might be sued
to analysis the most influential person in a network
(Newman, 2010) and these include only the following
centrality measures: degree, betweenness, closeness, and
eigenvector.
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There are a multitude of measures (metrics) that
are found in most SNA software. The software package
that we used in this analysis is ORA. According to the
documentation,

“From the ORA document manual (2010) it explains
ORA is a network analysis tool that detects risk sorvulner
abilities of an organization’s design structure. The design
structure of an organization is the relationship among
its personnel, knowledge, resources, and task sentities.
The seen tities and relationships are represented by the
Meta-Matrix as well as graphical depiction. Measures
that take as input a Meta-Matrix are used to analyze the
structural properties of an organization for potential risk.

ORA contains over 100 measures which are
categorized by which type of risk they detect. Measures
are also organized by input requirements and by output.
ORA generates for matted reports view able on screen
orin log files, and reads and writes networks in multiple
data formats to be interoperable with existing network
analysis packages....The current version ORAI.2
software is available on the CASOS website”.

We begin by defining a few metric terms or measures
in social network analysis from ORA that we use
including the main four centrality metrics.

Betweenness

Betweenness is a measure of the extent to which a
node lies on the shortest path between other nodes in
the network. This measure takes into account the
connectivity of the node’s neighbors, giving a higher
value for nodes which bridge clusters. The measure
reflects the number of people who a person is
connecting indirectly through their direct links.

Centrality

Centrality is the measure which gives a rough indication
of the social power of a node based on how well they
“connect” the network. “Betweenness,” “Closeness,”
“Degree,” and “Eigenvector” are all measures of
centrality.

Centralization

Centralization is the difference between the number of
links for each node divided by maximum possible sum
of differences. A centralized network will have many
of its links dispersed around one or a few nodes, while
a decentralized network is one in which there is little
variation between the numbers of links each node
possesses.

Closeness

Closeness is the degree an individual is near all other
individuals in a network (directly or indirectly). It

reflects the ability to access information through the
“grapevine” of network members. Thus, closeness is
the inverse of the sum of the shortest distances between
each individual and every other person in the network.
The shortest path may also be known as the “geodesic
distance.”

Degree

Degree is the count of the number of ties to other players
in the network.

Density

Density is a measure of network cohesion that is equal
to the actual number of ties in a network divided by
the total possible number of ties, which means that
density scores range from 0.0 to 1.0.

Eigenvector Centrality

Eigenvector centrality is a variation on degree centrality
in that assumes that ties to central actors are more
important than ties to peripheral actors and thus
weights an actor’s summed connections to others by
their centrality scores. Google’s Pagerank score is a
variation on eigenvector centrality.

Degree Centrality

Degree centrality is defined as the number of links
incident upon a node (i.e., the number of ties that a
node has). The degree can be interpreted in terms of
the immediate risk of a node for catching whatever is
flowing through the network (such as a virus, or some
information). In the case of a directed network (where
ties have direction), we usually define two separate
measures of degree centrality, namely indegree and
outdegree.

For our analysis, we use the subset of the Noordin
Top Terrorist Network drawn primarily from “Terrorism
in Indonesia: Noordin’s Networks,” a 2006 publication of
the International Crisis Group. It includes relational data
on the 79 individuals listed that publication. The data
wetre initially coded by Naval Postgraduate School students
and our Common Research Environmental (CORE) Lab.

Previous work on using AHP and TOPSIS (Fox, et
al. 2013; 2014) have shown the proof of principle
approach using two basic social networks from the
literature: The Kite and Knoke Networks.

Application of Technique of Order Preference by
Similarity to the Ideal Solution (TOPSIS) in a Dark
Network

Nomenclature for TOPSIS:

(x.)  Matrix of values for alternatives by criterion

¥ mxn
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( rl,],)m . Matrix of normalized values for alternatives by
criterion
(t.) Matrix of weighted normalized values for

i mxn

alternatives by criterion

A Worst solution in the column

A, Best solution in the column

d, L2 distance between the target and best solution
d L2 distance between the target and worst solution
s, Ratio similarity to the ideal worst solution

s, Ratio similarity to the ideal best solution

C Final ranking

The Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS) is a multi-criteria decision
analysis method (Hwang and Yoon , 1981). It has been
further developed and refined (Yoon, 1987; Hwang et
al. 1993). TOPSIS is based on the concept that the
chosen alternative should have the shortest geometric
distance from the positive ideal solution and the longest
geometric distance from the negative ideal solution. It
is a method of compensatory aggregation that compares
a set of alternatives by identifying weights for each
criterion, normalizing the scores for each criterion and
calculating the geometric distance between each
alternative and the ideal alternative, which is the best
score in each criterion. An assumption of TOPSIS is
that the criteria are monotonically increasing or
decreasing. Normalization is usually required as the
parameters or criteria are often of incompatible
dimensions in multi-criteria problems. Compensatory
methods such as TOPSIS allow trade-offs between
criteria, where a poor result in one criterion can be
negated by a good result in another criterion. This
provides a more realistic form of modeling than non-
compensatory methods, which include or exclude
alternative solutions based on hard cut-offs.

TOPSIS Background

We only desire to briefly discuss the elements in the
framework of TOPSIS. TOPSIS can be described as a
method to decompose a problem into sub-problems.
In most decisions, the decision maker has a choice
among several to many alternatives. Each alternative
has a set of attributes or characteristics that can be
measured, either subjectively or objectively. The
attribute elements of the hierarchal process can relate
to any aspect of the decision problem—tangible or
intangible, carefully measured or roughly estimated,
well- or poorly-understood—anything at all that applies
to the decision at hand.

The TOPSIS process is carried out as follows:

Step 1 Create an evaluation matrix consisting of m
alternatives and n criteria, with the intersection of each
alternative and criteria given as x,, giving us a matrix

X))

X X X5 - - X,
Al Xe Xo X Xin |
AZ X21 X22 X23 X2n
A3 X31 X32 X33 X3n
D=
Am _Xml Xm2 Xm3 Xn‘n_

Step 2: The matrix shown as D above then
normalized to form the matrix R=(R.)

i man’
using the normalization method

Xy

>x:

2

Iy =

fori=1,2...,m;j= 1,2,..n

Normalization

Two methods of normalization that have been used to
deal with incongruous criteria dimensions are linear
normalization and vector normalization.

Linear normalization can be calculated as in Step 2
of the TOPSIS process above. Vector normalization was
incorporated with the original development of the
TOPSIS method (Yoon, 1987), and is calculated using
the following formula:

fori=1,2...,m;j= 1,2,..n.

In using vector normalization, the non-linear
distances between single dimension scores and ratios
should produce smoother trade-offs (Huang, et al. 2011).

Step 3 Calculate the weighted normalized decision
matrix. First we need the weights. Weights can come
from either the decision maker or by computation.

Step 3 a. Use either the decision maker’s weights
for the attributes x,x,,..x or compute the weights
through AHP’s decision maker weights method (Saaty,
1980) to obtain the weights as the eigenvector to the
attributes versus attribute pairwise comparison matrix.

iwj =1
j=1
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The sum of the weights over all attributes must
equal 1 regardless of the method used.

Step 3b. Multiply the weights to each of the column
entries in the matrix from Step 2 to obtain the matrix,
T

T=(t)n =Wr,) .. 1=12,..,m

Step 4 Determine the worst alternative (A ) and
the best alternative (A,) : Examine each attribute’s
column and select the largest and smallest values
appropriately. If the values imply larger is better (profit)
then the best alternatives are the largest values and if
the values imply smaller is better (such as cost) then
the best alternative is the smallest value.

AH}

= {(max(t, |i=1,2,...,m|jeJ _),(min(t, |i=1,2,...,m)|j e J, )}
={t, li=12...n},

Au}b
= {(min(t, [i=1,2,..,m|jeJ_),(max(t, |i=12...m)|je ] )}
={t, li=12....n},

where,

J. ={j=12,...n|j) associated with the criteria having
a positive impact, and

J_={j=12,..n]j) associated with the criteria having
a negative impact.

We suggest that if possible make all entry values
in terms of positive impacts.

Step 5 Calculate the L2-distance between the target
alternative i and the worst condition A |

n 2
diLU = z]Zl(tlj_tu}]) ,1—1,2,...

and the distance between the alternative i and the best
condition A,

dy =0, (8, — 1) i=12,....m,

where d, and d,are L2-norm distances from the target
alternative i to the worst and best conditions, respectively.

Step 6 Calculate the similarity to the worst
condition:

)m)

Sy = L,OSSZH} <Li
(d,, +dy)

4

=12,....m
S, =1 if and only if the alternative solution has
the worst condition; and

S,,=0 if and only if the alternative solution has
the best condition.

Step 7 Rank the alternatives according to their value
fromS, (i=1.2,..,m).

For our models we explore two options for the
weights from Step 3. First, the decision maker might
actually have a weighting scheme that they want the
analyst to use. In not, we suggest using Saaty’s 9-Point
pair-wise method developed for the Analytical
Hierarchy Process (AHP) [see 10]. We briefly describe
this pairwise method to obtain weights.

We build a numerical representation using a 1-9
point scale in a pairwise comparison for the attributes
criterion and the alternatives. The goal is to obtain a
set of eigenvectors of the system that measures the
importance with respect to the criterion. The resulting
eigenvectors are the weights. We can put these values
into a matrix or table based on the following
description:
Intensity of
Importance in
Pair-wise
Comparisons

Definition

1 Equal Importance

3 Moderate Importance

5 Strong Importance

7 Very Strong Importance
9 Extreme Importance

2 For comparing between
the above

In comparison of
elements i and j if I'is 3
compared to j, then j is
1/3 compared to i.
Force consistency;
measure values available

,4,6,8

Reciprocals of above

Rational

Several methods exist to obtain these eigenvectors.
One methods uses discrete dynamical systems (Fox,
2012; Giordano, et al. 2008) and the other the power
method for eigenvalues & eigenvectors (Burden and
Faires, 2013).

Objective Statement «<— This is the decision desired
such as a rank order of key players in a dark network

Alternatives: 1, 2, 3, ..., n(the nodes or players)

For each of the alternatives there are attributes to
compare.

Attributes: a,, a,,..., a_ (ORA output measures and
metrics of interest)

Once the hierarchy is built, the decision maker(s)
systematically evaluate its various elements pairwise
(by comparing them to one another two at a time),
with respect to their impact on an element above them
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in the hierarchy. In making the comparisons, the
decision makers can use concrete data about the
elements, but they typically use their judgments about
the elements’ relative meaning and importance. It is
the essence of the TOPSIS that human judgments, and
not just the underlying information, can be used in
performing the evaluations.

TOPSIS converts these evaluations to numerical
values that can be processed and compared over the
entire range of the problem. A numerical weight or
priority is derived for each element of the hierarchy,
allowing diverse and often incommensurable elements
to be compared to one another in a rational and
consistent way. This capability distinguishes the TOPSIS
from other decision making techniques.

In the final step of the process, numerical priorities
or ranking are calculated for each of the decision
alternatives. These numbers represent the alternatives’
relative ability to achieve the decision goal, so they
allow a straightforward consideration of the various
courses of action.

Uses and Applications

While it can be used by individuals working on
straightforward decisions, TOPSIS is most useful where
teams of people are working on complex problems,
especially those with high stakes, involving human
perceptions and judgments, whose resolutions have
long-term repercussions. It has unique advantages
when important elements of the decision are difficult
to quantify or compare, or where communication
among team members is impeded by their different
specializations, terminologies, or perspectives.

Decision situations to which the TOPSIS might be
applied include:

¢ Choice - The selection of one alternative from
a given set of alternatives, usually where there
are multiple decision criteria involved.

¢ Ranking - Putting a set of alternatives in order
from most to least desirable

* Prioritization - Determining the relative merit
of members of a set of alternatives, as opposed
to selecting a single one or merely ranking them

® Resource allocation - Apportioning resources
among a set of alternatives

¢ Benchmarking - Comparing the processes in
one’s own organization with those of other
best-of-breed organizations

* Quality management - Dealing with the
multidimensional aspects of quality and quality
improvement

¢ Conflict resolution - Settling disputes between
parties with apparently incompatible goals or
positions

Applications of TOPSIS to find influences in a dark
network

We illustrate using the Noodin Network with its
graphical network depicted in Figure 1.

powered by ORA, CASOS Center @ CMU

Figure 1: ORA’s Trust Network from Noordin’s seventy-nine Node
Dark Network.

We obtained all the outputs from ORA and a
summary of Key Node analysis as shown in Table 1.
Table 1 shows different key nodes across the metrics.

We extracted the actual metric values from the
output of ORA for the 20 nodes across these key metrics.
Table 2 provides these metrics values from ORA for
the top 20 nodes (size: 79 nodes, density: 0.0879585)
for eight outputs initially identified by ORA. Next we
performed the analysis with only the main eight
centrality measures.

We use the decision weights from our AHP program
(unless a real decision maker gives us their own
weights) and find the eigenvectors for our eight metrics
as shown in figure 2 displaying the pairwise
comparison, the consistency ratio (less than 0.1) and
the resulting eigenvectors.

We take all these output metrics from ORA
and perform steps 2-7 of TOPSIS to obtain the
following raw and then ordered outputs shown in
Table 3.

Next, we repeated the analysis using only the
four main centrality measures . Table 4 shows the
decision matrix and weights with a CR =0.02846 (less
than 0.1).
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Table 1: ORA’s Key Nodes from the Noordin Dark Network.

Rank Betweenness Closeness Eigenvector Eigenvector In-degree In-Closeness  Out- Total
centrality centrality centrality centrality per  centrality centrality degree degree
component centrality centrality
1 N2 N2 A5 A5 A5 N2 A5 A5
2 17 A5 M4 M4 N2 A5 N2 N2
3 Al3 U T T M4 U M4 M4
4 Al Al3 N2 N2 A6 Al3 A6 A6
5 A5 F A6 A6 T F T T
6 U6 M4 J J F M4 F F
7 Al2 A6 F F J A6 J J
8 Z A23 U U U A23 U U
9 D2 T S8 S8 S8 T S8 S8
10 M5 17 A22 A22 A23 17 A23 A23
1 S6 J M3 M3 B J B B
12 U S8 B B Al3 S8 Al3 Al3
13 J B S5 S5 A22 B A22 A22
14 A6 D2 A23 A23 D2 D2 D2 D2
15 A23 Al7 A2 A2 17 Al7 17 17
16 Al6 A7 16 16 M3 A7 M3 M3
17 I2 D2 D2 S5 I2 S5 S5
18 P 16 Al7 Al7 Al7 16 Al7 Al7
19 F A22 I2 I2 S6 A22 S6 S6
20 Al7 S5 A7 A7 A7 S5 A7 A7
BETW cc EC ECPC 1DC Icc 0DC TCC Priority Weights
Betw 1 2 2 2 2 3 a 5 CR 0.045377 betw 0.237698
cc 0.5 1 2 2 2 A 5 6 cc 0.214033
ec 0.5 0.5 1 2 2 3 B 5 ec 0.166106
ecpc 0.5 0.5 0.5 1 2 2 3 ] ecpc  0.125044
ide 0.5 0.5 0.5 0.5 1 2 3 ] ide  0.105366
icc 0.333333 f 0.25 0.333333 05 05 1 3 4 icc 0.076461
odc 025 = 02 0.25 0.333333 0.333333 0.333333 1 3 odc 0.046489
tee 0.2 '0.166667 0.2 0.25 0.25 0.25 0.333333 1 tee 0.028802

Figure 2: Decision pairwise matrix and decision weights.

Table 2: Summary of ORA’s output for Noordin Dark Network for the 8 criterion

Data cl c2 c3 c4 c5 c6 c7 c8
Agent Betweeness Cent. Cl igs tor Cent. ECPC In-degree In-Closeness Cent Out-Closeness Cent Total Degree Cent.
as 0.09 0.102 0.434 0.276 0.359 0.102 0.359 0.359
n2 0.182 0.103 0.35 0.222 0.333 0.103 0.333 0.333
m4 0 0.1 0.392 0.249 0.269 0.1 0.269 0.269
a6 0.033 0.1 0.325 0.206 0.256 0.1 0.256 0.256
t 0 0.099 0.376 0.239 0.256 0.099 0.256 0.256
f 0.025 0.1 0.313 0.199 0.231 0.1 0.231 0.231
i 0.034 0.099 0.32 0.203 0.231 0.099 0.231 0.231
u 0.038 0.101 0.305 0.194 0.231 0.101 0.231 0.231
s8 0 0.099 0.299 0.19 0.205 0.099 0.205 0.205
a23 0.032 0.1 0.257 0.163 0.192 0.1 0.192 0.192
b 0.028 0.099 0.279 0.177 0.192 0.099 0.192 0.192
a13 0.14 0.101 0 0 0.179 0.101 0.179 0.179
a22 0 0.098 0.289 0.184 0.179 0.098 0.179 0.179
d2 0.04 0.099 0.226 0.144 0.179 0.099 0.179 0.179
17 0.163 0.099 0 0 0.179 0.099 0.179 0.179
m3 0 0 0.281 0.179 0.179 0 0.179 0.179
s5 0 0.098 0.264 0.168 0.179 0.098 0.179 0.179
a17 0.025 0.098 0.224 0.143 0.167 0.098 0.167 0.167
s6 0.039 0 0 o 0.167 0 0.167 0.167

a7 0 0 0.209 0.153 0.154 0 0.154 0.154
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Table 3: Raw Output and Ordered Output from TOPSIS

as 0.419676898
n2 0.965425053
m4 0.127914773
a6 0.062025923
t 0.126211599

f 0.028309765

j 0.064185335
u 0.086940389
s8 0.121464812
a23 0.047693103
b 0.024764452
ais3 0.693837087
a22 £.121076687
d2 0097651096

<
o
-
§
pt
&
G
&
.

m3 0.237393009
s5 0.120921061
al7 0.023880284
s6 0.27177498
a7 0.237506156

Table 4. Decision matrix and weights with four key metrics

4| “ 8 < ] E F G it
1 TDC Betw Closeness B
2 TDC 1 2 a R 0.028406
3 Betw 05 - | 2 3
4 Closeness 0333333 05 1 2 Weights Metrics
5 EC 0.25 0333313 05 1 0.465819 TDC
6 021ma BETW
7 0.16107 Closness
8 009597  Eigen.
a

-
-5

Table 5: Raw and ordered output from TOPSIS

Raw

as 0427222291
n2 0.973982022
m4 0.10722359
a6 0.163571388
t 0.097216293

f 0.115675763

j 0.157554624
u 0.177490287
s8 0.056569571
a23 0.133339299
b 0.112782967
al3 0.713101164
a22 0.039541984
d2 0.174194014
17 0.807187014
m3 0.139994824
s5 0.037311139
al7 0.089768404
s6 0.212225078
a7 0.023265869

n2 0.965425053
17 0.798190393
ai13 0.693837087
as 0.419676898
s6 0.27177498
a7 0.237506156
m3 0.237393009
ma4 0.127914773
t 0.126211599
s8 0.121464812
axn 0.121076687
s5 0.120521061
d2 C.097651036
u 0.086940389
i 0.084185335
a6 0.062025923
a23 0.047693103
f 0.028309765
b 0.024764452
a17 0.023880284

Table 5 shows the raw and ordered TOPSIS output.

In comparison to using eight criteria, we note that
the top 5 nodes do not change and the first change
occurs in position number 6.

Sensitivity Analysis

In our analysis, we have utilized weights as applicable
to the metrics for the nodes. Weights are subjective
even if used in AHP and TOPSIS methodologies. Since

Ordered

n2 0.97181449
17 0.791416446
a3 0.688099762
as 0.443594317
s6 0.186941734
m3 0.175970038
ma 0.146982142
t 0.141756837
s8 0.125520682
s5 0.120812321
a22 0.120795198
a7 0.119177118
u 0.111160844
ab 0.11064716
d2 0.097135811
i 0.094399316
f 0.074373911
a3 0.058285584
b 0.042589095

a17 0.015588124
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these are subjective relationships, we should consider
sensitivity analysis for the weights. We recommend
equation (1) for doing the sensitivity analysis for
adjusting weights (Alinezhad, et al., 2011):

1-w?
’ _ P
w;

= w.

l-w, ' (1)
where w”is the new weight and w_ is the original weight
of the criterion to be adjusted and w,’is the value after
the criterion was adjusted.

The literature provides no direct sensitivity analysis
procedures. We recommend, as a minimum, at least a
numerical trial and error approach to sensitivity
analysis. Not only do we recommend altering the
criterion pair-wise comparison to measure the model’s
robustness but delving into break points is also useful.

In our four metric model, we find that the model is
quite robust and that with major changes in priority
and pairwise comparison the top 5 nodes are not
affected.

SUMMARY AND COMPARISONS

We have also used the two other MADM methods to
rank order our nodes in previous work: DEA (Charnes,
et al., 1978; Cooper, et al., 2000; Zhenhua, 2009;
Thanassoulis, 2011; Winston, 1995) and AHP
(Krackhardt, 1990; Knoke, et al., 1981,1982; ,Fox, 2012).
Here we used TOPSIS, AHP, and our average priority
method. We present our results in table 6.

Additionally, we applied equation 1 to our TOPSIS
analysis in order to measure the effects of the altering
of the criteria weights.

In the eight metric model, we again used equation
(1) for adjusting decision maker weights. We plotted

1.2
1 .————.——‘.
08 - . —— a5
——n2
0.6 =
ab
0.4
——al3
0.2
17
0

Figure 3: Sensitivity Analysis on the 4 criteria model top 5 with
substantial changes to criterion weighting

the top 10 alternatives using three major adjustments
in criteria weighting each time insuring a different
criterion was the most heavily weighted. It is seen from
the graph, Figures 3 and 4, that the top 5 never changed
position.

1.2
35
! | li=n
0.8 '——-/ =e=m4
=ht=2a6
0.6 "
0.4 — e —— — -l
0.2 ey
F— ‘.\ —
0 — : S8
1 2 3

Figure 4: Sensitivity Analysis

Finding Break Points, if they exist

A break point is defined as the value of weight, w’,
that causes the ranking to be significantly change
implying a change in the top alternative ranking. The
method that we suggest is taking the largest weighted
criterion and reduces it is slight increments which
increases the weights of the other criteria and re-
computing the rankings until another alternative is
ranked number one.

1.2
11 g———a
" s,

==a%

= =n2

0.6 E" 7 ab

0.4 e 31 3

0.2 —I7
0 m4

1 2

W
.

Figure 5: Looking for break points

In this examination, the top ranked node, n2, never
changes as shown in Figure 5. We can get changes in
the nodes ranked 2-4 through an increase change in
the criterion weight for closeness centrality from 0.1611
to 0.4611, an increase of 0.3.
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Table 6: Summary of Methods

n ' ) X L v N u v Q
4 Criertion 8 Critertion

Averaging AHP TOPSIS TOPSIS
AS 175 n2 1.010388 n2 0.999922 n2 0.965425
N2 2125 as 0.884257 7 0.999505 7 0.79819
L 3285714286 7 0821784 213 0.000382 212 0.602827
A4 4 a13 0.798567 as 0.999086 as 0.419677
T 5.571428571 a6 0.739287 u 0.998556 s6 0.271775
F 6 u 0.737152 d2 0.998551 a7 0.237506
A6 6.25 j 0.733255 i 0.998517 m3 0.237393
A6 6.25 f 0.717209 a6 0.998511 m4 0.127915
A2 7 ma 0.70325% a23 0.998472 t g.126212
u 7.25 t 0.69607 6 0.998472 s8 0.121465
z 8 d2 0.68371 b 0.998442 a2z 0.121077
J 8.25 a2z’ 0.681615 f 0.998429 s5 0.120921
A13 8.6 b 0.679652 a17 0.998383 d2 0.097651
S8 9.857142857 s8 0.64126 ma 0.998189 u 0.08694
Vis iv azz 0.032240 i 0.558188 i 0.004185
S6 11 a17 0.630918 s8 0.998172 a6 0.062026
A23 11.125 s5 0.62649 a22 0.998167 a3 0.047693
17 11.16666667 m3 0.600884 s5 0.998166 f 0.02831
A22 1.8 s6 0.569897 m3 0.998157 b 0.024764
B 125 a7 0.556473 a7 0.998141 a17 0.02388

We have provided a several approaches to ranking
influential nodes (players) in the Noordin Dark network
as well as provided insights using sensitivity analysis.
We compared the results. We believe that the
incorporation of decision maker weights with the
metrics of a social network is invaluable to analysis of
key and influential players.
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