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ABSTRACT

Waiting lines and delays have become commonplace in the healthcare industry. As a
result, appointment system is widely used to improvements in patient satisfaction. To
implement appointment scheduling, we need to know not only the average of customer
waiting time, but also the variance around average waiting time. This research provides
an approximation method to measure the variance of waiting time in the general
queue, which requires only the specification of the mean and the standard deviation of
the inter-arrival and service times. It can be easily implemented in a spreadsheet and
applied to healthcare operations. The results demonstrate the usefulness of the queuing
models in providing guidance on implementing appointment scheduling and waiting
time guarantee strategy.

Keywords: Queuing theory, Stochastic processes,Healthcare scheduling, Waiting

time, ApproximationMethods

INTRODUCTION

Health care practices are increasingly competing not
only on cost, but also on quality and patient satisfaction.
As other service industries must do, healthcare
organizations must strive to balance customer demands
for better service while simultaneously controlling the
costs of providing service. In this environment, timely
access to care has become a more important issue.As a
quality issue, excessive delays in scheduling tests or
procedures can result in delayed diagnostic information
or deterioration in the patient’s condition. As a result,
physician practices are eager to embrace new
approaches to patient appointment scheduling to reduce
backlogs, increase productivity, and improve patient
satisfaction. To this end, many healthcare organizations
have taken steps to improve quality by adapting
appointment scheduling and waiting time guarantee
strategy.

In theory, an appointment system reduces patient
waiting time. In practice, the waiting time can still be

substantial. Outpatient appointment scheduling in
health care has been researched over the last 50 years
(Bailey 1952, Green and Savin 2008). Various
scheduling rules have been proposed in different
research works. A good appointment schedule is one
that trade-offs patients’ waiting time for clinics’
overtime, constrained by the patient load and staffing.

One simple guideline from these studies is to place
cases with low variability of consult duration in the
beginning of the session. Typically, first visit patients
have a higher variation in consult duration than follow-
up patients do. Hence, the guideline suggests placing
the follow-up patients in the beginning of the session.
The clinics can further adjust this guideline according
to their patients’ characteristics.

Unfortunately, such variation may be overlooked
or trivialized if the phenomenon is not well understood
by healthcare managers. Knowing how variation affects
the delivery of services creates opportunities for focused
improvement. Currently, these practices have no
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guidelines or frameworks to help identify an appropriate
balance between physician capacity and patient panel
sizes that are consistent with manageable patient
backlogs. A critical starting point for any organization
striving to improve service is recognition and
understanding of variation of waiting time.Both
theoretical results and practical case studies have
demonstrated how variation in the arrival process and
in the delivery of service can cause delays(Hoppand
Spearman 2000, Noon et al. 2003).

In many systems, the “worst case” value of patient
flow time is very relevant because it represents the
turnaround time that can safely be promised to the
customers. Predicting the range of variation of the time
in the system (rather than just the average) is needed
for healthcare decision-making. To implement
appointment scheduling, we need to know not only
the average of customer waiting time, but also the
variance around average waiting time. Knowing the
variance of the patient waiting time is essential to
understanding the performance of queuing system in
healthcare delivery.

Research on patient waiting time has traditionally
been the domain of queuing theory. The organizations
that care for people who are ill and injured vary widely
in scope and scale, from specialized outpatient clinics
to large, urban hospitals to regional healthcare systems.
Despite these differences, one can view the healthcare
processes that these organizations provide as queuing
systems in which patients arrive, wait for service, obtain
service, and then depart (Aaby et al. 2006, Griffiths et
al. 2006). The healthcare processes also vary in
complexity and scope, but they all consist of a set of
activities and procedures (both medical and non-
medical) that the patient must undergo in order to
receive the needed treatment. The resources (or servers)
in these queuing systems are the trained personnel and
specialized equipment that these activities and
procedures require.

Queues occur because of uncertainty in the
environment; whenever the demand for service exceeds
the ability to provide service, a queue forms. Essentially,
queues arise when service is demanded while a server
is busy providing service to others. In healthcare,
queues are commonplace at registration desks, walk-
in clinics, and emergency rooms. Queues also exist
without the telltale line, such as when people are on
hold when calling for appointments, referrals, or
prescription refills or when patients are waiting for a
bed transport or housekeeping services for their rooms.
The demand for healthcare services typically originates
in a random fashion. Accidents that result in a trip to
an emergency room, symptoms that result in a visit to

the doctor, and the decision to receive flu shot all lead
to a random arrival process. Likewise, the delivery of
service is also subject to variation. For example, the
time it takes to draw a sample of blood depends on
such things as the availability of the appropriate Kkit,
the skill and training of the healthcare worker, and the
condition of the patient (Preater 2002, Bennett 1998).

Queues differ according to various characteristics
that distinguish them from one another. A major
distinction classifies queues according to the number
of servers and the distributions that characterize the
arrival rates of customers (or their inter-arrival times)
and the service times. From a statistical perspective,
the random arrival process is not necessary described
with the Poisson probability distribution. Similarly, the
exponential probability distribution is inappropriate
when a wide range of service times is possible (Hopp
and Spearman 2000). Kendall notation A/B/n is widely
accepted in queuing system. In this notation, the A, B,
and n denote, respectively, the inter-arrival time
distribution, the service time distribution and the
number of servers. In other words, most health care
queuing problems are the general GI/G/n system(G for
general, I for independent arrivals).

Unfortunately, without the memory-less property
of the exponential distribution to facilitate analysis, we
cannot compute exact performance measures for the
GI/G/n queue. When it comes to exact solutions of
multi-server queuing systems, the more one departs
from the assumption of exponential, the thornier the
problem becomes, especially if this happens for the
service time. Due to its inherent complexity, analysis
of the GI/G/n queue in general is extremely difficult
(Bertsimas 1990, Whitt 1993, 2004).

In this research, we provide approximation methods
for the variance (standard deviation) of waiting timefor
a general multi-server queue with infinite waiting
capacity GI/G/n.The approximations require only the
mean and standard deviation or the coefficient of
variation of the inter-arrival and service time
distributions, and the number of servers. These
approximations are simple enough to be implemented
in spreadsheet calculations, but in comparisons to
Monte Carlo simulations have proven to give good
approximations (within + 10%) for cases in which
the coefficients of variation for the inter-arrival and
service times are between 0 and 1. 25. The
approximations also have the desirable properties of
being exact for the specific case of Markov queue
modelM/M/n, as well as some imbedded Markov chain
queuing models.The spreadsheet can be easily applied
to healthcare operations to calculate the variance of
waiting time. The results demonstrate the usefulness
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of the queuing models in providing guidance on
implementing appointment scheduling and waiting time
guarantee strategy. Another feature of our model is that
managers can conduct what-if analysis and select
appropriate capacity levels so as to commit themselves
to a given waiting-time guarantee. Hopefully the
approximation will be beneficial to practitioners in
helping them provide simple, quick, and practical
answers to their multi-server queuing systems.

The rest of this paper is organized as follows. In
section 2, we review the contributions and applications
of queuing theory in the field of healthcare. In section 3,
we derive exact expression for the coefficient of variation
of waiting time for G/M/n and M/G/1 queues. In section
4, we develop interpolation approximation for variance
of waiting time for the general queue GI/G/n. In section
5, numerical results show that the approximations are
accurate enough to be applied to service operations.
Section 6 delivers concluding remarks.

LITERATURE REVIEW

To help healthcare managers evaluate queuing
phenomena, a wide variety of analytic and simulated
queuing models are available (Kleinrock 1976, Gross
and Harris 2002,). In fact, healthcare continues to be
one of the fruitful sources of queuing applications. Some
of the earliest work was carried out by Bailey (1952)
and Welch (1964) in modeling appointment systems
in outpatient facilities. McClain (1976) reviews research
on models for evaluating the impact of bed assignment
policies on utilization, waiting time, and the probability
of turning away patients. Cox, Birchall, and Wong
(1985), and Green and Nguyen (2001) provided
applications where the complexity of the healthcare
system required additional modeling considerations
such as the use of mathematical approximations or
simulation. Nosek and Wilson (2001) review the use
of queuing theory in pharmacy applications with
particular attention to improving customer satisfaction.
Customer satisfaction is improved by predicting and
reducing waiting times and adjusting staffing.
Fomundam (2007) summarizes a range of queuing
theory results in the following areas: waiting time and
utilization analysis, system design, and appointment
systems. Preater (2002) presents a brief history of the
use of queuing theory in healthcare and points to an
extensive bibliography of the research that lists many
papers. Green (2006a, 2008) presents the theory of
queuing as applied in healthcare. She discusses the
relationship amongst delays, utilization and the number
of servers; the basic M/M/s model, its assumptions
and extensions; and the applications of the theory to
determine the required number of servers.

The research mentioned above survey the
contributions and applications of queuing theory in
the field of healthcare, showing the applicability of
queuing theory from the perspective of healthcare
organizations. Queuing models and simulation models
each have their advantages. Discrete-event simulation
permits modeling the details of complexity patient
flows. Jacobson et al. (2006) present a list of steps that
must be done carefully to model each healthcare
scenario successfully using simulation and warn about
the slim margins of tolerable error and the effects of
such errors in lost lives. Tucker et al. (1999) and Kao
and Tung (1981) use simulation to validate, refine or
otherwise complement the results obtained by queuing
theory. Because they require specialized software and
the details of the simulation model are usually
unknown, this paper does not review simulation studies
of healthcare processes.

Spreadsheets and software tools based on queuing
theory research can automate the necessary
calculations. For instance, Aaby et al. (2006) describe
the use of spreadsheets to implement queuing network
models of mass vaccination and dispensing clinics. It
is clear that queuing models are simpler and practical,
require less data, and provide more generic results than
simulation (Albin, 1990, Green, 2006a). In this paper,
we intend to provide a practical spreadsheet solution
to the variation of waiting time. Simulation experiments
are conducted to test the approximation results.

A considerable body of research has shown that
queuing theory can be useful in real-world healthcare
situations. However, from a statistics perspective, GI/
G/n model and applications are not discussed in the
above literature and authors are not aware of any other
spreadsheet model that is specifically designed to
analyze GI/G/n queuing model of healthcare processes.

In fact, recent years have witnessed a growing
volume of good quality approximations for the GI/G/n
queue (Whitt 1999, 2004, Atkinson 2008). While the
accuracy of these approximations is usually satisfactory,
they often result in algebraically intractable expression.
This hinders attempts to derive closed-form solutions
to the decision variables incorporated in optimization
models, and inevitably leads to the use of complex
numerical methods or to recursive schemes of
calculation. Furthermore, actual application of many
of these approximations is often obstructed due to the
thorough specification that is needed of inter-arrival
or service time distribution (Shore 1988).

In addition, all current literature focuses on the
probability of waiting and the average waiting time.
The analysis of the variance of waiting time remains
unsolved due to its inherent complexity. There is no
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mathematically tractable general formula for
approximating the standard deviation of waiting time
o _inthe GI/G/nqueue. Only bounds or approximations
of waiting time have been found in the literature. When
these bounds are used as approximations, they appear
to be rather crude (Bertsimas1990, Witt 2004).

ANALYTICAL MODLE DEVELOPMENT

To develop the approximation of the standard deviation
of waiting time,we have studied the equivalent problem
of finding a mathematically tractable formula of
estimating the coefficient of variation of waiting time

¢, =0, /W, , where W, and o, are respectively the

average and standard deviation of the time in queue.
There exist good approximations for the average waiting
time (Kimura 1986, Whitt 1993). For instance,
Sakasegawa (1977) presented the following closed-form
expression for the mean waiting time in GI/G/n queue:

watraim <[5 2 (1]

¢, isthe coefficient of variation of inter-arrival time and
c_ coefficient of variation of service time.

The advantage of this formula is discussed in more
details (Whitt 1993). Although it may appear
complicated, it does not require any type of iterative
algorithm to solve and is therefore easily implemented
in a spreadsheet program. This also makes it
possible to couple the single-station approximation
with the multiple-server to create a spreadsheet tool
for analyzing the performance of a series of queues.
The above formula is used in our research when
calculating average customer waiting time for GI/G/n
queue.

We present a general expression for ¢, which is
applicable to G/M/n and M/G/1 queues. We conjecture
that this expression provides a good approximation for
GI/G/n queues and have tested this conjecture via
computer simulations. In the following, A is the arrival
rate, and p is the service rate of each server and p =
A/ (nn)

The expression requires as input the third moment
of the service time and P(T = 0)the probability of no
waiting. We show that the expression is relative
insensitive to small errors in estimating these two
parameters and propose rudimentary approximations
to these two parameters.

For G/M/n and M/G/1 queues:

(j;q = \/1+

4g[s’] P(T, =0)
3 (E[s)’ (W

Where P(T, =0) is the probability of no waiting,
E[s?] and E[s®] are the second and third moments of
the service time distribution.

Proof: For M/G/1queue, we know the variance of

waiting time is oy =W, + /E[s] and the average
3(1-p)
waiting time is Wq = LE[SZ] (Kleinrock 1976), where
2(1-p) ’

E[s?], E[s®] are the second and the third moments of
the service time distribution. For M/G/1, we know

P(T, =0)=1-P(T, > 0) =1- p. Therefore,

%q
Cq = .1+
W

q

AE[S?] 1. 4E[s%] P(T, =0))
31— p)W,? 32 (E[s%))?

When general distribution is exponential, M/G/
lreduces to M/M/1. ForM/M/1, we know

E[s®] =2/ 1* and E[S’] = 6/ 4., so expression (1) can be

simplified to:
2-P(T, >0)
Ci =BT S0 2)
d P(T, >0)

For G/M/n queue, we know the distribution of
waiting time is

Cr " —nu(1-r)t
W,(1) =1- e

(t > 0) (Gross and Harris

2002). So we have,
W, = E[T,] = L tdW, (t)

= Cr"
SRt
s

_ny(l—r)z'

e ™'y (l—r)dt

=, Cr' —nu(l-r
E[T,] :J'O tzae # (1 r)dt

o 2cr
n’u?(1-r)*
Hence by definition,

2Cr"(1-r)—-C??"
ol =E[TZ]-(E[T,])’ ST

For G/M/n, we want to verify
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, 2-P(T,>0)
G4 =W' q Equivalently,
G_‘i: 2— P(Tq > 0)
s
WZ  P(T,>0)
_[2Ccr"@-r)-C** car Y
LHS - n2y2(1_r)4 n/,l(l—r)z
= 2 -1= 2 -1.
Cr"/(l-r) P(T, >0)
2-P(T,>0) 2
RHS = =

P(T,>0) P(T,>0) -1

o 2-P(T,>0)

Therefore, LHS = RHS, qu = P(T, > 0)

2—-P(T, > 0)
c,= |[———=

Hence, for G/M/n & M/M/1, & P(T, > 0)

Since M/M/1 is a subset of M/G/1, we conclude
G/M/n is a special case of M/G/1, when calculating
the coefficient of variation of waiting time.

Thus formula (1) holds for G/M/n queues. The
above relationship does not depend at all on the inter-
arrival time distribution or the number of serverss.
This implies that for G/M/n queues, all of the needed
information about the inter-arrival time distribution and

the number of servers is contained in the probability
of waiting P(Tq > 0).

APPLICATION TO GI/G/N QUEUE

We conjecture that formula (1) can be used as an
approximation for the GI/G/n queue since it applies to
G/M/nand M/G/1.Whitt (1993) conjectured that the
exact formula for the distribution of waiting times of
M/G/1 can be used as an approximation for the M/G/
n model. Seelan and Tijms (1984) provided additional
support for this approximation.

To estimate c, using formula (1), it is necessary to
estimate P(Tq = (). Since we do not assume that E[s’]
is specified, we must also estimate it by assuming some
known distribution for the service times, e.g. Weilbull,
uniform, or gamma, for which the third moment can
be computed as a function of the average and standard
deviation.

We analyze the sensitivity of the estimate of ¢_ to
errors in estimating E[s°] and P(Tq = (). Expressed as
percentage the error in estimating ¢_ is always less than
half of the error in estimating either of these two

parameters. Furthermore, from formula (1), it can be
seen as P(Tq = () approaches 0, the coefficient c,
approaches 1. This means for queues the more
congested the queue, the less the impact of the third
moment of the service time.

4.1.Estimation of E[s?]

To implement the approximations in a spreadsheet
format, we assumed that the service time distribution
could be approximated using a gamma distribution with
mean of 1/y1, shape parameter a, and scale parameter

B. Weestimate the parameters as a=1/c¢? and

B =1l ap where ¢ is the coefficient of variation of the
service time distribution.

Then: E[s’] =M (t)| o= a(a+Dp°.

E[s°]= M (t)]..o= (@ +D(a +2)8°

Then substitute these values into formula (1) we

have:
C, = \/1 +

4.2 Estimation of P(Tq > 0)

Estimating the probability of waiting for GI/G/n is a
complicated and tedious problem. Whitt (2004)
discussed this problem in more details. His results show
that probability of waiting is related to coefficients of
variations of inter-arrival times and service times. It
depends much more on inter-arrival times. In this
research, we develop an interpolation method for
estimating the probability of waiting P(Tq > 0) in the
GI/G/n queue that gives exact results for M/M/n,
E/M/1, and M/G/1 queues. The result is consistent
with Whitt’s conclusion.

For a multi-server queue GI/G/n, we first
approximate it via a single server queue. We compute
P(T, > 0) for M/M/n queue having the same arrival
rate and service rate as the given GI/G/n

PM/M/n(Tq >0) = (nu _Z“)WqM/M/n

Then we replace the multiple servers in the GI/G/
n queue with a single server having service rate

R
PM/M/n(l-q >0) )

Our assumption is that for a GI/G/n queue this
approximation will create a GI/G/1 queue having
approximately the same probability of waiting. We then
approximate P(Tq > 0) for the resulting GI/G/1 queue
by interpolation.

41— P(T, > 0) (00 + 2)
3P(T, > 0)(au+1) (3)

’L[I:



Xiaofeng Zhao and Kenneth Gilbert

We assume that P(T_ > 0) can be approximated as
a function of coefficients of variation of inter-arrival
time and service time ¢ and c;: P(Tq > 0) = flc, c).
We estimate f(c , ¢) by computing the plane that passes
through three points surrounding (c,, ¢) for which
P(Tq > () is known or can be closely approximated.

Expressed in the form (c,,c,, f(c,,c,)), these three
surrounding points are: (0, 0, 0) (Lcg, f(Lc,)) and
(c,Lf(c,,) with f(0,0=0, f(c)=4/u,
f(c,, 1) =r". We can compute k =1/c? to get Erlang
distribution parameter k and r is the root of the
characteristic equation: z'r** — (k4 + x)r +ki=0.

Equation f(0,0)=0 gives the probability of
waiting for deterministic queues; Equation
f(Lc,) = A/ is the probability of waiting for M/G/
1 queues. In equation f(c,,])=r" we are assuming
that the inter-arrival time distribution can be
approximated using an Erlang distribution and applying
the formula for E /M/1 queues (Gross and Harris 2002).

The plane that passes though these points (0,0,0),
(Lc,,A/u) and (c,Lr*) is given by

_ rkcs (1_ Ca) + (ﬂ'/:u')(l_ Cs)Ca
- 1-c.c,

f(c,.c,)

This method for computing the probability of
waiting is exact for M/M/n, M/G/1, and E /M/1.

COMPUTATIONAL ANALYSIS

To implement the approximation results, we develop a
spreadsheet model (See figure 1) .The approximation
results are compared with the Monte Carlo simulations.
The errors are calculated by using

% Error =100 |(spread sheet 6 —sim cs)|/sim c.

Different cases with the following combinations of
parameters are compared:

Number of servers: 1, 2, 3, 10

Utilization: 0.4, 0.8, 0.9, 0.95, 0.99.

Coefficient of variation of inter-arrival times: 0,
0.25,0.5,0.75,1,1.25,1.5.

Coefficient of variation of service times: 0, 0.25,
0.5,0.75,1,1.25,1.5.

Distribution of inter-arrival times: Normal, Gamma.

Distribution of service times: Normal, Gamma.

To evaluate the accuracy of our approximations,
we conduct simulation experiments using the Extend
simulation program. The testing of our approximations
has been based on extensive simulation experiments.

Note  Arrival rate and service rate must be in same units of time.
Arrival rate = 1/average interarrival fime
Service rate = 1/average service ime

cav
cov

standard deviation of interarrival times/average interarrival times.

anuaril Geviall coravelage iicia

)=
(s) = standard deviation of service timesfaverage service fimes.

Number of Servers, § = 3
Arival Rate, A =| 2700
Service Rate Capacity of each server, p=|  10.00

Basic Inputs:

Inputs |

\/

Coeficient of Variation of Inter-arrival time, COV(a) = | 0.6
Coefficient of Variation of Service time, COV(s)=| 0.5

The Waiting Line: Average Number Waiting in Queue (Lg) = 2.26

Service: Average Utilization of Servers (rho) = 0.90

Average Number of Customers Receiving Service = 2.70

The Total System (waiting line plus customers being served):
Average Number in the System (L) WIP= 4.96
Average Time in System (W) Cycle Time= 0.18
Standard deviation of fime in system o8 = 0.12
"Worst Case" Flow time = Average time in system + 3 65 = 0.55

Figure 1: Spreadsheet model to measure queuing performances

In this simulation research, we performed independent
replications using 54000 minutes of simulation time
and estimated 95 % confidence intervals. Both Normal
and Gamma distribution are used as general
distribution. For Gamma distribution, when shape
parameter k is positive integer, Gamma is reduced to
Erlang. When k=1, it is exponential. When k—, it is
deterministic.

Simulation experiments confirm that the
approximations perform remarkably well across a wide
range of cases. In most of these cases, the standard
deviation of the time in the system obtained with the
spreadsheet was within 10% of that obtained in the
simulation.

The exceptions are some of the cases in which the
utilization was 0.99 or higher (high traffic queue) and/
or the coefficients of variation of inter-arrival time or
service time are 1.5 or greater. Notice that these are
cases in which the performance of the queue itself
becomes unstable, It is a situation in which a small
change in a parameter would create a large change in
the predicted performance. For example, for any queue
the predicted performance is very sensitive to small
changes in the parameters when the utilization is near
1. So even though the approximation does not work
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very well in this situation, neither does simulation.
When the parameters are restricted to ranges in which
the queue is stable, our approximation works well for
multiple server queues. It also it is insensitive to the
distributions of the service time and inter-arrival times,
when these distributions are “reasonable”, i.e. normal
or uniform. Heavy traffic queue approximation is
beyond the scope of is paper, so the result of this paper
is not applicable to heavy traffic queues.

Another limitation of the research is that the result
is under the assumption that the coefficients of variation
of the inter-arrival times and the service times are
between 0 and 1.25, which is usual in practice. When
coefficients of variation are greater than 1.5, the
performance of the queue itself becomes very unstable.
As noted by Whitt (1993), greater variability means
less reliable approximation, because such descriptions
evidently depend more critically on the missing
information.

Thestandard deviation of the % error is 3.31 for all
cases reported. As utilization increases, the % error
standard derivation increases accordingly. For utilizations
of 0.8, 0.9, and 0.95, they are 2.92, 3.16, and 3.96
respectively. As the number of server increases, the error
standard derivation decreases, for instance, for number
of servers 1, 2, 3, and 10, they are 3.67, 3.63, 3.55, and
2.31. Below we present selected examples comparing
the approximation with simulation values. The data are
grouped in different ways to show the effect of different
parameters on the accuracy of the approximation.

5.1.Example of Results with Single Server Queues:
The Impact of the Coefficients of Variation

Table 1 below demonstrates the accuracy of the
approximation for single server queues over a range of
values of the coefficients of variation for the inter-arrival
times and the service times. In this set of problems,
the arrival rate and service, rates were assumed to be
A = 9andyu = 10, giving a utilization of 0.9. Table 1
Comparison of approximations with simulation
estimates of the standard deviation of waiting time in
GI/G/1 for different coefficients of variation

The simulation results in the table are obtained
using gamma distributions for the inter-arrival times
and the service times.Thus the approximation of E[s%]
was exact for these cases. The row and columns in
bold represent cases for which the approximation
formula is known to be exact. For these cases, the
differences between the standard deviations given by
the approximation and the simulation results are due
to the sampling error in the simulation.

Table 1 show that the approximation methods work
well for GI/G/1 queues for different combinations of

Table 1

Utilization =0.9 Service process

Ari method CVs= CVs= CVs= CVs= CVs=
proces 0.00 0.25 0.50 0.75 1.00
Cva=  App 0.00 0.05 0.17 0.34 0.50
0.00 Sim 0.00 0.04 0.16 0.31 0.51
Cva=  App 0.05 0.08 0.19 0.36 0.53
0.25 Sim 0.04 0.07 0.17 0.34 0.54
Cva=  App 0.15 0.18 0.29 0.45 0.62
0.50 Sim 0.13 0.16 0.27 0.39 0.62
Cva=  App 0.30 0.33 0.43 0.60 0.78
0.75 Sim 0.28 0.31 0.41 0.55 0.78
Cva=  App 0.48 0.51 0.61 0.77 0.99
1.00 Sim 0.48 0.53 0.63 0.79 1.01
Cva=  App 0.75 0.79 0.89 1.05 1.27
1.25 Sim 0.73 0.84 0.85 1.08 1.27

coefficients of variation. The cases shown in table 1
represent fairly congested queues. For example, in the
M/M/1 case, the average time in the system and the
standard deviation of the time in the system, are each
1.00. These are ten times the average service time of
0.1 and the standard deviation of the service time which
is also 0.1.

5.2.Example Results with Multiple Server Queues

In table 2, we show some results with multiple server
queues. In these cases the service rate for each server
isp = 10 and the arrival rate A = 9n giving a utilization
of 0.9. Again the simulations for comparisons used
gamma distributions for the inter-arrival time and
service time distributions. We have bolded the cases
for which our method is known to give the exact result.

Table 2 Comparisons of approximations with
simulation estimates of the standard deviation of waiting
time in GI/G/n queue for different number of servers
for a fixed level of utilization and coefficients of variation,
the approximation actually improves as the number of
servers increase. However holding these parameters fixed
and increasing the number of servers reduces congestion
and the variability of the time in the system. One could
argue that these are not valid comparisons.

Another way to compare would be to look at cases
in the table, for which the standard deviation are about
the same, (e.g. find the 1, 2, 3 server queues that have
a standard deviation of about .5). When we do this we
observe that the size of the error increases slightly as
the number of servers increase.

5.3.Example Results with Normal Distributions

Table 3 below shows results of comparing the
approximation method with simulation in which a
normal distribution was used (instead of gamma) for
the inter-arrival time and service time distributions.
The error of the approximation is not much larger when
the normal assumptions are used in the simulation.
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Table 2
Utilization 1 server 2 servers 3 servers
0.9

CVa CVs Sim. App. Sim. App. Sim. App.
0 0 0 0 0 0 0 0
0 0.5 0.16 0.17 0.09 0.08 0.07 0.06
0 1 0.51 0.50 0.27 0.25 0.17 0.16
0 1.25 0.83 0.78 0.43 0.39 0.28 0.26
0.5 0 0.13 0.15 0.07 0.07 0.04 0.05
0.5 0.5 0.27 0.29 0.15 0.14 0.10 0.09
0.5 1 0.63 0.62 0.33 0.31 0.23 0.21
0.5 1.25 0.88 0.91 0.46 0.45 0.31 0.30
1 0 0.48 0.48 0.24 0.24 0.16 0.16
1 0.5 0.63 0.61 0.30 0.30 0.22 0.20
1 1 1.01 0.99 0.52 0.49 0.32 0.33
1 1.25 1.28 1.28 0.66 0.64 0.41 0.43
1.25 0 0.73 0.75 0.36 0.37 0.26 0.24
1.25 0.5 0.84 0.89 0.41 0.44 0.27 0.29
1.25 1 1.27 1.27 0.60 0.63 0.40 0.42
1.25 1.25 1.55 1.56 0.73 0.78 0.51 0.52

Table3 Comparisons of approximations with
simulation estimates of the standard deviation of
waiting time in GI/G/n queue for different simulation

distributions

Table 3: Shows different distributions of arrival process and

service process

Utilization =0.9  Methods

CVa=0, Sim.(Normal) Sim.(Gamma) Approxim-

CVs=0 ation

1 server 0 0 0

2 servers 0 0 0

3 servers 0 0 0

CVa=0, Sim. Sim. Approxi-

CVs=0.5 (Normal) (Gamma) mation

1 server 0.14 0.16 0.17

2 servers 0.08 0.09 0.08

3 servers 0.09 0.07 0.06

CVa=0, Sim.(Normal) Sim.(Gamma) Approxi-

CVs=1 mation

1 server 0.52 0.51 0.50

2 servers 0.30 0.27 0.25

3 servers 0.19 0.17 0.16

CVa=0.5, Sim.(Normal) Sim.(Gamma) Approxi-

CVs=0 mation

1 server 0.13 0.13 0.15

2 servers 0.07 0.07 0.07

3 servers 0.05 0.04 0.05

CVa=0.5, Sim.(Normal) Sim.(Gamma) Approxi-

Cv=0.5 mation

1 server 0.26 0.27 0.29

2 servers 0.14 0.15 0.14

3 servers 0.08 0.10 0.09

CVa=0.5, Sim.(Normal) Sim.(Gamma) Approxi-

CVs=1 mation

1 server 0.64 0.63 0.62

2 servers 0.36 0.33 0.31

3 servers 0.27 0.23 0.21

CVa=1, CVs=0 Sim.(Normal) Sim.(Gamma) Approxi-
mation

1 server 0.49 0.48 0.48

2 servers 0.26 0.24 0.24

The simulation tests show that the standard
deviation does not change dramatically when normal
distributions are used instead of gamma distribution.
This suggests that the standard deviation tends to be
insensitive to “reasonable” changes in the distribution
assumptions, and hence the approximation will work
well for these different distributional assumptions.

CONCLUDING REMARKS

The role of time in healthcare delivery is becoming
more important as the expectations for convenience
and quality continue to rise. Patients are expecting
increased availability of appointments and resources,
shorter waits in treatment facilities, and quicker
turnaround of results.In practical applications, the
problems of operations management in health care
service systems have recently attracted a lot of
attention.Management scientists use techniques such
as queuing theory and discrete event simulation to
propose various appointment strategies under different
clinics’ settings.

Currently, these practices have no guidelines or
frameworks to help identify an appropriate balance
between physician capacity and patient panel sizes that
are consistent with manageable patient backlogs. This
research presents queuing models that we believe will
be very helpful in this regard. In particular, these are
the first spreadsheet models to explicitly estimating the
variance of waiting time. The goal of this research is to
provide sufficient information to analysts who are
interested in using queuing theory to model a healthcare
process and want to locate the details of relevant
models. We assume that the reader is familiar with
healthcare organizations and the basic concepts of
queuing theory. This research provides analytical
queuing theory models applied directly to healthcare
systems. It is reasonable for an analyst to understand,
adapt, and apply such a model to his own situation.

As we have demonstrated, the modeling
assumptions are that the first and second moments of
the inter-arrival and service time distributions are known.
Equation (1) is exact for G/M/n and M/G/1queues. Thus,
the method for computing the coefficient of variation of
waiting time in the queue is exact for any subset of these
queues for which the exact probability of waiting and
the second and third moments of the service time
distribution is known. When the parameters are restricted
to ranges in which the queue is stable our approximation
works well for multiple server queues. As noted by Whitt
(1993) and Kleinrock (1976), greater variability means
less reliable approximation.

In the implementation, we assumed the service time
distribution was gamma. The method for computing
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the probability of waiting is exact for M/G/1, M/M/
n.Thus; the method gives the exact coefficient of
variation of waiting times for M/M/n and E /M/1,
queues. While no model is a perfect representation of
reality, we believe that these are useful for patient
appointment system. Specifically, our results indicate
that the spreadsheet model developed here is extremely
reliable when patients take the available appointment.

When using the spreadsheet models to measure
the variance of customer waiting time, we assume that
the mean and the standard deviation of customer inter-
arrival and service time distributions are known. Thus,
all descriptions of the models depend only on the basic
parameter 5-tuple: arrival rate A, service rate y,
coefficient of inter-arrival time c , coefficient of service
time c, and the number of server s. In practice, all
these parameters are measurable for any health care
service operations so the models have many potential
applications. For instance, to implement appointment
scheduling, we can measure the 5-tuple parameters
and input the spreadsheet models to calculate the mean
and standard deviation of waiting time. That is, we
can measure patient’s arrival rate A(phone call rate),
coefficient of patient’s inter-arrival time ¢, doctor’s
service rate p, coefficient of doctor’s service time c,
and the number of doctors s. By using different A, p,
c, ¢, and s, managers can estimate the worst case,
such as mean waiting time +3 o, assuming the
standard deviation of waiting time is normal
distribution.

By using the spreadsheet and analyzing the case,
managers can not only measure process flows and mean
waiting time, but can also estimate the variance of
waiting time to implement waiting time guarantee
strategy. In addition, managers can also gain some
important insights in health care management if
conducting what-if analysis by inputting different
parameters of coefficient of variations of arrival times
and service times: (1) Variability causes loss of flow
rate and effective capacity (2) Variability causes delays
and congestions (3) In highly variable systems, waiting
time increases nonlinearly with utilization (4) Capacity
and variability reduction are substitutes in providing
customer service. Process modeling helps managers
understand real-world processes in detail and provides
insights to the interaction among decisions about
elements of service-delivery processes. They learn that
easy, inexpensive changes can greatly improve
turnaround time, and that the obvious process
improvements do not always produce desirable results.

There are other healthcare areas where
management science techniques will be useful, such
as reducing delay in healthcare delivery, smoothing of

elective admissions to reduce peak bed occupancy, and
optimal deployment of ambulances. Quantitative
techniques and data can help to present objective
argument. Expert opinions could then be used to fine-
tune the quantitative models. In our view, there is room
for more management sciences to be applied in the
healthcare settings. We hope this paper raises the
awareness and adoption of management science
applications among healthcare managers.
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