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ABSTRACT: Collisional plasma causes self-focusing of laser beam via Ohmic heating and density distribution.
The self focusing, leads to enhancement of wave intensity, elevation of electron temperature and reduction of
local electron density, leading to diminished attenuation rate. Thermal conduction plays an important role
in temperature equilibrium when the electron mean free path m is greater than the beam radius ( m  ro ).
For 1m, (> ro, thermal conduction suppresses any non-uniformities in electron temperature, and nonlinearity
is dominated by ponderomotive force. Stimulated Raman scattering instability is treated for laser beam
propagating through collisional plasma in a self-focused filament where nonlinear refraction due to the
redistribution of the electron density caused by nonuniform Ohmic heating of electron is balanced by diffraction
divergence. Thermal conduction could play a dominant role in determining the energy dissipation of electrons.
Inside a filament, the laser undergoes stimulated Raman backscattering (B-SRS). The filament supports
radially localized Langmuir waves. Since the temperature inside a filament is higher and density lower than
those outside, the collisional damping rates of the decay waves are lowered hence the threshold power for B-
SRS is reduced.
Keywords: Laser beam, stimulated Raman scattering, self-focused filament, Langmuir wave, thermal
conduction. PACS Nos.46.65.Dr, 42.65.Jx, 52.38Bv
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1. INTRODUCTION
It has been shown in recent years1-2 that a high
amplitude electromagnetic beam propagating in
plasma is unstable to small-amplitude perturbations.
This instability causes the breaking of the beam into
filaments and is known as filamentation instability.
On the time scale t > τh (which is more relevant to
laser-plasma interactions), where τh is the heating time
of electrons, the nonlinearity arises through
nonuniform heating and redistribution of electrons1.
The understanding of filamentation of laser light may
be important to the success of laser fusion. In the long
scale length plasmas envisioned for reactor targets,
local intensity hot spots caused by self-focusing or
laser light filamentation can drive the plasma above
parametric instability thresholds. These instabilities

tend to be saturated by the creation of super thermal
electrons4. The hot electrons can penetrate deeply into
the pellet, heating the interior, making high
compressions difficult. Directly driven targets require
very uniform driving pressures. Filamentation could
spoil this uniformity, making large compressions
difficult. The laser light absorption, penetration, and
conversion to X rays could also be affected by self-
focusing and filamentation. The earlier investigations
of filamentation of laser beams on a long time scale
are restricted to large-scale perturbations where the
thermal conduction effects may be neglected1,2. But in
the cases of real interest one is much more concerned
about the growth of small-scale perturbations where
thermal conduction could play a dominant role in
determining the energy dissipation of electrons. The
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relative size of perturbations depends on the ratio
mi/m, since beam radius ro is generally of the same
order as electron mean free path λm. In this paper we
have studied the filamentation of laser beams in
plasmas where both collisional and thermal-
conduction losses are present simultaneously. At short
wavelengths collisional effects considerably influence
laser plasma interaction. The nonlinear process of
stimulated Raman scattering is seen to require laser
power greater than a threshold value, determined by
collisions. In several experiments the observed values
of threshold power are far below the values predicated
theoretically5-18 Simon et al.12 invoked a two state
process to explain some of these results. The hot
electrons produced via resonance absorption drive a
Langmuir wave in the under dense region, via, two
stream instability. The Langmuir wave couples with
the pump to produce sidebands. Barr et al.6 have
recently examined the SRS in the presence of a static
sinusoidal density modulation transverse to the axis
of the pump laser radiation. Numerical solutions
reveal that the tendency of Langmuir wave
localization of the pump and consequent enhancement
of its power density at the filament bottom tend to
enhance the growth rate. For parameters of interest
the later tendency may win over the former giving
rise to an overall enhancement in the growth rate over
its value in the uniform case. However, this calculation
is numerical and the assumed density and intensity
modulation are not self consistent. Afshar-rad et al.14

have studied the evidence of stimulated Raman
scattering occurring in laser filaments in long scale
length plasmas.

In this paper we study B-SRS in a cylindrical
filament where nonlinear refraction due to the
redistribution of the electron density caused by
nonuniform Ohmic heating in presence of thermal
conduction loss of the electron is balanced by
diffraction divergence. The filament supports radially
localized Langmuir waves. The backscattered
electromagnetic wave propagates in the density
depleted channel primarily in the same mode as the
pump wave; its width being comparable to the
diameter of the filament. The coupled mode equations
are solved by the first-order perturbation theory and
we have only ponderomotive nonlinearity.

In section 2 we examine the self-consistent
equilibrium of filaments. The coupled mode equations
inside the filaments are derived in section 3 for the
Langmuir wave and the backscatter radiation.
Employing perturbation theory a nonlinear dispersion
relation derived and an expression for the growth rate
is obtained. The results are discussed in section 4.

2. NATURE OF FILAMENT
Let us consider the propagation of a plane uniform
laser beam in collisional plasma along the z-axis,

E


 = 0( , ) exp[ ( )]oA r z i t k z− ω −


(1)

ko = (ω/c)

1
2 2

21 po ω
− ω 

, (2)

2
poω  = 4πn0 e2/m (3)

and, ω, ωpo, c, –e, m and no are the frequency of the
main beam, the unperturbed plasma frequency of the
medium, the velocity of light, the electron charge, the
electron mass and the unperturbed concentration of
the plasma respectively. In the presence of the field
(1), the electrons acquire drift velocity in accordance
with the momentum balance equation

v
t

∂
∂


 = ,eieE mv v−
  (4)

where vei is the electron collision frequency.
Expressing the variation of v as exp [–i (wt–kz)], we

obtain, in the limit ω2 > 2 ,eiv

v  = 1
im

eieE iv −  ω ω


. (5)

Besides this, the electrons absorb energy absorb
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In the steady state the rate of energy gain must
balance with the rate of energy loss through collisions
and thermal conduction. Hence
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where
n
χ  =

2
th

ei

v
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(8)

δ = 2m/mi
is the fraction of excess energy lost per electron-

ion energy exchange collision, Te is the nonlinear field–

dependent electron temperature and vth = ( )
1
22 /oT m

is the electron thermal speed. For 2 2/ei o thr vν  < (δv)–1

thermal conduction is important, and we solve the
energy–balance equation in the perturbation
approximation. For a beam of finite extent we express

Te = To + ∆Te,
where ∆Te << To . Then Eq. (7) can be recast as
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Now we perturb the beam by a perturbation
A1 (x, z) exp [–i (ωt – kz)], (10)

where A1 (x, z) is not necessarily a slowing varying
function of space variables. The total electric vector
of the laser may now be written as

E


 = ( )( , )1 i t kzA A x z eo 
  

− ω −+
 

, (11)

where Ao is the amplitude in the absence of
fluctuations (polarized in the y direction) and A1 is
the amplitude of the fluctuations, which is a spatially
slowly varying function. The combined effect of these
two fields is to heat the electrons and exert a pressure-
gradient force, causing redistribution of plasma via
ambipolar diffusion. The nonlinear field-dependent
electron temperature Te in the steady state may be
obtained by solving Eq. (9) only the x dependence of
A1 is known. Taking A1 ∝ eiq. x with q| |<< q⊥ , where
q = q⊥ + q|| is the scale length of the perturbation (the
subscripts|| and ⊥ referring to components parallel
and perpendicular to the z direction), Te may be
written as

Te – T0 =
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As a result of non-uniformity in heating, the
plasma is redistributed so that

n (Te + T0) = n0 (Te0 + T0), (13)

Where Te =
2 2

0
0 2 /3

e AT
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+
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(14)

Using Eq. (12), (13) and (15) in (14), the modified
electron density may be written as

n =n0
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The dielectric constant of the plasma may be
written as

∈ = ∈0 +
*
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where ⊥2 =
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Substituting E, from Eq. (1) into the wave equation
and using ∇ . (∈E) = 0 and linearizing in A1, we obtain
the following equation for A1:

2iko
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where r = (x2 + y2)1/2 refers to a cylindrical polar

co-ordinate. Expressing A1 = Air + iA1i and separating real
and imaginary parts,
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For A1r, A1i ~ Jo (q⊥ r) eΓz Eq. (18) straight way yields
the spatial growth rate
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and mi is the mass of ion. The first zero of Jo occurs
at q⊥r = 2.4. The amount of power tends to localize in
maximally growing filament can be expressed as
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Following Sodha et. al.14 the temperature and
density profile in the filament can be written as
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where ( )oE r


 is the total electric field of filament at
r and νo is collision frequency corresponding to no and

To, Expressing ( )oE r


 for cylindrically symmetric beam,

as = ( , )exp { ( )}o o oE A r z i t k z= − ω −


 and neglecting
2

2
A

z
∂
∂

which implies that the characteristic distance (in the z
directions) of the intensity variation is much greater
than the wavelength, the wave equation reduces to
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Employing paraxial ray approximation, the radius
of nonlinear steady state self-trapped cylindrical
filament propagating through a homogeneous plasma
can be obtained from Eq. (23) balancing diffraction
and self-focusing terms,
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Equation (24) determines the radius ro of a self-
trapped filament,
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where Eo is the amplitude of the filament of radius
ro, in the nonlinear state, on the axis. The
corresponding power in nonlinear steady state is
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Equating the power contained in the filament p to
p/ one obtains
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Thus the radius and field intensity in a self-
trapped filament are dependent of the initial power
density of the incident beam. The density, temperature
and collision frequency variation near the axis of the
filament can be obtained by expanding
n/

o, Te and ν around r ≅  0
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3. COUPLED MODE EQUATIONS FOR B-SRS
Next we consider the instability arising through the
coupling of the pump wave (laser filament) obtained
in the previous section with two small amplitude
lower frequency waves in the filament: an
electromagnetic wave with frequency ω1 and axial
wave number 1k


 and a plasma wave with frequency

ω and axial wave number k


, interacting with the
pump wave with frequency ωo and axial wave number

ok


(cf. Fig. 1).

Figure 1: Schematic of Backward Stimulated Raman
Scattering in a Self-Trapped Laser Filament
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Consider the propagation of a laser filament. The
density, temperature and collision frequency profiles
are given by Eqs. (27), (28) and (29) :

oE
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and oB


≅ o

o

ck E×
ω

 
.

It produces an oscillatory electron velocity and
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 excites a pair of waves, a low frequency

Langmuir wave with scalar potential
φ = φ (r) e–i(ωt – kz) (37)

and a backscatter electromagnetic wave with
electric and magnetic fields

1E


 = 1( )
1( ) i t k zE r e 1− ω −


(38)

and 1B


= 11

1

ck E×
ω

 

where 1k


 = ok k−
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The linear response of electrons to the side band

is
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The pump and backscatter waves exert a low
frequency ( frequency) ponderomotive force on
electrons,
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Solving Eq. (40) the ponderomotive potential turns

out to be
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driving the Langmuir wave
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 and we have assumed only collisional damping.
The ponderomotive and self-consistent low frequency
force e ∇ (φ + φp) on the electrons drive density
oscillation n (ω, k).
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where χe is the electron susceptibility.

Using n in the poisson equation, 2∇ φ  = 4 πen, we
get

∈φ = χeφp, (44)
where ∈ = 1 + χe.

The current density at the side band frequency
can be written as
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Using Eq. (45) in the wave equation we get
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It is considered that the sideband wave is not
affected by Landau damping. However, it may suffer
damping due to collisions. In this case Eq.( 46) is
modified to
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The electromagnetic and plasma normal modes
satisfy Eqs. (42) and (47) in the absence of nonlinear
coupling, i.e.

2
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and Γ1 and Γm are normalization constants. Where
the boundary conditions that the eigenfunctions φ1(r)
and E1m (r) be continuous at the origin and vanish as r
→ ∞ . It is easily shown that the eigenfunctions are
orthogonal, and we take them to be real and
normalized.
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correspond to m = 0. In the presence of nonlinear
coupling terms one could express φ in terms of an
orthogonal set of wavefunctions φ1, where as E1 can
be taken to be the dominant mode,
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leading to a nonlinear dispersion
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oscv e− . Since φ1 is localized
in a narrow region around r ≤ 1 << a. I (1) may be
simplified to become
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The instability growth rates are readily found from
Eq. (56), one needs retain only the resonant term of
Eq. (56). Expressing ω = ω + iΓ, obtains
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Damping of the unstable waves introduces
threshold intensity for instability generation. The
threshold condition due to damping then is
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and x =
2 2
1 1
2 2
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+  

This threshold intensity can be quite low. One may
mention that the threshold condition for B-SRS, when
background plasma and intensity of laser beam is
uniform is written as

/
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22 2

2
1
4

po o

SRS th o o p

V
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 ω ν  =     ω ω ω 
, (68)

Substituting Eqs. (62), (63) and (64) into Eq. (61),
the maximum growth rate can be expressed as

Γ =
2

1 1
2

2

2 21o
b b

b b
 

Γ +  
(69)

It is much more worthwhile to compare this
growth rate with the one (Γ/

oo) when the lower wave

is uniform. Since, Γ/
oo =

1/2
1
4 o

o

kV
 ω
 ω 

one obtains

/
oo

Γ
Γ

 =
1/2 2

1
2

22 1OSC tho

o

v v b
V c b

   +      
(70)

4. RESULTS AND  DISCUSSIONS
A uniform-laser beam propagating through collisional
plasma is unstable to a transverse perturbations, and
break up into filaments. An optimum value of q⊥  of
the perturbation is required for a maximum growth
rate. A uniform plane wave does not cause
redistribution of carriers. However, as a result of
perturbations in the intensity distribution along the
wave front, electrons do become redistributed.  The
process of B-SRS in a filament is aided by the
enhancement of power density over its initial value
but it is inhibited by thermal conduction  and it is
observed that the power density inside the filament
is much greater than the initial power density of the
laser beam. Hence, the enhanced intensity in laser
filament reduces collisional damping of backscatter
light wave, diminishing the threshold power for
B-SRS. The onset of B-SRS is strongly correlated with
intensity threshold of the filamentation instability.
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