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AsstrACT: Collisional plasma causes self-focusing of laser beamn via Ohmic heating and density distribution.
The self focusing, leads to enhancement of wave intensity, elevation of electron temperature and reduction of
local electron density, leading to diminished attenuation rate. Thermal conduction plays an important role
in temperature equilibrium when the electron mean free path A is greater than the beam radius (A 27 ).
For Am, (>, thermal conduction suppresses any non-uniformities in electron temperature, and nonlinearity
is dominated by ponderomotive force. Stimulated Raman scattering instability is treated for laser beam
propagating through collisional plasma in a self-focused filament where nonlinear refraction due to the
redistribution of the electron density caused by nonuniform Ohmic heating of electron is balanced by diffraction
divergence. Thermal conduction could play a dominant role in determining the energy dissipation of electrons.
Inside a filament, the laser undergoes stimulated Raman backscattering (B-SRS). The filament supports
radially localized Langmuir waves. Since the temperature inside a filament is higher and density lower than
those outside, the collisional damping rates of the decay waves are lowered hence the threshold power for B-
SRS is reduced.
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1. INTRODUCTION

It has been shown in recent years'? that a high
amplitude electromagnetic beam propagating in
plasma is unstable to small-amplitude perturbations.
This instability causes the breaking of the beam into
filaments and is known as filamentation instability.
On the time scale t > T, (which is more relevant to
laser-plasma interactions), where T, is the heating time
of electrons, the nonlinearity arises through
nonuniform heating and redistribution of electrons'.
The understanding of filamentation of laser light may
be important to the success of laser fusion. In the long
scale length plasmas envisioned for reactor targets,
local intensity hot spots caused by self-focusing or
laser light filamentation can drive the plasma above
parametric instability thresholds. These instabilities

tend to be saturated by the creation of super thermal
electrons4. The hot electrons can penetrate deeply into
the pellet, heating the interior, making high
compressions difficult. Directly driven targets require
very uniform driving pressures. Filamentation could
spoil this uniformity, making large compressions
difficult. The laser light absorption, penetration, and
conversion to X rays could also be affected by self-
focusing and filamentation. The earlier investigations
of filamentation of laser beams on a long time scale
are restricted to large-scale perturbations where the
thermal conduction effects may be neglected'? But in
the cases of real interest one is much more concerned
about the growth of small-scale perturbations where
thermal conduction could play a dominant role in
determining the energy dissipation of electrons. The
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relative size of perturbations depends on the ratio
m./m, since beam radius r, is generally of the same
order as electron mean free path A . In this paper we
have studied the filamentation of laser beams in
plasmas where both collisional and thermal-
conduction losses are present simultaneously. At short
wavelengths collisional effects considerably influence
laser plasma interaction. The nonlinear process of
stimulated Raman scattering is seen to require laser
power greater than a threshold value, determined by
collisions. In several experiments the observed values
of threshold power are far below the values predicated
theoretically>'® Simon et al.’? invoked a two state
process to explain some of these results. The hot
electrons produced via resonance absorption drive a
Langmuir wave in the under dense region, via, two
stream instability. The Langmuir wave couples with
the pump to produce sidebands. Barr et al.® have
recently examined the SRS in the presence of a static
sinusoidal density modulation transverse to the axis
of the pump laser radiation. Numerical solutions
reveal that the tendency of Langmuir wave
localization of the pump and consequent enhancement
of its power density at the filament bottom tend to
enhance the growth rate. For parameters of interest
the later tendency may win over the former giving
rise to an overall enhancement in the growth rate over
its value in the uniform case. However, this calculation
is numerical and the assumed density and intensity
modulation are not self consistent. Afshar-rad et al.**
have studied the evidence of stimulated Raman
scattering occurring in laser filaments in long scale
length plasmas.

In this paper we study B-SRS in a cylindrical
filament where nonlinear refraction due to the
redistribution of the electron density caused by
nonuniform Ohmic heating in presence of thermal
conduction loss of the electron is balanced by
diffraction divergence. The filament supports radially
localized Langmuir waves. The backscattered
electromagnetic wave propagates in the density
depleted channel primarily in the same mode as the
pump wave; its width being comparable to the
diameter of the filament. The coupled mode equations
are solved by the first-order perturbation theory and
we have only ponderomotive nonlinearity.

In section 2 we examine the self-consistent
equilibrium of filaments. The coupled mode equations
inside the filaments are derived in section 3 for the
Langmuir wave and the backscatter radiation.
Employing perturbation theory a nonlinear dispersion
relation derived and an expression for the growth rate
is obtained. The results are discussed in section 4.

2. NATURE OF FILAMENT

Let us consider the propagation of a plane uniform
laser beam in collisional plasma along the z-axis,

E = A,(r,z) exp[-i(ot -k z)] 1)
0 o, E%

k, = (w/c) Hl_FH’ (2)

w,, =41, e*/m (3)

and, w, W, C —e m and n_ are the frequency of the
main beam, the unperturbed plasma frequency of the
medium, the velocity of light, the electron charge, the
electron mass and the unperturbed concentration of
the plasma respectively. In the presence of the field
(1), the electrons acquire drift velocity in accordance
with the momentum balance equation

Fr
ot
where v, is the electron collision frequency.

= eE-mv,7, 4)

Expressing the variation of v as exp [-i (wt-kz)], we
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Besides this, the electrons absorb energy absorb

obtain, in the limit & >v

energy from the wave at the rate of —eE.5. Whose time
average is
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In the steady state the rate of energy gain must

balance with the rate of energy loss through collisions
and thermal conduction. Hence

0.3 e’v,. A A
D.%DT +25v, (T.-T) = e (7
EE 2 El( e o) Zm(oz ()
2
where X% 8)
n Vei
0=2m/m,

is the fraction of excess energy lost per electron-
ion energy exchange collision, T, is the nonlinear field-

1
dependent electron temperature and v, = (2T0 / m)E

is the electron thermal speed. For v’ /v, < (3v)"!
thermal conduction is important, and we solve the
energy-balance equation in the perturbation
approximation. For a beam of finite extent we express
T =T +AT,
where AT, << T . Then Eq. (7) can be recast as
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Now we perturb the beam by a perturbation
A, (x, z) exp [~ (Wt - kz)], (10)

where A, (x, z) isnot necessarily a slowing varying
function of space variables. The total electric vector
of the laser may now be written as
E= g% +A1(x,2)e i(wt—kz) E, (11)
where A is the amplitude in the absence of
fluctuations (polarized in the y direction) and A, is
the amplitude of the fluctuations, which is a spatially
slowly varying function. The combined effect of these
two fields is to heat the electrons and exert a pressure-
gradient force, causing redistribution of plasma via
ambipolar diffusion. The nonlinear field-dependent
electron temperature T, in the steady state may be
obtained by solving Eq. (9) only the x dependence of
A, is known. Taking A, e * with g, << g, , where
q=1qy* q,, is the scale length of the perturbation (the
subscripts || and O referring to components parallel
and perpendicular to the z direction), T, may be
written as

e (A + A )+ AZH

Te - TO = 3mw26/ (12)
2 q le
Where o =0+=
3 30

As a result of non-uniformity in heating, the
plasma is redistributed so that

n (Te + TO) = nO (TEO + TO)’ (13)

e’Al
Wh T=T+—>— 14
ere e 0 3m0.)25/ ( )

Using Eq. (12), (13) and (15) in (14), the modified
electron density may be written as

0 e Ay.(A, + A7) O

n=n, - x e Ty 0

g 3Tme'd (2+¢2A /3mw’T,d ) g

(15)

The dielectric constant of the plasma may be
written as

=0, + (24, (4, +4), (16)
wZ
where 2=—= Lz
W 2+0PA,
p= !

1+2g°0;, /3020 ’
62

B 3mw’T,5

Substituting E, from Eq. (1) into the wave equation
and using 0. (JE) = 0 and linearizing in A,, we obtain
the following equation for A :

2
ik 0A, + 0“A
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(17)
where r = (x? + y»)/? refers to a cylindrical polar
co-ordinate. Expressing A, = A. +iA  and separating real
and imaginary parts,

0A, , .
2k, 4 OA? +16A" =0 (18)
0z or r Or
2 k 0
aAli + azAlr +1 aAlr + 2(*); Pa Af = 0

A
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~] (qD r) e"*Eq. (18) straight way yields
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the spat1a]1 growt rate
/2
r= o024 (19)
2, DU 0
The spatial growth maximizes to
— W paA?
T 2k2cT T+ pa Al
. Wp O paA? 0’ 20)
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2 Ij/ 2
where aA; = ! V” V.= el 4, | EQT"
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and m, is the mass of ion. The first zero of ] occurs
at g r = 2.4. The amount of power tends to localize in
maximally growing filament can be expressed as
P/ = LWZ A>
8T ’
cclm’w?
2.2
wﬂ

= 43 > (1+paA?) (21)

e

Following Sodha et. al.'* the temperature and
density profile in the filament can be written as

T = T, +2apA} EA +2a,pE; (r)g

n = 1,

" BropE(ME

v= 0, SI]TTE S}IZI—/E, (22)
a

and N7 Taopar
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where E, (r) is the total electric field of filament at

rand v_is collision frequency corresponding to n, and

T , Expressing E,(r) for cylindrically symmetric beam,
2

= A
as= E = A(r,z)exp {~i(w,t —k,z)} and neglecting (2) 5

which implies that the characteristic distance (in the z
directions) of the intensity variation is much greater
than the wavelength, the wave equation reduces to

J0A ., w0 /0
21k05+ DDA+C_2§1 n_oaA =0, (23)
2
where 0= 6—2 + li,
or® ror
and AZ - EDZD |7:0,Z:0 7r2/y“2

Employing paraxial ray approximation, the radius
of nonlinear steady state self-trapped cylindrical
filament propagating through a homogeneous plasma
can be obtained from Eq. (23) balancing diffraction
and self-focusing terms,

R =R (24)
where R,=kr
> (1+a,pE2Y
and R = wg r’ —( 1P200)
wp alpEau

Equation (24) determines the radius r, of a self-
trapped filament,
¢ (1+apEl)
ro = w s \1/2 (25)
P (‘op (alpEoo)
where E is the amplitude of the filament of radius
r, in the nonlinear state, on the axis. The
corresponding power in nonlinear steady state is
c’ (1 +0, PEfo)z
8w, a,p
Equating the power contained in the filament p to
p/ one obtains

p= S g =
8m

[ 00

O (1 + O(PAaz)l/2 _ 1%

(2.4

H (1 +2apA?) H
Thus the radius and field intensity in a self-

trapped filament are dependent of the initial power

density of the incident beam. The density, temperature

and collision frequency variation near the axis of the

apE? = (26)

filament can be obtained by expanding
n/, T and v around r J 0

O  r*0

n, = nlgl+—no, 27

o = mgt g (27)
O 0

T=THt-— 28
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apE,
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b, = r(—“f) (31)
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d,= 2201 b i (32)
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n
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T =T, (1 + 2apAf) (1 + 20(1pE02”)
-3/2
(7D OD
o L1, LT, (35)

Vo= Vo, HAT H

3. COUPLED MODE EQUATIONS FOR B-SRS

Next we consider the instability arising through the
coupling of the pump wave (laser filament) obtained
in the previous section with two small amplitude
lower frequency waves in the filament: an
electromagnetic wave with frequency w, and axial

wave number k, and a plasma wave with frequency

w and axial wave number k, interacting with the
pump wave with frequency w and axial wave number

k, (cf. Fig. 1).

A Langmuirwave (k)

.
Back scalter wave (w1 k)

.
Pump wave (g, kg

e
Filament
Filament
P al

Incident EM wave

Figure 1: Schematic of Backward Stimulated Raman
Scattering in a Self-Trapped Laser Filament
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Consider the propagation of a laser filament. The
density, temperature and collision frequency profiles
are given by Egs. (27), (28) and (29) :

E = E (r)e@™? (36)
and B O c, XE.
w

[

It produces an oscillatory electron velocity and

, excites a pair of waves, a low frequency
imow
0

Langmuir wave with scalar potential
o= (1,) e-iwt - k2) (37)
and a backscatter electromagnetic wave with
electric and magnetic fields

E, = E/(r)e" ™ (38)
and B, = ¢k X Ea
0‘)1
where El = k- EO
and w=W-0.

The linear response of electrons to the side band
is
-~ €E1
0=
imo,
The pump and backscatter waves exert a low

frequency ( frequency) ponderomotive force on
electrons,

(39)

E, =e0g, =7 001 +0:.00, B~ {oo x Bo)F
(40)
Solving Eq. (40) the ponderomotive potential turns

out to be

EED I].:jl
= 41
% 2mw,w, @)
driving the Langmuir wave
(p 1 a(p %") (A) _kzvthu + l(A)VO E
61’2 r or Vpo E
H, o 0 ive % W |v
i i B A L
E a Utho U wpu Cl EE Zwo th

O » 0
= P B3

’Z) =
2 12
0 = eF, 2= b°d
osc 771 2 2
Mo, b-+d
0,2 /2
Hrue u|

w =

”"Ema

and we have assumed only collisional damping.
The ponderomotive and self-consistent low frequency
force e (@ + @) on the electrons drive density

oscillation n (w, k).
2

L (@+9,)
X0+,

where X, is the electron susceptibility.

n(w, k) = (43)

Using 7 in the poisson equation, [*¢ = 4 Ten, we

get
Oo= X9, (44)
where O=1+x,
The current density at the side band frequency

can be written as

T = 0 = 1 =
J, = -nled, ~ 5 nev,
M n°?E, O Ok* e*E.pLC
- G- G P (4)
m imw, O [HAre 2imw, [T
Using Eq. (45) in the wave equation we get
2 2 2.2 2
P E, +10E1 +Eb)1 -w, kit w, ﬁD 1
ar* r or H c’ a’ CZHE
Kw, o
= = 46
2C2 (p ( )

It is considered that the sideband wave is not
affected by Landau damping. However, it may suffer
damping due to collisions. In this case Eq.( 46) is
modified to

Btz 318
0°E, 19, (' ”“91 wﬂ

or> r or c?

nar iv,a 3 Kw,|v,
Qa c’ El (;olal2 T T2 ®

The electromagnetic and plasma normal modes
satisfy Egs. (42) and (47) in the absence of nonlinear
coupling, i.e.

2
OE L 16El +kl.E, —a*r’E, =0
or r Or

k22

I o

(47)
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g 10¢

PSPk p-atrg =0, (48)
ar’* ror
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where K = B ’
Z)tha
2 W' - W), —kic® i),
kin = 2 *
pg _iviw a°U
o=
tlw (A) Cl
; w, O iv 4’0
and aft= B2 g e
! a’c’ w, d° H
Egs. (48) have well-behaved solutions when
2d7?
K2 = 2(0+1) _V,w e (49)
a vtho oo H
w, 0 v a20"”
and kKo =2(m+1)—2 gl-—e= 50
b ( ) ac Hl W, dZE (50)
where1=0,1, 2,.... and m =0, 1, 2... and the

solutions are'®

0=¢ =TL ex r2 0 Dzr V(;.)a2D
*EFH pH_ZbZE PH W
(51)
Eop ZDXDrZD Oir* v° 2> 0
=B = Dl g P P EE
/2
Davthaﬁ
where b= —"0 .
He,, [
O 07
=00
0, 0
L®) = e (ze)

and [ and " are normalization constants. Where
the boundary conditions that the eigenfunctions @,(r)
and E, (r) be continuous at the origin and vanish as r
- o . It is easily shown that the eigenfunctions are
orthogonal, and we take them to be real and
normalized.
(52)

T(pi(r)(pj (r)rdr = TEli(r)Elj(r)rdr =9,

Since the pump field (hence v ) scales as exp

r2

O ad
H—FE, the most unstable backscatter mode would
a

correspond to m = 0. In the presence of nonlinear
coupling terms one could express @ in terms of an
orthogonal set of wavefunctions @, where as E, can
be taken to be the dominant mode,

0= > 50,

1

E =TE, (53)
Using (53) in (42) and (47), multiplying the
resulting equation by @, and E,, respectively and
integrating over rdr one obtains

%w - W, —k*vy, +iwv; @

tho

and

O 0 2
—%z(m)—‘*’w @—1 v £ g
E avthn U 2 wpo Cl E@
0 r?
E, o+ (54)
o fho l El b2
M, ,0 ivO O 0
-W _ 0 _k2 2
T E T B Re, o 1 i
7 oG al——
c 0 g ac 2 W
H g
(55)

leading to a nonlinear dispersion
%of—wzgl ive [ % 2mpoBl 1iv° azEﬁzg
o i’ w, % ac 2w, Eér E
%2 L (10
’ 2 H
=4Mw @ Xy U
Bﬂw -, +zwv

O
O
%2+(2f+1)00p0|] 1vien? (1, B
H

502 2 tho
vy, Bl 2 mpacl EED

(56)
“ O v 0
where L= (rdrQE, expgr— (57)
1 Jo— v H_Zaz H
p g r* 0
L(1) = (r’dro,E, expT—=—5 (58)
1 _!: s E_ 24 H

( v, )(Ww,)"? is uniform medium growth rate

2
and we have used v [Jv _e™’ */2a

in a narrow region around r <1 << 4. I (1) may be
simplified to become

. Since @, is localized
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V27,
O —([rd 59
2 [rare 9
and I(1) U Q‘rr‘?’dr(p[ (60)
b, 4

The instability growth rates are readily found from
Eq. (56), one needs retain only the resonant term of
Eq. (56). Expressing w = w + il’, obtains

(r + I_<) (I_ + r) rio’ (61)
where ' an T _and I can be expressed as
r = rho = 62
R (62)
viw?r, O g2 a
r = 1 0o 2}70 + az c (63)
2w d awwH
/2
11,0
and r.=r., 51 bzl(z) . (64)

Damping of the unstable waves introduces
threshold intensity for instability generation. The
threshold condition due to damping then is

r.z r,r. (65)
N W, 1
Considering backscatter for —~<<— and

o

assuming only collisional damping Egs. (62), (63), (64)
2

and (65) give threshold value of Do

S

W 5.‘:—75 ol
where Y= Hl Lo L
O c 20
Z=H+ETEH (67)
and _bhrg 20

B Hl »H
This threshold intensity can be quite low. One may
mention that the threshold condition for B-SRS, when

background plasma and intensity of laser beam is
uniform is written as

w0 1Eh>2 V2

P BT Raes, ©

Substituting Eqs. (62), (63) and (64) into Eq. (61),
the maximum growth rate can be expressed as

RS—th

2b, O 2b2
r=r,—
"5, BT H
It is much more worthwhile to compare this
growth rate with the one (I'/ ) when the lower wave

O’
0 = —kV E(%H one obtains

(69)

is uniform. Since, I

T _ Uosc 2DU;hod/2 2b; 0

= +_
r’ A H
4. RESULTS AND DISCUSSIONS

A uniform-laser beam propagating through collisional
plasma is unstable to a transverse perturbations, and
break up into filaments. An optimum value of g, of
the perturbation is required for a maximum growth
rate. A uniform plane wave does not cause
redistribution of carriers. However, as a result of
perturbations in the intensity distribution along the
wave front, electrons do become redistributed. The
process of B-SRS in a filament is aided by the
enhancement of power density over its initial value
but it is inhibited by thermal conduction and it is
observed that the power density inside the filament
is much greater than the initial power density of the
laser beam. Hence, the enhanced intensity in laser
filament reduces collisional damping of backscatter
light wave, diminishing the threshold power for
B-SRS. The onset of B-SRS is strongly correlated with
intensity threshold of the filamentation instability.

(70)
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