
International Journal of Applied Mathematics & Engineering Sciences
Vol. 1, No. 1, January-June 2007

SCATTERING OF WATER WAVES BY
A SURFACE DISCONTINUITY IN PRESENCE OF

SMALL UNDULATIONS ON THE OCEAN BED

A. Chakrabarti & A. T. Chwang

ABSTRACT: The problem of scattering of surface water waves by a sharp discontinuity in the surface
boundary condition is studied, for water of finite depth, when the rigid ocean bed is assumed to possess
small undulations. By utilizing the Wiener-Hopf technique, in conjunction with a perturbation analysis, an
approximate solution of the resulting boundary value problem is determined and analytical formulas are obtained
for the reflection and transmission coefficients up to first order of accuracy in terms of the small parameter of
undulations.

1 INTRODUCTION

Problems of scattering of surface water waves in the two-dimensional linearised theory have created varieties
of challenges to applied mathematicians (see Stoker (1957), Newman (1965), Ursell (1947), Weitz and Keller
(1950), Keller and Weitz (1953), Evans and Linton (1994), amongst others), willing to handle a class of
mixed boundary value problems for the two-dimensional Laplace’s equation under different types of mixed
boundary conditions occurring in the modeling of realistic physical situations applicable to ocean engineering
sciences.

In the present paper we have considered the problem of scattering of water waves involving an ocean of
finite depth whose rigid bed has small patches of undulations whereas on the upper surface of the ocean two
different impedance- type boundary conditions are met on two sides of a line of discontinuity on this surface.
Such discontinuous surface boundary conditions are realized in practical problems in which the top surface of
the fluid is composed of two different distributions of ice particles (see Weitz and Keller (1950)) on either side
of a fixed line on it. Also, many other limiting cases of more general boundary value problems involving
Laplace’s equation can be modeled by the boundary conditions used in the present study. (see Gabov et al.
(1989), Evans (1994)). A similar problem, involving water of infinite depth was handled some time back by
Chakrabarti (2000).

The method of solution of the presently considered boundary value problem involves the use of a suitably
designed perturbation approach and the powerful Wiener-Hopf technique (see Jones (1964), Noble (1958)).
The wiener-Hopf technique has been recently employed by Tkacheva (2001) (see Balmforth and Craster (1999)
also), for the problem of scattering by the edge of a floating elastic plate, involving an ocean of finite depth
whose rigid bed is simply flat. By utilizing the kind of arguments similar to those of Tkacheva (2001), we have
solved the present boundary value problem in two stages, after introducing a perturbation approach to determine
the unknown velocity potential associated with the irrotational motion of the fluid under consideration, by
expanding this potential in a regular perturbation series involving a small positive parameter �, representing the
smallness of the bed undulations, explained later on. In the first stage , we have presented the analytical solution
of the zero order term of the perturbation series introduced and , in the second stage, we have obtained the
analytical solution of the first order term, thus determining the complete solution of the problem at hand, up to
the first order of accuracy, involving the small parameter ��> 0.

Analytical expressions are then derived for the determination of the reflection and transmission coefficients
of the scattering problem under consideration here.
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2. FORMULATION OF THE PROBLEM

We assume that water in the ocean of finite depth under consideration in the present paper is an ideal and
incompressible fluid and that the surface of the fluid is covered, on two sides of a bifurcating line, by two
different distributions of floating particles ( see Weitz and Keller (1950)) . It is also assumed that the ocean bed
has patches of small undulations in the shape of humps, as described below, through certain mathematical
equations. A plane incident wave of small amplitude propagates normally to the bifurcating line on the surface
and we wish to determine the reflected and the transmitted waves after the incident wave hits the line of bifurcation
and understand the effect of the bed undulations in such scattering problems.

Introducing Cartesian coordinates (x, y) [see FIGURE-1], with the origin O representing the bifurcation
point, the linearised version of the problem is as described below.

Figure 1: Geometry of the Problem

To determine the velocity potential Re { )}exp(),( tiyx �� � of the irrotational flow of the fluid , with t
denoting time and�  denoting angular frequency, such that
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where 1,�H  and 2�  are known positive constants, )0(��  is a small parameter and )(xc  is a differentiable

function of compact support (i.e., ,0)( �xc  as ��x ), so that the equation )(xcHy ���� ,  represents the

rigid bed of the ocean possessing small patches of humps, and n�� /  represents derivative in the direction of
the outward normal to the bed..
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We also need, an edge condition requiring that )()0,( xOx ��  as �� 0x , ensuring finiteness of energy

near the edge as well as unique solution of the boundary value problem, and the following conditions at infinity,
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where � and �� are the positive roots of the two transcendental equations in �, as given by: �)(1 �K � tanh

)( H� 1�� = 0  and �)(2 �K ��tanh 0)( 2 �� ��H , so that � and �� represent the wave numbers of the incident

wave(exp )( tixi �� � ) and the transmitted wave (exp )( ' tixi �� � ) respectively and R and T represent the

unknown reflection and transmission coefficients to be determined along with the unknown function ��

3. ANALYTICAL SOLUTION

We solve the boundary value problem posed through the relations (2.1) to (2.6), approximately, for small values
of the undulation parameter �, in two stages, as described below.

Firstly, we express the boundary condition (2.2), to the first order of approximation , by writing the normal
derivative in terms of the derivatives with respect to the coordinate axes in an usual manner and expand in
powers of the small parameter � ( see Mandal and Chakrabarti (1989, 2000)) to obtain the condition as given by
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Then, we assume that the following perturbation expansion holds good, for the unknown function )(x�  and

the unknown complex constants R and T:

)( 2
10 ����� O��� , (3.2)

R  = 0R +� 1R + )( 2�O , (3.3)

T  = 0T +� 1T  + )( 2�O . (3.4)

Substituting the above expansions in the relations (2.1), (2.3) to (2.6) and (3.1), we find that we can solve
the boundary value problem of our concern above, approximately, to the first order of �, by solving two
independent boundary problems for the two functions 0�  and 1� , both of which satisfy Laplace’s equation (2.1)
in the region 0, �������� yHx  and the two boundary conditions (2.3) and ( 2.4) on the boundary

0�y , whereas the boundary conditions on the other boundary Hy �� , are:
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The infinity conditions (2.5) and (2.6) give rise to the following conditions to be satisfied by the two

functions 0�  and 1� :
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We shall next utilize the Wiener-Hopf technique to solve the two independent boundary value problems for

the two functions 0�  and 1� , as employed by Tkacheva (2001), to solve a similar boundary value problem for

the two dimensional Laplace’s equation.

Solution of the Problem for 0�

To start with, we assume that � and �� possess small imaginary parts (see Jones (1964)) which will be taken to be
zero at the end of the analysis, as such an assumption will help transforming the boundary value problem here,
as well as in the next part of this paper, into Wiener-Hopf problems valid in a certain strip of the complex �-
plane, as explained below.

Next, we write
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where )(1 �K  is as introduced before, )(�U  is an unknown (to be determined) entire function and )(��V  is an

unknown (to be determined) analytic function in the upper half of the complex �-plane, )Im(�  > 1c , where 1c

is a suitably chosen real number so that the Fourier transform of ),(0 yx�  represents an analytic function in a

strip 21 )Im( cc �� � , 2c  being another appropriately chosen real number. The details (see Tkacheva (2001))

of the choices of the constants 1c  and 2c  depend on the zeros of the functions )(1 �K  and )(2 �K , and we use

the convention that the zeros � and �� lie in the upper half plane 1)Im( c��  where also lie all complex zeros

with positive imaginary parts, whereas the zeros ��  and '�� , as well as the complex zeros with negative

imaginary parts all lie in the lower half plane 2)Im( c�� .

It is important to note that , because of the requirement of finite energy in the neighbourhood of the edge at

,0�x  we must have that the integrand in the relation (3.10),  at the point, yx �� 0  must be )
1

(
2�

O , as ��� .

We observe that the above choice (3.10) of the function 0�  satisfies the boundary condition (2.3) on the

boundary 0�y  automatically, and, it will also satisfy the other boundary condition (2.4) , if we select the

function )(��P , such that
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where )(��Q  is another unknown (to be determined) analytic function in the lower half plane 2)Im( c�� ,

and )(
2
�K  is as introduced before.

The first of the two relations in (3.11) represents a simple Wiener-Hopf problem , whose solution is given
by the following relations:
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obtained after utilizing the Wiener-Hopf factorization of the function )(
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Then, by utilizing the behavior of the integrand in (3.10), as ���  (see above), we find that we must
have the following results:
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by using the second relation in (3.12) and the identity 212 )( ��� ���K .

Thus, using the relations (3.12), (3.13) and (3.14) in the representation (3.8), we determine the solution

),(0 yx�  completely, as given by the following formula:
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Then, the zero order reflection and transmission coefficients 0R  and 0T , as defined by the relations (3.6)

and (3.8) can be easily determined by using the solution formula (3.15), by closing the contour in the upper half

plane for 0�x , and, in the lower half plane for 0�x , along with the identity : )()(

1

)(

)(

21 ���
�

KKK

K

�

� � .  We

obtain the following results:

)(2

)}(){(
'
1

2
21

0 ��
���

K

K
R ��

� (3.16)

and

29



178 A. Chakrabarti & A.T. Chwang

)()()(

)()(
''

2
''

12
0 ����

���
��

�
�

�

�

KK

K
T (3.17).

We find (see Tkacheva(2001)) that the following identities hold good:
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satisfying the energy balance relation (see Balmforth and Craster (1999)):
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Solution of the Problem for 1

The solution of the boundary value problem for the function ),(1 yx� , satisfying the conditions (2.3), (2.4),

(3.5), (3.7) and (3.9) can be converted into a two-part Wiener-Hopf problem, by using Jones’s method (see
Noble (1958) and Tkacheva (2001)), in a straightforward manner.

Leaving aside the details, we find that the resulting Wiener-Hopf functional relation to be solved is:
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(for � belonging to the strip 21 )Im( cc �� � , introduced before)

where the Wiener-Hopf unknowns )(��F  and )(��G  are the half-range Fourier transforms which are analytic

functions in the upper and lower half of the complex �-plane, as defined by the relations:
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The Wiener-Hopf problem (3.21) can be solved in an usual manner, by using the factorization of the

function )()()( ��� ��� KKK , used before, and we obtain the following results:
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The complete solution for the function ),(1 yx�  can thus be determined by the aid of the relations (3.27) to

(3.31) and we obtain, in particular, the following results of importance:
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The above results (3.32) and (3.33) can be used effectively to determine the first order reflection and
transmission coefficients by evaluating the integrals on the right side by closing the contour in the upper or
lower half plane according as 0�x , or 0�x .

We find the following formulae, which are in terms of known functions described above:
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It is possible to cast the above expressions in (3.34) in terms of the zeros of the functions )(1 �K  and

)(
2
�K  (see Evans and Linton (1994)), by using the relations (3.31) and the residue calculus which helps in

obtaining numerical results for specific choices of the undulation function )(xc .

This completes the description of obtaining the analytical solution of the boundary value problem considered
in this paper, valid up to the first order accuracy in terms of the small undulation parameter �.

CONCLUSION

An analytical method of solution, involving the application of the Wiener-Hopf technique has been developed
in this paper for solving the mixed boundary value problem for the two-dimensional Laplace’s equation arising
in the study of the problem of scattering of surface water waves involving an ocean of finite depth, possessing
small patches of undulations in the otherwise flat bottom, such that two different boundary conditions are
satisfied ,on two distinct halves of the upper surface of the fluid , by the unknown velocity potential of the
irrotational motion under consideration. An analytical expression is derived for the physically important constant,
known as the reflection coefficient, associated with the scattering problem in this study. The reflection coefficient
thus determined in the present paper is correct up to the first order of approximation in terms of a small positive
parameter�  , representing the smallness of the patches of undulation of the bed of the ocean . Special examples
can be handled by using standard methods of numerical integration . Examples of such types are deferred to a
later study and the present work is devoted to the development of the analytical method as has been explained
here.
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