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ABSTRACT: A mixed boundary value problem arising in the problem of generation of waves due to a line source
in front of a vertical wall with a gap is studied here by using a dual integral equations formulation. The dual
integral equations are reduced to a singular integral equation with logarithmic kernel in the interval (a, b), a > b
> (. Using the boundedness behaviour of the function satisfying the singular integral equation at the end points of
the interval (a, b) the amplitude of waves at infinity is obtained analytically in a very simple manner.

1. INTRODUCTION

The solution of mixed boundary value problems using various mathematical techniques arising in the theory of
scattering and radiation of water waves by a vertical barrier is well known in the literature. A number of researchers
developed various mathematical techniques to solve this class of problems. Recently, Chakrabarti, Manam and
Banerjea [1] used a very simple method to solve completely the mixed boundary value problem(BVP) arising in
the theory of scattering of water waves by a vertical wall with a gap. They reduced the boundary value problem
to dual integral equations which in turn are reduced to a singular integral equation with logarithmic kernel in the
domain (a, b), a > b > 0. The forcing function of this integral equation involve two unknowns constants. The
function satisfying this integral equation is bounded at both end points of the domain (a, b) and consequently,
the solution of this singular integral equation exists if and only if two solvability criteria are satisfied. From
these two solvability conditions the two unknown constants in the forcing function are determined and hence
the solution of mixed boundary value problem is obtained. In the present paper we have studied the problem of
generation of water waves due to presence of a line source in front of a vertical wall with a gap. This problem
was considered earlier by Banerjea and Kar [2] who obtained the wave amplitude at infinity by an application of
Green’s theorem without actually solving the mixed boundary value problem. In the present paper we used the
idea of Chakrabarti etal [1] to reduce the problem to a singular integral equation with logarithmic kernel in the
domain (a, b). Using the solvability conditions the corresponding mixed boundary value problem is solved in
closed form. The known results are recovered by considering the limiting case.

2. STATEMENT AND FORMULATION OF THE PROBLEM
The motion is described by the velocity potential Re{®(x, y) exp(—ict), where @ satisfies the following BVP:
VO =0 in the fluid region except at (&, 1), 2.1
KO+® =0 on y=0, (2.2)

(72

where K = 8 being accelaration of gravity, ¢ being circular frequency.

® =0,forx=0,ye B, B=(0,a)+ (), (2.3)

® ~Inpasp—0where,p={(x-8&?*+(y-n)}t~2, 2.4)
r?V@isbounded as r —> 0, r= {(x)> + (y —¢)*}"2, c=aor b, (2.5)
VO —» 0asy— oo, (2.6)

B, exp(—Ky+iKx) asx—>o
®~{  exp (—Ky +iKx) @.7)

B_exp(—Ky—iKx) asx— —»o
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where B, and B_are amplitudes of radiated waves at infinity on either side of the wall.
Let,
O=G+9, (2.8)

where , G(x, v, &, 1) is the velocity potential due to presence of a line source at (&, n) in absence of a barrier and
G satisfies (2.1), (2.2), (2.4) and it behaves as outgiong wave as | x — &| > oo, The form of G is given by(cf[3])

Gy, &= =2 L(k’")L]EI(‘]’;) m;’z()_k £l gy 2micexp(-K(y+m+iK[x-g)  (2.9)
+

where,

L(k, y) = k cos ky — K sin ky.
Thus ¢ is the correction to G and it satisfies

Vip= 0, y > 0. (2.10)
K¢+¢,= 0, ony=0. (2.11)
¢, (0, )= f=-G(o0,y.&,m), x=0,yeB (2.12)
o0, ) = 90, y), y € (a, b). (2.13)

Vo —0 y —> 0, (2.14)

r?V¢  is bounded as r—0. (2.15)
C, exp(-Ky+iKx) asx—>©

bex.y) ~ {Cz exp(—Ky—iKx) asx— —o (2.16)

where C,C, are two unknown complex constants to be determined.

3. THE METHOD OF SOLUTION

By Havelock’s expansion of water wave potential a suitable representation of ¢ satisfying (2.10), (2.11), (2.14)
and (2.16) is given by

C, exp(—Ky+iKx) +[3 A(k)L(k,y)exp(—kx) dk,x >0
oCx. ) ~ ' (3.1)
C, exp(—Ky—iKx) +[ B(k)L(k,y)exp(kx) dk,x <0.
By Havelock’s expansion theorem
C =-C,
A(k) = -B(k). (3.2)
Using (3.1) in (2.12) and (2.13) we have
J;OkA(k)L(k, y) dk = iKC, exp (—Ky) — (), yeB. (3.3)
Also,
I;OA (KL(k, y) dk = -C exp (-Ky). v e (a,b). 3.4)
The dual integral equations (3.3) and (3.4) can be put in the alternative form as
o iC, sinh Ky —exp(KY) [ f(D)exp(=K1)dt + D, exp(Ky),0 < y<a
-[0 kA(k) sinky dk = iCll 0 2 (35)

—-exp(—Ky) —exp(Ky) ¥ ryexp(-Koydt + Dyexp(Ky),b<y<oo
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and

[ A0 sin ky dk = D, exp(Ky) + ZC—;{ exp(-Ky), vy e (ab) (3.6)

where D, D, and D, are arbitrary constants. In order to accommodate the origin as well as the point at infinity
along the y-axis, the arbitrary constants D, and D, in (3.5) becomes zero.

Then the dual integral equations (3.5) — (3.6) can be rewritten as

iC, sinh Ky —exp(Ky) 2 f(Hexp(-Kt)  dr.0<y<a

[ kadosinky ak =1 . (3.7)
0 —Srexp(—Ky) —exp(Ky)[}, f(Dexp(=Kt) di,b <y <o
and
w . C,
jo AR sinky dk = D exp(Ky) + -exp(-Ky).  ye(a.b) (3.8)
Now, let,
j;okA(k) sin ky dk = g(»), y € (a, b) (3.9)

where g(y) is an unknown function to be determined. Utilizing the relations (3.7) and (3.9), we obtain, by using
Fourier Sine Transform,

2 o ,
Ak) = §j0 M(¢) sin kt dt, (3.10)
where,

iC, sinh K1 —exp(Kt) [}y f(uw)exp(—Ku) du, 0<t<a,
M(0) = {~Lexp(-Kn) —exp(KD) L, f(wexp(~Ku) du, b<t<o
g(0) a<t<b

Substituting A(k) into the equation (3.8) and simplifying we get

ljbg(z)ln Y at=h(y) forye(ab) 3.11)
nda y—t
where,
_ Gy L Y+t
h(y) = D,exp(Ky) + —-Lexp(-Ky) 7TjBM(r)ln dr.

Thus A(y) contains two unknowns D, and C,. Next, the integral equation (3.11) will be solved completely
and D, and C, will also be determined.

4. DETERMINING THE COMNSTANTS

In order to solve the integral equation (3.11) completely,we must known the behaviour of the unknown function
g(y) at the end points y = ¢ and y = b which can be determined as follows.

Let
6.0,n=s0), yeG. (3.12)
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Using (3.1) we get,
[di - K] jow kA(K) sin ky dk = iKC exp(—-Ky) - 5O0), v € (. b).
y

This can be written alternatively as

'[ : kA(k) sin ky dk = —é C exp(-Ky) + D exp(Ky) — exp(ky) J. s(y)exp(=Ky) dy, vy € (a, b).

Where D, is an arbitrary constant. Comparing with (3.9) we have after simplification

6
5() = iC Kexp(-Ky) + Kg(y) _é v e (ab)

Noting (2.15) and (3.12) observe that

g ~Ojly—t|")ay—>1,
where r=ag"and b~.

It can be shown (cf]1]) that the solution of the integral equation (3.11) which is bounded at both end points
is given by,

2 ’
g(u) =— ((u2 _ aZ)(bZ _ u2))1/2 J'b th ([)
Y

73 dt u e (a,b) (3.13)
a ((t2 _az)(bz _tz)) (u2 _tz)

provided that

DIb th'(0)

dr=0 (3.14a)
a ((t2 — A _tz))”z

b (@2 - a? )

2)C+2 APRRENTE dr=0, (3.14b)
where C is given by
_an—1I b h(x) b h(x)(x* —a®)"?
C=2 I L 2 —a )2 (% - 22 +2J.a b2 — 22\ dx
with
pln |4 (x* —a®H?
I = L (b2 — )2 dx
b In| 4=

I, = dx

(o2 —ar-a)

Utilizing the function A(y) given by (3.11), in the relations (3.14a) and (3.14b) we obtain a linear system of
equations in D, and C|,

rD +r,C =b (3.15)
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where,

£

r, = 2K Ja 12((t2—a2)(b2—

I (%
+5J—aexp(_KI)|:(b2 2 172

1J~b rexp(—Kr)
2Ja ((t2 _ )2 _tz))”z

pexp(KD)((am— 1)+ (i

r.D +r,C =d

b rexp(Kr)

dt —

(@ -aet =)

i J“ yexp(=Ky)
2

_aZ)) dt+K

_L J:

(02— )

a 12 ((tz . az)(bZ _IZ))I/Z

1 ¢b exp(—Kt)((an -1+ 12(t2 - az))

a (b2

b rexp(Kn)(1? —a?
,[ N

b (@n-1p+ L -a

+
'[ ! exp(—Kv)In =y
—a t _

el

'[ exp(— Ky)ln

1/2

b, = ~mexp(kn - iKg)| [

dy} dt—
y

+_
172
tz)) 2w a

(cnt—ll)+12(t2 —az))

il

L(@ —a” - zz))“2

112
@) dt

b texp( Kt)(t
I _; )1/2

}dr+—j rexp(— Kt){

y exp(—Ky)

(2 — a2
(b2 — 1212

I (((z2 —a®)(b* - zz))m)

—a

VCoSky

o (67

(62 =ap> )"

I@L(k ,n)exp(kg) b
k +K a ((yz

d, = m exp(—kn — iK€) I_ayexp(—Ky)Lbz PN

172

{1 @y
(B? -y}

o ro L(k,n)exp(kE) r=
0 kP+K?

(@® - )12

ysinky{l— O

~W )

1}dy+ [

2 _ghyn
(b? — )2

}dy dk + mexp(— Kn—zK&)j yexp(— Ky){(y—
b=y

(3.16)
yexp(—=Ky)
S .., L2 dy,
(62 -ao? -y))
2
)
b
—1}#,
yexp(=Ky)
e yz))I/Z
M ysinky
K+K
)2
2,172 _1}@
. b (12 = g2y
}dy dk +exp(—kn —lKi)J.a b2 — )72
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ro L(k,n)exp(kE)

dy '[ exp(— Ky)ln .
- k> +K*

T

{ j exp(— Ky)ln dy} di+=

2 o2
Ib(t 5 Ub i’ll?r |smkydy I ln N pop(-k - i)

vl

sm ky dy} dt dk 4
-y

a (B2 =212 )
b 1
L s U exp(— Ky)ln Ll dy — I exp(— Ky)ln dy}dt
((tz_az)(bz_tz)) r—y t—
2 o Lk,n)exp(kE) b vl . a |t+y| .
= In sinkydy—| In sin ky dy |dt
njo 2+ K2 a(( (b2 )1/2 I —y ky dy _[0 iy ky dy
Solving (3.15) and (3.16) we get,
_ hby —nd, (3.17)
nn —hh '
C = M (3.18)
1 R —hh

The final form of the solution ¢(x, y) can be obtained by using the relations (3.2), (3.10), (3.13), (3.17) and
(3.18) in the relation (3.1). Thus knowing ¢, @ can be completely determined from (2.8) after using (2.9).

5. SOLUTION FOR OTHER CASES
Case 1: a > O and b (> 0) fixed.

This limiting case represents the fully submerged barrier and it can be shown that the integral equation (3.11)
reduces to a special singular integral equation and is given by

2 j e(In|2 L dt =(y), ye(0,b) 4.1)

where,

Y 0o
y—1

h(y)——%smhKy——I { —Lexp(—Kt)- exp(Kt)I F)exp(— Ku)du} In

Since

h(0) =0,
it is easily observe that the two conditions of solvability (3.14a) and (3.14 b) are reduces to one condition in this
case and is given by

b At
[ ——> (z)mdz= (4.2)
0" —1%)
Utilizing the above condition we find that
2 e h(y)exp(K
¢ = = [hIexnAY 4.3)
Ao (v =b%)
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where,

A, = I(Kb) - iK (KD),

y
o= [ F@exp(—Koydr. (4.4)
The result in (4.3)and (4.4) coincide with [5].
Case 2: a (> 0) fixed and b — o,

This case represents a barrier which is partially immersed to a depth ‘a’ below the mean free surface. In this
case (3.11) becomes

L somP M ar=no).  ve@m) 45)
nJa y—1
where,
h(y) = Qexp(—Ky) —lja[iCl sinh Kt — exp(Kt)J fu) exp(—Ku)du}ln Yl dt .
2K Y0 0

Transforming the above integral equation (4.5) into an integral equation of the form (4.1) and following the
case-1,we obtain the solvability criterion in this case as

o (h'(1)
-[a mdl‘ =0. 4.6)

Using the above condition we obtain,

_ 20 payhy(»)exp(Ky)
=l e @7
where,
A, =n1(Ka) + iK (Ka), (4.8)
h(y) = joyf(u)exp(—Ku) du. 4.9)

The result in (4.7), (4.8) and (4.9) coincide with [4].

6. CONCLUSION

The present analysis provides an efficient method to solve the class of water wave scattering and radiation
problems involving vertical barrier under the assumption of linearised theory.
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