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ABSTRACT: When measured vibration data of a structural response contains damage related data, it is crucial to
extract as much damage related information as possible. This paper presents an analytical and numerical
investigation into the applicability of the empirical mode decomposition (EMD) for structural damage detection
caused by a sudden change of structural stiffness, in conjunction with a novel idea based on energy of intrinsic
mode functions (IMFs). A 6-DOF mechanical system was modeled and analyzed subject to an impact load by
exact solution, using MATILAB software, as well as with the finite element method, using the ANSYS program.
The system’s natural frequency and damping ratio were evaluated. A proposed damage index was utilized to
detect the presence of damage.
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INTRODUCTION

Vibration-based structural damage detection methods have attracted considerable attention in recent years for
health monitoring of large civil structures (Xu et al., 2004). Most of the currently used vibration-based structural
damage detection methods are formulated based on the idea that the measured modal parameters, or the properties
derived from these modal parameters, are functions of the physical properties of the structure. As a result,
changes in the physical properties will cause noticeable and detectable changes in the modal parameters (Deobling
et al. (1996). Although these methods have demonstrated a certain degree of success in damage detection of
small structures, there are several confounding factors that make the applicability and effectiveness of these
methods for health monitoring of larger structures is rather questionable. One issue of primary concern is that
these methods presume access to a set of data extracted from the structure at its undamaged (healthy) state;
however, such information is not usually readily available in the case of most existing civil structures. Another
factor is that most of these methods operate based on the data recorded before and after the occurrence of the
damage. Moreover, often a linear structural behaviour is assumed for the structure during the data collection.
On the contrary, the identified modal parameters (the damage indices) in fact represent the average characteristics
of the structure over the duration of the data collection, thus they may not be acutely sensitive to damage, since
damage is typically a local phenomenon. Consequently, if a damage event suddenly occurs during the
measurement period, the time of the occurrence of the damage cannot be determined by these methods.

In contrast to a large number of publications pertaining to damage indices using the average modal
characteristics, there is a paucity of research works addressing instantaneous damage indices. It is believed that
the application of time—frequency data processing would be necessary to detect a damage event, including
characterization of the event time. The logical candidates for such a task would be the wavelet method, and the
recently emerged signal processing technique, as well as the empirical mode decomposition (EMD), introduced
by Huang et al. (1998, 1999).

There have been several studies devoted to detection of damage by various signal processing method. For a
comprehensive analysis of such publication the reader should consult Cheraghi (2006). Nevertheless, those
studies, using either the wavelet analysis or the EMD approach are based on numerical simulations. Several of
the important assumptions made through such analyses will require further investigation and verification. It is
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therefore desirable to verify the integrity of these approaches by laboratory-scale experimental investigations
before their application in large structures could be fully justified.

BACKGROUND TO THE HILBERT-HUANG TRANSFORM (HHT)

One of the most widely used dynamic data processing tools is the Fourier Transform (FT) and its digital analogue,
the Fast Fourier Transform (FFT). The FT (developed decades ago) and its fairly recently developed counter-
part, the FFT carry strong a-priori assumptions about the source of data, such as linearity and stationary properties.
Natural phenomena responses are essentially nonlinear and non-stationary. The accommodation of this fact in
FFT-based analysis often involves using more data samples to assure acceptable convergence and non-algorithmic
procedural steps in the interpretation of FET results. Therefore they cannot be considered as the most optimum
methods for studying non-linear waves and other nonlinear phenomena.

Wavelet-based analysis yields some improvement over the FFT, because it can handle non-stationary data,
but the limitation of a linear data set remains constant. Wavelet methods may also prove inadequate because
although being wellsuited for analyzing data with gradual frequency changes, its non-locally adaptive nature
causes leakage. This leakage can spread frequency energy over a wider range, removing the details of data and
thus giving it an overly smooth appearance.

To overcome these shortfalls, the Empirical Mode Decomposition method was recently proposed (Huang
et al. (1998, 1999)). This method is based on the use of the Hilbert-Huang Transform (HHT), and provides a
novel approach to the solution of the nonlinear class of problems. The initial application of the method was used
to analyze hydrospheric processes. The HHT allowed direct algorithmic analysis of nonlinear and non-stationary
data functions by using an engineering and a posteriori data processing method, namely an Empirical Mode
Decomposition method (EMD). A key feature of the signal analysis based on HHT is its physical attributes,
which has made the method popular to a wide range of researchers and experts in signal processing and other
related fields.

Several works based on the framework of HHT theory have been reported in the recent years (Deng et al.,
(2001), and Flandrin et al., (2004)). Its application for signal analysis have spread into earthquake research (I.oh
et al. (2001), ocean science (Huang, (1999), biomedicine (Huang et al., (1998, 1999), Phillips (2003)), speech
signal analysis, and image analysis and processing (Han et al. (2003).

MATHEMATICAL DESCRIPTION OF THE HHT

The HHT method consists of two parts: (1) the Empirical Mode Decomposition (EMD), and (2) the Hilbert
Spectral Analysis. As stated earlier, with EMD, one can decompose any complicated data set into a finite and
often less complicated intrinsic mode functions (IMFs). An IMF is defined as a function satisfying the following
conditions:

(a) The number of extrema and the number of zero-crossings must either equal or differ at most by one in the
signal function being considered;

(b) At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the
local minima should be zero.

The resulting IMF then would admit a well-behaved Hilbert transform. In this way therefore EMD decomposes
signals adaptively and is applicable to nonlinear and non-stationary data (the fundamental theory on nonlinear
time series can be found in Huang et al., (1998). In this section, only a brief introduction is given to make this
paper somewhat self-contained. The readers are referred to Huang ef al. (1998) for details.

The Hilbert transform, Y (¢), of an arbitrary function, X(r), in Lp-class (Titchmarsh 1948), is defined by:

v =Lp[” X0 4 (1)
T TPt
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where P indicates the Cauchy principal value. Consequently an analytic signal, Z(f), can be produced by:

Z(6) = X(0) + iY (¢) = a(£)e® 2)
where

1
) 2012 _ R40)
a®)=[X“()+Y"(®]? and 0(7) arctan(X(t)J (3)

are the instantaneous amplitude and phase angle of X(7).

Since Hilbert transform Y(¥) is defined as the convolution of X(¢) and #/1 by Equation(1), it emphasizes the
local properties of X(), even though the transform is global. In Equation (2), the polar coordinate expression
further clarifies the local nature of this representation. With Equation (2), the instantaneous frequency of X(f)
can be defined by:

do(r)

- 42D 4
o(t) o )

However, there is still considerable controversy on this definition. A detailed discussion and justification of
the above definition can be found in Huang et al., (1998).

EMD is a necessary pre-processing of the data before the Hilbert transform can be applied. It reduces the
data into a collection of IMFs and each IMF, which represents a simple oscillatory mode, is a counterpart to a
simple harmonic function, yet is more general.

Moreover, by the application of EMD, any signal X(f) can be decomposed into a series of finite IMFs, or

imf].(t) (j=1;...;n), and aresidue, r(r), where n is a nonnegative integer depending on X(¢); that is,
n
X(0)= X imf, (D) +r(1) 5)
j=1

Let Xj(r) = imfl.(t), whose corresponding instantaneous amplitude, ¢, (1), and frequency, coj(t), can be computed
by Equations (3) and (4). Through Equations (2) and (4), the imf].(t) can be expressed as the real part (RP), in the
following form: '

imf, (1) = RP| a; (1) exp(i[ o, (1)) ©6)

Therefore, using Equations (5) and (6), X(¢) can be expressed as the IMF expansion as follows:

X =RP| S a0 exp(i [ o, (1)dt) + (1) 7
j=1

which generalizes the following Fourier expansion by admitting variable amplitudes and frequencies

t

X0 = ae” ®)
Jj=1

Consequently, the main advantage of EMD over FFT is that it could effectively accommodate nonlinear
and non-stationary data. Equation (7) thus enables one to represent the amplitude and the instantaneous frequency
as a function of time in a threedimensional plot, in which the amplitude is contoured on the time-frequency
plane.

MODAL RESPONSE OF n-DOF STRUCTURES DUE TO IMPULSE LOADING

The equation of motion of an n-DOF structure can be expressed as
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MX(1)+ CX(1) + KX(t) = F(t) 9)

in which X(z) = [x,, x,,..., x_]is the displacement vector, F(z) is the excitation vector and M, C, and K are the
mass, damping, and stiffness matrices, respectively. With the assumption of the existence of normal modes, the
displacement and acceleration responses can be decomposed into z real modes

D00 X©=20,Y1 (10)
= =1

In the above equation, it is apparent that the n x n mode-shape matrix ¢ serves to transform the generalized
coordinate vector Y to the geometric coordinate vector X. The generalized components in vector Y are called the
normal coordinates of the structures.

Substituting Equation (10) into Equation (9) and using the orthogonal properties of the mode shapes, one
can decouple Equation (9) into » modes
Y +28,0,Y + 07 =¢) F(t)/m, (11)

in which o, is the j® modal frequency, &. is the j® modal damping ratio, and m, is the j®modal mass. Consider an
impact loadlng applied to the p® DOF of the system, i.e. f, ()= F, (1) and f (t) O for all j # p, where f (1) is the
jth element of F(z).

Further manipulation of the above equation (details are provided in Cheraghi (2006)), will yield the following
equations:

Folby |0, |0, ¢ o (J(i o} + o) +4§2m2w§})

0
A (1)
’ 1‘&3 (& o +cod})2

(12)

Y
By =04t +0;+=+y, -0 (13)

In the above Equations Py is the phase difference between the k™ element and the p® element in the j® mode
shape. With the existence of normal modes, all the mode shapes are real and hence Py is either £2mm or +
(2m + 1)m where m is an integer, i.c.

(Pk_,/(ij > 0 when @, == 2mmn
¢/, <0wheno, =+ (2m+Dn
From Equations (12) and (13), one can obtain

\%H%\w (\/(a o7 + o)) +4§2@2®§})

(14)

co(t) = dB (t)/dt = (15)
As seen with the measured impulse response vector, the EMD method can be used to decompose each
measurement into n modal responses. Then, each modal response can be processed through the Hilbert transform
to determine the instantaneous amplitude and phase angle. Finally, the system identification can be completed,
including natural frequencies, damping ratios, mode shapes, mass matrix, damping matrix, and stiffness matrix.
In the following section, the application of the abovementioned procedure will be seen through a case study.
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Case Study # 1: a Healthy (Undamaged) Structure

To investigate the effectiveness and integrity of the application of the proposed system identification for damage
detection methodology in a structural system, the integrity of the Hilbert-Huang approach is investigated by
applying it onto a 6-DOF mechanical?. Later, the same system will be investigated bearing a damage.

Consider the 6-DOF mechanical system, as shown in Figure 1, with the following properties:

m =m,=m
k =k, =k,

C,=6C,= ¢

=m,=m,=m,= 1kg
k, =k, = 7500 N/m,
¢, =c¢, = 0.75Ns/m

3
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Figure 1: Schematic of the 6-DOF Mechanical System

The Hilbert-Huang spectral approach, with its procedure outlined as above, will be applied to the system. In
this problem, the displacement impulse responses of all masses in response to an impact load applied to the third
mass are measured. ANSYS finite element software was used to model the system, and modal and transient
dynamic analyses were conducted. The results of the finite element analyses were compared to those reached
through the exact solution, which were obtained using MATLAB software. The measured displacement X ,(7), is
shown in Figure (2a). The Fourier transforms of the displacement responses of all degrees of freedom of the
system (X (¢) through X (1)) is shown in Figure (2b). The modal frequency ranges are summarized in below:

() 538Hz= o, < o, < o, = 6.88 for the first mode
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Figure 2: Plots of (a) the Displacement Impulse Response of Mass # 3 of the Damaged Mechanical System,
(b) The Fourier Transform of Displacement Response of all Masses of the Healthy Mechanical System

(2) 1121 = o, < o, < ®,,=12.21 for the second mode
(3) 1644 = o, < @, < ,,=17.94 for the third mode
4) 208 = o, < 0, < a,,=22.3 for the fourth mode
(5) 24.08 = o, < @, < w,,=25.58 for the fifth mode
(6) 26.12= o, < @, < o,,=27.62 for the sixth mode

Subsequently, the band-pass method was used to carry out the EMD calculations and to extract the IMFs.
The procedure is as follows:

e The signal for each DOF (X(r), shown in Figure 2a was passed through a fourthorder band-pass filter,
each within the frequency band noted in above. The resulting six time histories from each DPF are
denoted by X, . (j =1,2,3,4,5, 6) for each corresponding mass number.

e Then, all of the resulting X . ; were processed through EMD and the first IMF was used to identify the
modal response of X As an illustration, the signature of the 4® DOF (mass) and its IMF is illustrated
in Figure 3. It is 1mportant to note that the band-pass filter used for the operation should have the
smallest possible phase shift to produce the best results. It should be noted that due to the phase shift,
a segment of the modal response near ¢ = O is not a decaying function. Such a segment should be
discarded prior to the application of the Hilber transform.

e After removing this segment, the modal responses illustrated in Figure 4 are processed through the
Hilbert transform and the instantaneous phase angles 0 (t) anda (t) are obtained. The plots of 0 and
0, versus time ¢ for the first mass are illustrated as the dotted curves in Figures 4a and b, respectlvely

e  Slopes of these curves represent the first and sixth natural frequencies of the system. Figures 5a and b
illustrate the plots of logarithm of the amplitude of the first and sixth DOF (In ¢, and In a, ) versus
time. The linear least-square fits of the curves are also shown in the above noted figures by the solid
lines. The natural frequencies o, and ,, and the damping ratios & and &, can be extracted from the
slopes of the least square lines, as outlined earlier.

e The above process was repeated for all six DOF, and the natural frequencies and damping ratios of all
DOF were obtained. The results are outlined in Table 1.
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Figure 3: Displacement and IMFs of Mass #4 of the Healthy Mechanical System
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Figure 4: Plots of (a) the Unwrapped Phase Angle of the First Mass for the First Modal Response,
(b) The Unwrapped Phase Angle of the First Mass for the Sixth Modal Response of the Healthy System

Table 1
Natural frequency and damping ratios of the healthy six DOF mechanical systems
Mode Theoretical Values Identified Values
Frequency (Hz) Damping ratio Frequency (Hz) Damping ratio
1 6.13 0.19 6.13 0.19
2 11.96 0.38 11.95 0.38
3 17.18 0.54 17.17 0.54
4 21.55 0.68 21.50 0.68
5 24.84 0.78 2481 0.79
6 26.87 0.84 26.70 0.85
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Phase Angle (rad)

Figure 5: Plots of (a) In Amplitude of the First Mass for the First Mode, (b) In Amplitude of the
First Mass for the Sixth Mode

Itis observed from this table that the correlation between the theoretical values (frequencies and damping) and
the identified results is excellent. The efficiency of the procedure can be better appreciated by noting that only
one response (displacement or acceleration), measured through only one sensor, was used to generate all the
natural frequencies and damping ratios of the system. It should also be noted that the results presented in Table
1 are based on averaging the mass of the system per segment.

Moreover, the complete mass matrix of the system can be calculated by repeating the above procedures for
each DOF of the system. For illustration, the calculated mode shapes and their comparison with those obtained
through the closed-form solution are tabulated in Table 2. The second and third modal responses are illustrated
graphically in Figures 6a and b. The identified stiffness matrix and damping matrices, as well as those obtained
theoretically, are listed below:

Table 2
Theoretical and Identified Mode Shapes of the Healthy six DOF Mechanical Systems

Theoretical values of the mode shapes Identified values of the mode shapes

DOF  First Second Third Fourth Fifth Sixth First  Second Third Fourth Fifth Sixth
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1.80 125 044 —044 -125 -1.80 1.72 125 044 —044 -120 -1.80
3 225 055 -0.80 -080 055 225 227 055 -080 -0.80 051 226
4 225 055 -0.80 080 055 225 227 -055 -080 0.80 -051 226
5 1.80 -125 044 044 -125 180 1.72 -125 044 044 120 180
6 1 1 1 1 1 1 097 -099 101 -1 096 -1.02
The identified modal mass:

[18.16 0.04 -0.15 0.03 0.12 0.01]
004 571 0 0.01 005 0
(© XM ] -0.14 0 3.69 -0.01 0.10 -0.03
X X =
perfect perfect 0.03 001 -001 3.67 004 -001
0.12 005 010 004 532 0.02
| 001 0 -0.03 -0.01 0.02 18.73]
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Figure (6): Plots of (a) the Second Modal Response, (b) the Third Modal Response of the Mechanical System

The identified stiffness matrix:

(14684 -7327 128 -153 131
—7327 15176 7381 -56 418
K porps = o diag[K}-]x[d)_l]' _ -128 7381 14743 7537 139
: : —-153 -56 7537 14744 7443
131 418 —139 7443 15229
| —188 -3 13 -4 -7430
The theoretical stiffness matrix:
15000 —7500 0 0 0 0]

=7500 15000 —=7500 0 0 0

K _ 0 0 =7500 15000 —7500 0

theory 0 0 7500 15000 —7500 0

0 0 0 =7500 15000 -7500

L 0 0 0 0 -=7500 15000 |
The identified damping matrix:

[ 14739 -0.7331 -0.0148 -0.0151 0.0133
-0.7331 1.5213 -0.7382 -0.0074  0.0389
C= @ x diag [c] x O = —0.0148 -0.7382 14781 -0.7571 -0.0158
] —0.0151 -0.0074 -0.7571 14781 -0.7445
0.0133  0.0389 -0.0158 -0.7445 1.5266
|—0.022  -0.0001  0.0016 -0.0023 -0.7435

The theoretical damping matrix:

-188 |

~7430
14885 |

-0.022 |
-0.0001

0.0016
-0.0023
-0.7435

1.4941 |
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As can be seen, there is good agreement between the identified and theoretically obtained results.

INTRINSIC MODE FUNCTIONS (IMFS) BASED DAMAGE DETECTION METHODS

Having demonstrated the ability of the Hilbert Transform approach in evaluating the vibration response of
damage and undamaged structures, in this paper we also illustrate another application of the method, that is,
damage detection in structures. For that we have introduced a novel damage index for identifying damage in a
given structure. This index is based on the first IMF of the filtered signal, which is indeed very close to the
modal response of the structure. The energy of the first IMF can be evaluated by:

E, = jO’O (IMF)2, dt (16)

In the above equation, m is the sensor’s number or the degree of freedom of the structure being considered,
n is the mode shapes’ number and (IMF) is the first calculated intrinsic mode function of the signal, which has
been passed through the aforementioned band-pass process. The damage index is therefore defined as:

Healthy Damaged

x 100 (17)

- ‘ EHealthy |

The advantage of the proposed damage detection approach is that the approach does not require significant
computational effort, since the same procedure used for establishing the stiffness and damping matrices are
effectively used to establish the damage index and location. Another advantage is that only the first few modal
responses of (IMFs) are required for establishing the damage location.

To illustrate the capability of the proposed approach, the same 6-DOF mechanical systems (damaged and
undamaged) are again considered. The energy terms calculated based on the IMFs, and the corresponding
damage indices are evaluated and tabulated in Table 3. Note that for the purpose of establishing the existence of
the damage, only the first two frequencies have been used. It can be clearly seen that the energy terms

Table 3
Energy and damage indices of the first two modal responses based on the IMF energy.
IMF Energy of the healthy system IMF Energy of the damaged system Damaged Indices
Mass Number
First Mode Second Mode  First Mode Second Mode First Mode  Second Mode
1 1.3562 12167 1.3728 23541 1.22 93.48
2 4.3844 18827 4.4029 .5358 0.42 186.64
3 6.853 036594 6.8652 38273 0.18 945.88
4 6.9479 .038671 6.8919 .39534 0.81 922.32
5 4.4425 18963 4.4302 5416 0.28 185.60
6 1.3565 12149 1.361 23685 0.33 94 .95
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corresponding to the first mode of the system have remained stationary for the undamaged and the damaged
system. However, the results of Table 3 indicate that the energy terms corresponding to the second mode shape
have significantly changed. Moreover, the maximum difference in the energy terms is in the vicinity of DOF
three and four.

CONCLUSIONS

A theoretical investigation was carried out to investigate the vibration characteristics of a six degree freedom
mechanical system. The investigation was carried out to demonstrate the capability and integrity of Empirical
Modal Decomposition (EMD) with respect to assessing performance of structures, in healthy and damage states.
Some of the more significant observations from this study are summarized below:

1. The Hilbert-Huang spectral analysis method could be effectively used for the identification of the
dynamic characteristics of multi-DOF structural systems.

2. The natural frequencies and damping ratios of the system could be effectively calculated based on the
data collected through only one single sensor used for measuring the free vibration-time history of the
system (more importantly, only at one single location).

3. Establishing the above information for a healthy system, as well as a damaged system can also effectively
establish the presence of damage and its location by way of the proposed damage index. The developed
damage index is based on the first intrinsic mode function.
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