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ABSTRACT: An analytical solution was constructed to investigate the ice floe drift, velocity field, and trajectories.
The mathematical model considers the balance of atmosphere and ocean drag forces on ice floe, including skin
and body drag forces from wind, waves, and currents. We have obtained analytical solutions of air-ice and water-
ice skin stresses, water-ice form stress, and wave radiation stress. Graphical solutions are presented for ice floe
drift due to wind stress. Mathematical formulations are presented for the ice floe drift due to Eulerian current,
water-ice form stress, and wave radiation pressure. We systematically presented in this paper the classical solutions
of the ice floe drift, velocity, and trajectories considering the effects of wind, Eulerian current, water-ice form
stress, and the wave radiation stress. The mathematical models developed here, will be tested with available
experimental data.
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1. INTRODUCTION

Anice floe is a floating chunk of sea ice that is less than 10 kilometers in its greatest dimension. Marginal Ice
Zone (MI7) is an interfacial region of ice floes which forms at the boundary of open water and the continuous
ice pack. Wadhams (1986) describes MIZ. as “that part of the ice cover which is close enough to the open ocean
boundary to be affected by its presence”. This definition is generally applied to that region of ice pack which is
significantly affected by the ocean swell. The MIZ is essentially an area of enhanced ice drift and deformation.
Figure 1 depicts a typical MIZ situation including ice floes and wave induced ice fracture at the ice edge. In the
Antarctic, MIZ region may extend hundreds of kilometres from the ice edge.

Figure 1: Marginal Ice Zone in the Antarctic, and Wave Induced Ice Fracture at the Ice Edge.
(Courtesy: National Science Foundation, USA, and Squire ef al. [8])

Interactions between ice, wind, waves, and current in the marginal ice zone can dramatically move the ice
distribution of the ice floes. Moreover, compared to the ice free situation, currents, waves, and the associated
planetary boundary layer are altered by the MIZ. This paper considers the mathematical model for the ice edge
and ice floe trajectories which is based on a balance equation for forces due to wind, waves, and currents
impinging on the ice, as described by Tang and Fissel (1991)[10], Steele et al. (1989)[9] and Jenkins (1989)[2].
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Ocean surface waves are central to the atmosphere-ocean coupling dynamics at the air-sea interface. The
dominating physical processes that determine ocean surface waves are, input of energy due to wind §, , nonlinear
transfer between spectral components due to wave-wave interactions S, and energy dissipation due to white
capping and wave breaking S, . Operational wave models combine these processes in the energy balance equation,
which may be written as

W"‘Cg'VE(.f,e)ZSin+Sds+Snl M

where the two dimensional wave spectrum E(f, 0) is a function of frequency f, direction 0, time ¢, and position
x and where Cg is the group velocity. Examples of how S, , S, and S may be parameterized are presented in
Hasselmann et al. [1] and Perrie and Hu [4]. Following Hasselmann’s approach, we computed various parameters
of a JONSWAP Wave Energy Spectrum. Figure 2 shows a JONSWAP Wave Energy Spectrum plot with peak
frequency of 0.3 Hz, at 10 m/s wind speed developed over 3.25 hours.

This paper systematically illustrates the mathematical formulations of the ice floe drift velocity due to wind
forcing effects, the Eulerian currents, water ice form stress and the wave radiation. The ice floe trajectories and
the ice floe velocity fields are illustrated in a clear cut way. Linearizing the governing equations with zero initial
conditions and using the Laplace transform method, we have obtained simple solutions to simulate the real field
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Figure 2: JONSWAP Wave Energy Spectrum

conditions. Graphical solutions are displayed in case of the external wind stress which causes the ice floe drift
from one place to another. These highly simplified results seem to agree quite well with real field data. This
investigation should be treated as a benchmark study to acquire scientific estimations of the real world situations.

2. MATHEMATICAL FORMULATION

The mathematical equation of motion for an ice floe in the marginal ice zone due to wind, waves, and current
can be written as
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where g is the acceleration due to gravity, m is the ice mass, A is the ice floe surface area, & is the sea surface

elevation, F is the ice internal stress gradient, u’ is the absolute ice velocity, okin

ar 18 the wind stress on the top
form

air

skin
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surface of the ice floe, 7 is the water stress on the bottom surface of the ice floe, t
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water
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is the water-ice form stress, and 1.4

stress, T is the wave radiation pressure.

If the ice concentration is low, the internal stress gradient F is essentially zero. Replacing —mgVE by the
geostropic current mf x Ug and neglecting F, equation (2) can be expressed as

ou skin skin form form wave
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which gives the ice floe velocity, u = u’ - Ug, relative to the geostropic current Ug.
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final time-dependent equation of motion for an ice floe becomes

(a_u +fx u) = A(TSkin + TSkiIl + Tform + Twave )’ (4)
m

or air water water rad

skin skin form

wave
air > Cwater Cwater

ad - Perrie and

To solve this equation, we must know the mathematical expressions of © and 7

Hu [4] (1997) have described these expressions with various types of parameters effecting these stresses. We
will produce the mathematical relationship as given below.

In a calm sea condition, the drift of the ice floe can be assumed to be only due to the eect of the wind. The air-
skin
air

ice-skin friction stress T thus, is usually represented by a quadratic formula in terms of the wind speed U,

Tar =PaCai|Uso 0| (Uy —u) 5)
where p_ is the air density and C}; is the air-ice-skin friction drag coffecient. Following Steele et al [9], we used
CS, ~3x107° .

skin

Analogous to (5), the water-ice-skin friction stress T,

may be represented as
Thater =PuCrilu = UJ@ 1) ©6)

where p, is the water density, C,,

i 18 the water-ice-skin friction drag coefficient, and U_ is the Eulerian current

at the z grid point just below z =—D, where D is the ice draft.

form

The water-ice form Stress T

describes the normal force acting on the leading face of an ice floe as it

form

moves through the water at relative velocity u — U . Following Steele er al. [9], the general form for Ty, is

given by
(u-U,)r )

water

2 D —
o =—=p,CL, —|u -U,
T L

where Cj; . is the water-ice form drag coefficient, L is the ice floe diameter, DL is the ice floe cross-section, and
U_ is the Eulerian current, vertically averaged over the leading face of the floe
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= 1
U=, Ueode. ®)

The parameter I' describes the reduction in drag due to the wake effect

2
D
F—(l— L—f] , ©)

where Lfis the effective average fetch between ice floes.

The wave radiation pressure T,y  represents the force exerted on ice floes by reflected and diffracted

waves. Following Wadhams [11] and Steele et al. [9], the force on the floe of diameter L, due to perfect reflection
of surface waves, is

1
Frad = EpwgazL’ (10)
where a is the wave amplitude. Equation (10) can be reduced to
e 39 x 104 P l(l.—l)r , (11)
Pa VT Ji

where fi is the ice cover concentration. In arriving at the above result, we have used the parametric values of a*
and L, as follows:

L

Thus, 17,3 depends on wind stress T = p,C,U? and ice cover concentration.

3. ICE FLOE DRIFT DUE TO WIND STRESS: MODEL 1

We simplify the governing partial differential equation with the initial condition and obtain,

! (12)
@+ fu=-ay
or

where u = (u, v, 0) are the velocity components of the ice floe in a horizontal plane, f= (0, 0, f) are the Coriolis
force components, and o = %paCji |U,,—ul. Also, we have (U,,—u) = (U, —u,-v, 0). The wind velocity vector
U,, is assumed to be parallel to the positive x-direction. Here we assume that U, >> [u, i.e., the wind speed is

much greater than the that of the ice drift and so we can safely assume that is a constant parameter. The initial
conditions at ¢ = O are assumed as (when there is no wind):

w(0)=0,v(0)=0. (13)
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Using Laplace transform £{u} = [ u(r)e ™dr and L{v} = [ v(r)e * dr with the initial conditions (13), the
simultaneous differential equations (12) can be transformed as
U
(s + )L{u) - fL{v) = =10
s
fL{u} + s+ )L{v} =0

Solving these two algebraic equations by Cramer’s rule, and using the residue calculus of complex variables, we
obtain the solutions as

u(t)=(ocU10)[ 20c 2+e_w{fsinft—occosﬁ}} (14)
o+ f

ol + f*

fcosft—ocsinft}] (15)

ol + f*

v(1) = (<>LUIO)[(X2~T’C]€2 re {

Itis easily verified that at 1 = 0, the initial conditions are satisfied. For large time, when ¢ goes to infinity, the
drift velocity becomes

2
U U
u(t) = =10 and V(1) = —“f—;‘;.
o+

This implies that the ice floe moves with a constant speed for large time as long as the wind speed persists. We
represent the equations (14) and (15) in non-dimensional forms as follows:

U—-a=e*{bsinft—acos ft} (16)
V+b=e{bcosft+asinft} a7
where U, V, a, and b are given by
2
Ui Uso o+ f a”+f

Thus, the velocity field of the ice floe, i.e., the U — V plot, can be described by the following circular spiral type
solution as a function of time

(U-ay+(V+ by =(a*+ b?e*™ (18)
The equation (18) reveals that the radius of the circle at £ = 0 becomes simply a® +b* but when the time
progresses the radius starts to decrease exponentially and at very large time, i.e., when f — oo, the radius of the
circle becomes zero implying that the circle shrinks to zero at the center (a, —b). This simulated behavior of the
drift of the ice floe is not unusual in a real field situation. The graphical representation of our mathematical
model in Figure 3 confirms this analytical conjecture of the velocity field of the ice floe. The computations were
carried out by assuming a cylindrical shape for ice floe with diameter L and a thickness of 7. The air-ice skin
friction drag coefficient was set to C*, = 3x107, following Steele et al. [9], the Coriolis parameter was set to f =
1.07 x 10*s7!, and the wind speeds at 10m above the surface (U, ) were varied between 10m/s and 25m/s with
S5m/s increments.

To further verify this conjecture, we determine the ice floe trajectory. We replace u and v in terms of derivatives

of x and y with respect to time, such that u = g—’; and v = % Thus (12) will take the following form:
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the Laplace transform method. Hence,
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+sa) L{x} - fsL{y} =

(s

s
0.

J5 L{x} + (s, + ) L {y}



Analytical Investigation of Ice Floe Drift in the Marginal Ice Zone 41

Solving these two equations by Cramer’s rule and using the residue calculus of complex variables, we
obtain the solutions as

x(1) a’ - f2 ot w | (@®+ fz)cosft —2afsin ft
__ 21
@) @47 { (@ + f2) el
YO 20f  fr ) Qof)cos fr+ (@l = fP)sin fi 22
@Uy) (@ + ) o?+ [ (@ + f?)°
The non-dimensional forms of (21) and (22) can be written as:
a? - f2 o | (@ = fz)cosft —2af sin ft
X()= —m+at+e t{ @+ ) (23)
2af “at | (2af)cos fr+(a® — f*)sin fi
YO)=——F"——ft— 24
O @y e { @2+ ) } .
where
x(1)
XfH= ——-—
O e+ 1
and
y(@©)
Y= —7—7——.
O i@+
With these definitions, the ice floe trajectories can be obtained as
X-cP+(Y-diP=e™ (25)

(12

+
where ¢ = — f
o+,

2
7 +of andd = fi’; - —ft, respectively. It can be easily seen that the ice floe path is a circle with

03

the center (c, d) and radius ¢ . The parameters c, d and the radius are all dependent on time ¢. Thus the ice
floe will move in a circular path with exponentially decreasing radius with respect to time. Further more, for
large time, the floe trajectory will follow a linear path with the linearly dependent coordinates of the center of
the circle with respect to time. At the initial stage, i.e., at r = 0, the trajectory will be an unit circle with center

(az—fz 20f

aZ+f ol

> ) . The X—coordinate may be positive or negative according to o < f? or a? > f2, respectively.

However, the Y—coordinate is always a negative number. The graphical simulations of the non-dimensional
trajectory of the ice floe with varying wind speeds and their corresponding phase diagrams following our
derived mathematical formulations are shown in Figure 4. The trajectories are circular spirals starting with a
unit circle at r = 0 and ending with a point circle at ¢ = oo; but the center is moving according to law of order
O(at) such that X = ar and Y = —ft. Our computation shows that as time passes, the orbital motion of the ice
floe, due to the earth’s angular motion, gravitational pull, and the constant wind effect, eventually becomes
linear. Also, the result of this simplified approach tends to display more displacement along the y-axis than
that along the x-axis. However, this can be corrected with further mathematical computation. One such
computation is given below.
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4 ICE FLOE DRIFT DUE TO WIND STRESS: MODEL II

The equation of motion of an ice floe (5) can be rewritten in the form,

ik VUi =0)* +V? Uy ~ 1)
0 f|=4p,Coi| U, —w)’ +v? (26)
1%

0

o R
+
S

<

‘We obtain,

Ou _ Ap.Cai 2 1 v?
- = =— - +

o~ V=" U —w ' W)
o _ ApCy _ v

o T fu ==t Ui —u) 1+ =

Using the binomial expansion, the above equation can be written as,

27

Figure 4: Non-dimensional Ice Floe Trajectories with Phase Diagrams
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s 2 4 6
ou_ f, - Arela —w* 1+ (=) -1 1
ot fv= m Uyo —u) |:1 * 2(Ulo_“) 8(Ulo‘“) * 16([]10_”) S il
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Considering wind speed is much greater than that of the ice floe drift, the above expansion can be linearized in
the form,

o _ Ap,CiU
%_f‘}_ amtu 10 (Ul() _2u)

(29)
_ Ap,CuUy

ov _
é‘t+fu_ m

v

Following same approach as before, we represent equation (29) in non-dimensional form as follows:

A f=o(-2U
{m fr=a(l-2U) a0

ov - _
o T fu=—aVv

Using Laplace transform with initial conditions, equation (30) can be transformed as

(s+20c)£(U)—f£(V)=% a1
FLAU)+(s+a)L(V)=0
Solving these two algebraic equations, we obtain,
_ a(s+a)
Lw)= s (s+axs+2ay+r? |
LV)= of

s[(s+0t)(s‘+20t)+f2]

(32)

Using the residue calculus of complex variables, we obtain the Laplace inverse as

_ o2 o302 _ Baz (E) 0L(0L2+2f2) . (E)
U 2a2+f2+ 5 [ 2oir ] cos( ot +—2a2+f2 sin| 51

_ af o 301/2 apf (E) 30L2f . (E)
Vv PR |:2cx2+f2 cos\f |+ 3z, msin( 7!

(33)

where o — 42 =2 < (.

The non-dimensional velocity components of the ice floe with the simplifications introduced in Model-I and
Model-II have been computed and shown in fig. 5. Interestingly, Model-II shows further improvements and its
computational results tend to agree more closely with those of Perrie and Hu [4].

5. ICE FLOE DRIFT DUE TO EULERIAN CURRENT

An ice floe can be drifted by the effects of Eulerian currents. In this situation, the mathematical equations will
be considered as follows:

a—u+fxu=B(u—Ue) (34)
ot
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LT LL7s

Figure 5: Non-dimensional Velocity Components of the Ice Floes (Dashed Line:
Model I, Solid Line: Model-1I.

where 3 = —(%)pWCfV lu— U | and the Eulerian current is U_= (U,, V., 0). Eulerian current is usually function of
zand ¢. Thus equation (34) can be cast in to complex variable w(z) = u(f) + iv(r) and W(z) = U (1) + iV () such that
it becomes

ow .
E+(lf)w=[3(w—We) (35)
Taking the Laplace transform as before, and after reduction yields
Li{w} = b —L(W,) (36)
s=(PB-if)

Using convolution integral the inverse Laplace transform of (36) can be obtained as

Ww(t) = —Bjée(ﬁ_’f Xy () 37)

Now equating the real and the imaginary parts yields

u(t) = —Bjo’ PP, ()cos £+ 1)+ V,(Msin £( - 1)]d) (38)

We) = —Bjo’ P [V, (W)cos £( = M)+ U, (W)sin f(t = )] d. (39)
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It is evident that the Eulerian currents are functions of time . The velocity field of the ice floe can be
completely determined provided the Eulerian currents are known, a priori. Theses functions have been determined
by Rahman [6]. Thus substituting the mathematical expressions in the above two equations, we can determine
the velocity field of an ice floe.

The ice floe trajectories can then be obtained by integration of u(r) and v(r) with respect to time. Because u

_ Ox

=5 andv= % , respectively, which yield

(1) = —Bjo’ jo’ UL (M)cos f(1 = W)+ V,(M)sin £(£ — W)dAdr’ (40)
V(1) = —BI; J’;,eﬁ(f_k)[Ve (M)cos f(£' =)+ U, (W)sin f(1' —M)ldAdr' . 41)

6. ICE FLOE DRIFT DUE TO WATER-ICE FORM STRESS

The eect of the water-ice form stress may be responsible in drifting an ice floe from one place to another. In this
situation, the mathematical equations will be considered as follows:

a—“+fxu=y(u—%e) (42)
ot

u-Ue

current is assumed to be constant. Thus equation (42) can be cast in to complex variable w(r) = u(f) + iv(¢) and
W=u e,i@’e such that it becomes

I" and the averaged Eulerian current is Ue = (Ue,Ve,0). This averaged Eulerian

wherey=— (%)%pwq’;

%szf)w:v(w—ﬁ/e) 43)

Taking the Laplace transform as before, and after reduction yields

'Yw/e

Liwp=——"—+— (44)
s(s=(y=if)
The Laplace inverse of (44) can be obtained as
YW (=i
wt) = ——(e" 7" -1). (45)
v—if ( )
Now equating the real and the imaginary parts yields
u(t)y=p —e" {p cos ft + g sin ft} (46)
v(f) = g — e" {q cos ft— p sin ft} 47
2
where p =" E{j;;";g’e ,and g = M . It can be easily determined the velocity field as

(u—pty’+ (v —qt) = P>+ qHe (48)
The ice floe trajectories are obtained by integration of u(r) and v(r) with respect to time, as before. Because u =

ox

o> andv= % , respectively, which yield

(1) = pt— j;eyf (p cos ft + g sin f) d (49)
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t
Y1) = gt - jo " (qcos fi — p sin f1) dt (50)
Performing these integrations the equations of the ice floe paths can be obtained as
xty=pi- B2
VS
vt
+ ——— {(py - gf) cos fi+ (pf + qv) sin fi} (6D
VS
W) = QI—M
VS
e .
+ ——— {pf+ qv) cos ft — (p — qf) sin ft} (52)
VS

It can be easily seen that at r = O the initial conditions are satisfied. The ice floe trajectories are given by
(x—(pr-A))+ - (gi-B) =4+ B) (53)

where A = %‘q’; ,and B =%‘;’Z . The paths are circles of radii VA + B%¢" with centers at ((pt — A), (gf — B)).
v+, Y+
Both the radius and the center are function of time, and therefore, the trajectories will be circular spirals.

7. ICE FLOE DRIFT DUE TO WAVE RADIATION PRESSURE

In this situation the external force is considered to be the wave radiation stress. This force depends primarily on
the ice floe concentration and the wind velocity squared. The mathematical model is similar to the above case
except that stress is constant but not dependent on the ice floe velocity. Hence, the governing equation can be
written in complex form as

W =y (54)
ot

Taking the Laplace transform and using the initial condition w(0) = 0, and after inversion, we obtain

w(t) = [%} {sin(ff) — i(1 — cos(ff)} (55)

_ A _wave

where = A = < Trad - The real and imaginary parts yield

u(t) = [%) sin(f?) (56)

V() = [%} (cos(fty — 1) (57

from which the velocity field can be obtained as
2 2
A A
u+ (v+—] =(—] . (58)
f f

X = %[l—COS(ﬁ)] (59)

The ice floe trajectories are given by
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Ao
W) = F [sin(fr) — (D) (60)
and the equation is
(x—aP+ (+b)}=d,
where a= - and b= %
f '

It is worth noting that the radius is a constant but the center is a function of time. The trajectories are circular
paths.
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