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ABSTRACT: In this paper, we implement a relatively new analytical technique which is called as the variational
iteration method for the solution of Boussinesq equations which commonly describe the propagation of small
amplitude long wave in several physical contents. The analytical results of the equations have been obtained in
terms of convergent series with easily computable components. Several examples are given to verify the efficiency
of the suggested technique. The fact that variational iteration method solves nonlinear problems without using
the so-called Adomian’s polynomials is a clear advantage of this technique over the decomposition method.

Keywords: Variational iteration method, Boussinesq equations, nonlinear equations, error estimates.

1. INTRODUCTION

The importance of soliton producing nonlinear wave equations is well understood among theoretical physicists
and applied mathematicians. An equation admitting soliton solutions which has received comparatively little
attention in the literature is

u,=u_+ W) +u. (D
It is referred as the “bad” Boussinseq or the nonlinear beam equation and describes the motion of long waves in
shallow water under gravity in one-dimentional nonlinear lattices; see [1-5, 11, 13, 14, 24, 25]. Equation (1)
admits the solitary wave solution

u(x, )= A Sec ®(NA/6(x—ct)), 2)

where A andc =2+14+2A/3 are the amplitude and the speed of the solitary wave, respectively. These features
of equation. (1) are quite reminiscent of the properties of the Korteweg-de Vries (KdV) equation

u+uu +u, =0, 3)
in that they both poses solitary wave solutions, except that the KdV equation allows only one-directional wave
propagation and the Boussinseq equation describes bi-directional wave propagation. Recently, a great deal of
research has been conducted in the study of equation (1) from various points of view, see [1-5, 11, 13, 14, 24,
25] and the references therein. An exact formula for the interaction of solitary waves is given in Manoranjan et
al [14]. Hirota [11] has deduced conservation laws and has examined N-soliton interaction. The representation
of periodic waves as sums of solitons has been given by Whitham [25] and the modified decomposition method
was used by Wazwaz [23] to construct soliton solution of equation (1) subject to the initial conditions

u(x, 0) = fx), u, (x, 0) = g (x). “4)
FEl-Sayed and Kaya [3] studied the solitary wave solutions by using the decomposition method of the (2+1)-
dimensional Boussinesq equation

w,=u, +u + ) T
More recently, Hajji used modified decomposition method for solving such equations, see [5]. Inspired and

motivated by the ongoing research in this area, we use the variational iteration method for finding the series
solution of a regularized version of equation (1) via the singularity perturbed (sixth-order) Boussinesq equation

u,+ @ w) +ou  +pu__ (5
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where o and P are real numbers (P is small). This equation was originally introduced by Daripa and Hua [1].
The sixth order derivative term provides dispersive regularization. The physical relevance of equation (5) in the
context of water waves was recently addressed by Dash and Daripa [2]. It was shown that equation (5) actually
describes the bi-directional propagation of small amplitude and long capillary-gravity waves on the surface of
shallow water. So, it is closely related to the singularly perturbed (fifth-order) KdV equation.

u+uu +u +eu
which can be derived from equation (5) by using suitable transformations, see [5] and the references therein.
The fifth-order KAV equation has been studied by Kaya [13] where soliton solutions were found using the
Adomian’s decomposition method. Since equation (1) has solitary wave solutions, the natural question arises

whether (5) also admits solitary Boussinesq equation (1) to describe bi-directional wave propagation on the
surface of shallow water. In this paper, we consider the generalized Boussinesq equation

Uy = zbiu(2i+2)x +[OW],,» (6)
i=0

where g(u)=u+ by, rand b, (i=1,2, ..., m) are all real constants and Ui,y denotes the (2i+2) and derivative
of u with respect to x. Note that the choices m=1, b,=1, b, =1 and r = 2 yield (1) and for choices m =2, b, =
1,b,=a, b,=B, m=2, and p(u) = o, equation (6) becomes the singularly perturbed sixth-order Boussinesq
equation (5). The basic motivation of this paper is to approach the singularly perturbed Boussinesq equation (5)
by implementing the variational iteration method. It is shown that the variational iteration method provides the
solution in a rapid convergent series with easily computable components. We write the correct functional for the
singularly perturbed Boussinesq equation and calculate the LLagrange multiplier optimally via variational theory.
The use of Lagrange multiplier reduces the successive application of the integral operator and minimizes the
computational work. Moreover, the selection of the initial value is done by introducing an essential modification
which increases the efficiency of the proposed algorithm. The VIM solves effectively, easily and accurately a
large class of linear, nonlinear, partial, deterministic or stochastic differential equations with approximate solutions
which converge very rapidly to accurate solutions. Several examples are given to illustrate the reliability and
performance of the proposed method.

2. VARIATIONAL ITERATION METHOD
To illustrate the basic concept of the technique, we consider the following general differential equation

Lu + Nu =g (x), (7
where L is a linear operator, N a nonlinear operator and g(x) is the inhomogeneous term. According to variational
iteration method [6-10, 12, 15-22, 24], we can construct a correct functional as follows

U1 (0) = 1, (X) + [ 1Lt (5) + N (5) ~ g (5))ds, ®)
0

where A is a Lagrange multiplier [6-10], which can be identified optimally via variational iteration method. The
subscripts n denote the nth approximation, #, is considered as arestricted variation. i.e. 6z, =0; (8)is called as
a correct functional. The solution of the linear problems can be solved in a single iteration step due to the exact
identification of the Lagrange multiplier. The principles of variational iteration method and its applicability for
various kinds of differential equations are given in [6-10, 12]. In this method, it is required first to determine the
Lagrange multiplier A optimally via variational theory. The successive approximation «_ , n >0 of the solution
u will be readily obtained upon using the determined Lagrange multiplier and any selective function u,,

consequently, the solution is given by ¢ = lim u,,. For the convergence criteria and error estimates of variational
n—>0

iteration method, see Ramos [22].
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3. NUMERICAL APPLICATIONS

In this section, we apply the variational iteration method for solving the singularly perturbed Boussinesq model
equation (5). In particular, we consider the equation for sufficiently small values of B and apply the technique
presented in the previous section. We introduce a slight modification in the selection of the initial value which
increases the efficiency of the proposed iterative scheme. For the sake of comparison, we take the same examples
asin [5].

Example 3.1: Consider the following singularly perturbed sixth order Boussinesq equation

u,=u_+ @) +ou_ +pu__., (5
taking B =1, B = 0 and p(u) = 3u?, the model equation is given as
w=u_+3w) =u_.,
with initial conditions

2ak*e™ 2ak3 N1+ k2 (1- ae® )ekx
u(x,0) = — u,(x,0)= 3 ,
(I+ae™) (I1+ae™)

where a and k are arbitrary constants. The exact solution u(x, f) of the problem is given as [5]

2 2
/1
) ak” exp(kx + k\J1+ k71)

=
(1 +aexp(kx+kV1+ k%))

The correct functional is given by

C2ak%e® 2akN1+ K2 (1-ae®)e™ Ou, (/- S ,
U, (X,0) = REPD + 1t ac™y t+;[MS) ?—((un )xx + 38, )y +(un )xxxx) ds.

Making the correct functional stationary, the Lagrange multipliers can easily be identified as A = s — x,
consequently, the correct functional is given as

2ak*e™ N 2ak3N1+ k2 (1- ae™ )ekx

u,,(x,t)=
n+l (1 N aekx)z (1 + aekx )3

t 52
t+[(s— x)[ a;" —((ﬁn ) 3, )y + (7, )mx)]ds.
0

The following approximants are obtained

2e*
Uy (x,1) =———,
0 1+ )
x x 2x
2¢° 2N+ KA (1-ae™)e™  2e (1—46 te ) 5
w (x,1) = >+ 3 r+ 1 £,
(1+e") (1+ae™) (1+ex)
2e* 2ak3N1+ k2 (1—ae™)e™  2e5(1-4¢" +e*) ,
Uy (x,1) = >+ 3 t+ n t
1+e*) 1+ ae™) 1+e")

242" (=14 €)1 10e" + ™) 3, € U=de” + ) (1-4de" 478" —d4e™ + o)
31+’ 3(1+e")°

s
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X X 2x
2¢" +2ak3\/1+k2(l—aekx)ekxt+26 (1—46 te )ﬁ
(1+e")? (1+ae®y’ (1+ex)4

22¢ (—1+ ex)(l—loex + eZX) e (1—4ex +eZX)(1—44ex +78% —44¢3* +e4X) \

3(1+ex)5 o 3(1+ex)8

8e%* (1 —10¢* +206%" —10e> + e4x) A NG (—1 +e* )(1 —56¢" +246¢* —56¢> + e4x)

5
(1+e’c)8 t 15(1+e’c)7 t

& (1 _452¢" +19149¢%F — 2079366 +807378¢* — 1256568e5x) .
+ I3

45(1+ex )12

& (807378e6x — 20793667 +191496% — 45265 + el‘”) .
+ r,

45(1+ex )12

The series solution is given as

26" 2ak>N1+ k> (1—aekx)ekx 2e* (1—4ex + ezx) 5
M(X,I)Z 5 + ki3 I+ 4
1+e*) 1+ ae™) 1+e")

22e* (—1+ ex)(l—loex + e”) , e (1—4ex +ezx)(1—44ex +786%F — 443 + e4x)
- 31+ ") o 31+e) t

4

e (1 ~10e" +20e* —106 + e4x) , V2 (—1 +e )(1 566" +2460% —56¢° + e4x)
+ e
(1+e*) 151+ ")

l‘S

& (1 _452¢" +19149¢% — 2079366 +807378¢* — 125656865x) )
+ I3
451 + )12

& (80737866x —207936¢7* +19149¢8% — 4526%% + 10 ) )
+ l‘ + coe s
45(1+ ¢*)'?

which is in full agreement with [5].

Table 1 exhibits the absolute errors between the series and the exact solutions by using the variational iteration
method. Higher accuracy can be obtained by adding some more components of the series solution.
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Table 1
Error Estimates
xi tk
0.01 0.02 0.04 0.1 02 0.5

-1 2.80886 E-14 1.79667 E-12 1.15235E-10 2.83355E-8 1.83899 E-6 4.74681 E-4
-0.8 6.27276E-14 4.01362 E-12 2.57471 E-10 6.33178 E-8 410454 E-6 1.04489 E-3
0.6 6.08402E-14 3.90188 E-12 2.25663 E-10 6.18024 E-8 4.02299 E-6 1.03093 E-3
0.4 1.16573E-14 741129 E-13 4.82756 E-11 1.23843 E-8 8.53800 E-6 246302 E-4
-0.2  5.53446E-14 3.53395E-12 2.25663 E-10 547485 E-8 347264 E-6 8.35783 E-4
0 8.63198 E-14 5.53357E-12 2.54174E-10 8.65197E-8 5.54893 E-6 1.37353E-3
02  5.56222E-14 3.55044 E-12 227779 E-10 5.60362 E-8 3.63600 E-6 9.29612E-4
04 1.14353 E-14 7.14928 E-13 449107 E-11 1.03370 E-8 5.93842 E-7 9.61260 E-5
06 6.06182E-14 3.87551E-12 247218 E-10 597562 E-8 3.76275 E-6 8.79002 E-4
0.8 6.23945E-14 3.99519E-12 2.55127E-10 6.18881 E-8 3.92220E-6 9.36404 E-4
1 279776 E-14 1.78946 E-12 1.14307 E-10 277684 E-8 1.76607 E-6 4.28986 E-4

Example 3.2: Consider the following singularly perturbed sixth order Boussinesq equation

_ 2 1
Uy = Uy T (u )xx Uy T Euxxxxxx )

with initial conditions

194 4 x X

—210,{—sech ——— |tanh| —
105 4 X B 13 (\/26J (\/26}
sech™ | —— |, u(x,0)= .

u(x,0)=———sec
(%.0) J26 2197

169
The exact solution of the problem is given as

u(x,z)=—@sech4 Ji(x—,/9—7z) .
169 26 169

The correct functional is given by

194 4 x X
—2101/—sech (Jtanh[}

1 13 N N
un+1(x,t)=—ﬁsech4( al j+ 26 26 I3

169 J26 2197

t 62 B B ~ -
+J.7\'(S)( atl’;’l - ((un )xx + (unz )XX - (Ltn )xxxx + %(un )xxxxxx jJ ds.
0

Making the correct functional stationary, the L.agrange multipliers can easily be identified as consequently, we
obtain the following correct functional
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194 4 x X

—210,|——sech tanh| —
105 4( x j \ 13 (J%J [\/%j
—sech + t

169 J26 2197

U, (x,1)=—

L 62un ~ 2 ~ L.
+Z').(S - X) 6[2 - (l/tn )xx + (u” )XX - (l/tn )xxxx + E(M” )xxxxxx ds.

The following approximants are obtained

g (x, 1) = —%SGC nt (%}

105 19486Ch6( X Jsinh \/Ex
13 V26 J13 [

w (x,1) = —m—ssech“( X J—

169 J26 2197
105 [ 01 1oacosn| Y2 sech® ——17,
371293 J13 V26
105 19486Ch6( ud Jsinh \/Ex
105 o x 13 V26 J13
Uy (x,0)=———sech - t
169 J26 2197
_ 105 914 194c0sh| Y2 | [secnt 22
371293 Ji3 V26
395sech7% 3
4 N260108164/2522 sinh—— — 1664+/2522 sinh—-— |3
52206766144 J26 J26

X

2 s x 242 5( x J .
+| =334200sec i’ +354247cosh| —x |sech” | — |—47164cosh| —x [sech” | — | |t
(\/Zﬁj (\/13 j [\/Zﬁj {\/13 ] 26

+| 3201cosh® ﬂx sech’ Lj—388cosh Mx sech’ [LJ t4,
J13 J26 J13 J26

The series solution is given as

105, /% sech® (XJ sinh @
105 4 x 13 V26 V13
u(x,t)=———sech - t

169 J26 2197
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105
371293

N2x 6 X 2
—291+194cosh| — | |sech” —t
{ {\/13 26

395sech7% 3
+—26(10816\/2522 sinh—2— —1664+/2522 smh—xjﬁ

52206766144 \26 26
2 242
+| =334200sec i’ (Lj + 354247 cosh (— xj sech’ (Lj —47164cosh ix sech’ [LJ 4
V26 J13 J26 J13 26
2 442
+| 3201cosh? ix sech’ (LJ —388cosh ix sech’ {LJ AR
J13 V26 J13 V26
Table 2
Error Estimates
X, t
0.01 0.02 0.04 0.1 0.2 0.5

-1 7.77156 E-16 1.36557 E-14 8.57869E-13 2.09264E-10 1.33823 E-8 3.25944E-6
-0.8 1.11022E-16 1.99840 E-15 1.12688 E-13 2.73880E-11 1.74288 E-9 4.14094 E-7
0.6 2.22045E-16 1.09912 E-14 7.28861E-13 1.78030 E-10 1.14025 E-8 2.79028 E-6
-04 1.11022E-16 2.32037E-14 1.50302 E-12 3.67002E-10 2.34944 E-8 5.74091 E-6
-0.2 6.66134E-16 3.23075E-14 2.04747E-12 499918 E-10 3.19983 E-9 7.81509 E-6
0 4.44089 E-16 3.49720E-14 2.24365E-12 5.47741 E-10 3.50559 E-8 8.55935E-6
0.2 5.55112E-16 3.19744 E-14 2.04714E-12 4.99820E-10 3.19858 E-8 7.80749 E-6
0.4 3.33067E-16 2.32037E-14 1.50324 E-12 3.66815E-10 2.34706 E-8 5.72641 E-6
0.6 3.33067E-16 1.12133 E-14 7.28528 E-12 1.77772 E-10 1.13695 E-8 2.77022 E-6
0.8 3.33067E-16 1.99840 E-15 1.13132E-13 2.76944 E-11 1.78208 E-9 4.41936 E-7
1 7.77156 E-16 1.38778 E-14 8.58313E-13 2.09593 E-10 1.34244 E-8 3.28504E-6

Table 2 exhibits the absolute errors between the series and the exact solutions by using the variational iteration
method. Higher accuracy can be obtained by adding some more components of the series solution.

4. CONCLUSIONS

In this paper, we have used the variational iteration method for solving Boussinesq equations. The method is
implemented in a direct way without using linearization, perturbation or restrictive assumptions. The method
gives more realistic series solutions that converge very rapidly in physical problems. rapidly in physical problems.
This shows that the variational iteration technique can be considered as an efficient method for solving linear
and nonlinear problems. The fact that the variational iteration method solves nonlinear problems without using
Adomian’s polynomials can be considered as an advantage of this method over the decomposition method.
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