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BOUNDARY ELEMENT FORMULATION FOR
FLOW IN UNSATURATED POROUS MEDIA

Bruno Natalini, Viktor Popov & Carlos A. Brebbia

ABSTRACT: Numerical model for two phase (air and water) unsaturated flow has been derived and solved using
the boundary element method (BEM). The equations have been represented as non-homogeneous Laplace
equations, and the non-homogeneous part has been dealt with by using the dual reciprocity method (DRM). The
soil-water characteristic curve according to the modified van Genuchten approach was employed. The developed
scheme was applied to solution of upward and downward infiltration in clay showing good agreement with
numerical solutions previously reported in open literature.

1. INTRODUCTION

Modelling of unsaturated flow in porous media is applied in a number of different areas. Some areas of interest
include hydrology, environmental protection and remediation and disposal of hazardous waste in underground
repositories. In this work a numerical model for unsaturated flow where both phases, water and air, are modelled
is developed. Such model could be of importance for solution of the problem of wetting of clay in underground
repositories where the air cannot escape freely during the wetting of the clay, a process which may increase the
air pressure slowing down the actual wetting process.

The model is solved by using the BEM DRM-MD approach which has shown good stability for solving
non-linear problems in the past.

2. GOVERNING EQUATIONS FOR FLOW IN UNSATURATED POROUS MEDIA

In this section a quick derivation of the governing equations is presented. It is considered that each phase
occupies part of the domain and follows its own set of tortuous paths. A detailed treatment of the theory of flow
in unsaturated media is given by Bear & Verruijt [1] and Helmig [2].

2.1 Equation for the water phase

The mass balance equation is given as
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where:

n is the porosity

�w is the water density

Sw is the water saturation

Sw is defined as the relation of the volume of water in a representative elementary volume (REV) and the
volume of voids in the REV. Sw ranges from zero to one.

The specific discharge is defined using the Darcy law
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where:

kw is the effective permeability for water (a function of Sw)

mw is the dynamic viscosity of water

pw is the water pressure

z is the elevation

By substituting (2) into (1) and considering that n and rw are constant, (1) can take the following form
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The water relative permeability is defined as
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where wK  is the hydraulic conductivity for water, yielding
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By substituting (6) into (3), the equation for the water phase is obtained as
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Note that it is possible to use equation (3) for the water phase, however (7) is a more suitable form since rwk

is non-dimensional and ranges from 0 to 1. Conversely, wk  has dimensions, which makes its order of magnitude

dependant on the scale factors, which can produce higher errors when the term w
w

k
k

�
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than rw
rw
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2.2 Equation for the Air Phase

The starting point for development of the equation for air phase is the mass balance equation:
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combined with the Darcy law
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where the nomenclature analogous to the one in (1) and (2), the sub-index ‘a’ identifying air properties. Note
that

1   S S aw (10)

By substituting (9) into (8), considering n to be constant and neglecting the gravitational term zga �
�

� , and

by using  g

Kkk
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Further, developing both terms in (11), considering that ra is linked to pa through the equation of state and
rearranging the equation yields
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The derivative in time of the saturation appearing in (7) and (12) can be handled in the following way:
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where subscript � stands for “w” or “a” depending on the equation that is solved. Taking into account that the
capillary pressure can be expressed as pc = pa – pw, it is obvious that �pc/�pg = (1 or –1). If furthermore we use

(10) to eliminate aS , the final equations for water and air become
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and
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Equations (14) and (15) are the equations to be solved by the code, being wp  and ap  the unknown potential

fields. The constants needed in the model are g , w� , n , wK , aK , 'R  andT  while rwk , wS and rak  are

functions of wp  and ap . The functions linking the potential fields and rwk , wS and rak  variables are given by
the soil water retention curve.

3. SOIL WATER RETENTION CURVE

The soil water retention curve describes the relation between the capillary pressure, pc, and Sw. There are several
functions that have been proposed; among the most popular for the air-water system are those given by Leverett
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[3], Brooks and Corey [4] and van Genuchten [5]. Recently Vogel et al. [6, 7] suggested the use of the following
relation:

� �� �
�
�
�

�
�
�

�

�

�
�

��
�

�

sc

sc

c

awm
w

w

ppwhen

ppwhen
p

SSS
S

S

1

a1
mn

00
0

(16)

where Sm is a fictitious extrapolated parameter; Sm > 1, and ps is called the minimum capillary pressure. The
modified Van Genuchten’s relative water permeabilities as a function of saturations are
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Equation (16) has been originally proposed in terms of water contents; here it is modified in order to match

with the definition (19), which takes into account 0aS , and the relative permeability of the air phase. Equations

(16) – (19) will be referred to as the modified Van Genuchten model (VGM). The modified VGM eliminates
numerical instabilities appearing near saturation and this formulation is further used in the numerical examples
in section 6.

4. SOLVING THE SYSTEM OF EQUATIONS

When considering the simultaneous flow of both the water and the air in the unsaturated zone, the system of
equations is represented by (14) and (15) together with those coming from the soil water model. Though the
numerical model is developed for the case of variable air pressure, further in this work the air pressure is
considered to be constant and equal to the atmospheric pressure. Therefore, in the examples presented here only
(14) is solved; which is equivalent to solving the Richard´s equation.

The code developed obtains solutions at different timesteps by using a linear time finite difference
approximation. As the equations are non-linear, in each timestep an iterative procedure is applied. The code
starts by calculating pc from the initial conditions of the problem, then Sw and krw are calculated and finally
(14) is solved. In the next iteration, with the obtained value of pw, a new value for pc is calculated, then Sw and
krw are recalculated and (14) is solved again. The process is repeated until convergence is reached within each
timestep.

The derivative of wS  in respect to cp  appearing in the equations will depend on the soil water retention

model used and for the modified VGM it can be obtained as
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5. BEM DRM-MD IMPLEMENTATION FOR THE WATER PHASE

The dual reciprocity method (DRM), which was introduced by Nardini & Brebbia [8], is acknowledged to be
one of the most effective boundary element method (BEM) techniques for transforming domain integrals into
boundary integrals.

Popov and Power implemented a scheme using domain subdivision in conjunction with the DRM to avoid
domain integration and called it the Dual Reciprocity Method - Multi-Domain approach (DRM-MD). The
initial problem solved using this formulation was the flow of a mixture of gases through a porous media [9, 10,
11]. The DRM-MD has also been applied to linear and non-linear advection-diffusion problems [12], driven
cavity flow of Navier-Stokes equations [13], non-Newtonian fluids [14], and flow of polymers inside mixers
with complex geometries [15]. Though the above applications are two-dimensional (2D), recently the technique
has been applied to three-dimensional (3D) problems by Natalini and Popov [16, 17] and Peratta and Popov
[18, 19].

DRM-MD does not suffer the two main problems related to standard DRM; the systems of equations produced
by DRM-MD are sparse and well conditioned, and the number and position of DRM nodes is usually not
critical, since small sub-domains usually require no or few interior DRM nodes.

Starting from a Poisson-like governing equation

� � � �2u ,t b u, ,t� �x x (21)

where u(x,t) is a scalar field (potential field), b(u,x,t) is the non-homogeneous term and x is a position vector in
the domain with components xi, after applying the DRM approach (for more details see Partridge et al. [20]), the
following equation is obtained
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where u*(x,y) is the fundamental solution of the Laplace equation, q(y) = �u(y)/�n, q*(x,y) = �u*(x,y)/�n and n is
the unit vector normal to the boundary of the domain. The constant l(x) has values between 1 and 0, being equal
to 1/2 on smooth parts of boundaries and being equal to 1 for points inside the domain. Constants ak are unknown
coefficients and the DRM approximation is applied to J nodes on the boundary � of the domain and I nodes
inside the domain W.

After application of collocation technique to all boundary nodes, (22) can be written in terms of four matrices,

H, G, Û  and Q̂  which depend only on the geometry of the problem.

αqu )ˆˆ( QGUHGH ��� (23)
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Since the non-homogeneous term b in the DRM is expressed in the following form

� Fb α (24)

after expressing a in terms of b, the following equation is obtained

bqu 1)ˆˆ( ���� FQGUHGH (25)

The DRM integral formulation for wp  is obtained by replacing the non-homogeneous term in (14) into (25)
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where sij is the matrix 1)ˆˆ( �� FQGUH  and jrwk
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(atmospheric pressure) and wp  coming from the previous iteration, which will be denoted by wp~  from here on.
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index notation is given as
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The time discretization is based on the implicit/explicit Euler method
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The time derivative is approximated using a finite-difference scheme
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By applying (27) – (30), (26) can be recast as
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and similar for yD
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 and zD
~ matrices. The components of vector v~  is defined as
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The interface conditions between two sub-domains for pressure and flux state that the pressure and the flux
must preserve continuity. In the case of pressure the interface conditions result in the following equation

21 ww pp � (36)

In the case of flux the interface conditions are equivalent to applying the mass conservation principle and
can be derived starting from the flux of water trough the interface per unit surface and unit time for both
interfaces as given below
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or
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6. NUMERICAL EXAMPLES

All the examples presented here use discontinuous elements combined with the augmented thin plate spline
function as approximation function in the DRM approximation with no internal DRM nodes.

6.1 CASE 1: Upward infiltration in clay

The first case simulates infiltration in a 1m long clay column that initially is assumed to be in equilibrium with

an imposed water pressure, wp , of zero Pa at the bottom of the column (z = 1). The boundary conditions were

98060 Pa of water pressure (atmospheric pressure) at the bottom of the column (z = 1) combined with zero flux
at the top (z = 0), leading to upward infiltration against gravity. A numerical solution of this case using a 1D
model has been presented by Vogel et al. [7]. The soil-water retention curve used was the modified Van Genuchten
model. The same parameters were used as in the Vogel’s example:

Porosity, n 0.38

Hydraulic conductivity of water, wK 5.56E-07 m/s  or 4.8 cm/day

Irreducible water saturation, 0wS 0.17895

Van Genuchten’s a  parameter 0.8 1/m   or 0.008 1/cm

Van Genuchten’s n parameter 1.09

Conversely to Vogel’s code, which used an adaptive time stepping algorithm, this code used a fixed timestep
of 0.1 day. The 3D domain was a prismatic column of 0.2 × 0.2 × 1 m3. The mesh had 410 subdomains being
finer in the bottom. Figure 1 presents a view of the mesh. Preliminary tests failed when a uniform mesh of 173
subdomains was used. In order to produce results equivalent to the 1D case, a zero flux boundary condition was
imposed on the sides of the domain. In order to start the iterations of the non-linear loop in the first timestep, the
code requires an initial guess for wp~  different from zero within the domain, see Figure 2. For the results

presented in Figure 3, the initial guess was that wp~  was equal to the initial conditions when 9.0�z and from

Figure 1: mesh of 410 subdomains.
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there the water pressure increased linearly up to the atmospheric pressure at 1�z , where it matched the boundary
condition.

The agreement of the results displayed in figure 3 and those in Reference [7] is very good.

Figure 2: Initial guess and initial condition for case 1.
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Figure 3: results of case 1
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Table 1 presents the number of iterations needed in every timestep to converge. Note how the convergence
is easier as the pressure distribution becomes smoother.

Table 1
Number of Iterations in Every Timestep for case 1.

Timestep 1 2 3 4 5 6 7 8 9 10

No. of iterations 19 18 15 12 11 9 8 8 6 6

6.2 CASE 2: Downward Infiltration in Clay

This example was used by Vogel et al. [7]. It is the simulation of infiltration in a 1m long clay column that,

again, initially was assumed to be in equilibrium with an imposed water pressure, wp , of zero Pa at the bottom

of the column. The boundary conditions were 98060 Pa of water pressure (atmospheric pressure) at the top of
the column combined with zero flux at the bottom, leading to downward infiltration. Three meshes were used.
The first one was identical to the one displayed in Figure 1, though the domain was inverted in order to have the
finer part of the mesh in the top. The other two meshes, which had 1062 and a 2233 subdomains, are shown in

Figure 4. The initial guess was a linear function of the z-coordinate that started with wp~  = atmospheric pressure

at 0�z  (top of the domain) and decreases to meet the initial condition curve at 1.0�z , from there the initial
guess is identical to the initial condition. Figure 5 shows the initial guess and the initial condition. The remaining
part of the set up was identical to case 1.

Figures 6 to 8 show results using the three meshes described above. In Table 2 the number of iterations in
every timestep is shown.

Figure 4: Case 2, View of the 1062 and 2233 Subdomains Meshes
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Solving the downward infiltration case is more difficult than the upward infiltration case because the water
goes down in a sharp front that resembles a step function. The severe non-linearity of the soil-water curve near

saturation makes difficult computing the term rw
rw

k
k

�
1

 in (14), because in some points near saturation there

Figure 5: Initial guess and initial condition for case 2.
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Figure 6: results of case 2 using the 410 subdomains mesh.
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are high values of rwk�  combined with very small values of rwk . Compared to case 1, when using the same

mesh, the code needs more iterations to converge in the first 2 timesteps (see Table 2) and it does not converge
in the third timestep within 150 iterations. The code was set to stop the interative procedure after certain number
of iterations (150 or 300) and these results are indicated in Table 2 as “truncated”. The situation improves with
mesh refinement, as can be seen in Table 2. Mesh refinement improves only the convergence; the quality of the
results is similar with different meshes, provided convergence has been reached. Compared to the results of
Vogel et al., the agreement is not as good as in case 1.

Figure 7: results of case 2 using the 1062 subdomains mesh.

Figure 8: results of case 2 using the 2233 subdomains mesh.
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Table 2
Number of Iterations in Every Timestep for Case 2

Timestep 1 2 3 4 5

410 subs 28 56 150 (truncated) 150 (truncated) 150 (truncated)

1062 subs 29 46 117 150 (truncated) 150 (truncated)

2233 subs 24 37 75 300 (truncated) 300 (truncated)

7. CONLUSIONS

Numerical model for flow in unsaturated media has been developed and solved using the BEM DRM-MD
approach. The model was developed in order to predict the saturation of clay in underground repositories,
which requires solving two coupled non-linear partial differential equations; one for the air and one for the
water phase. Taking into account that such a complex model can be solved in different ways, in order to study
the basic behaviour of the formulation under simpler conditions before solving the full two phases model, the
air was assumed to be at atmospheric pressure; a situation that is equivalent to solving the Richard’s equation.

The code showed that it is able to accurately solve problems of infiltration in clay. For instance, cases 1 and
2 showed an excellent performance in regard with the one-dimensional results of Vogel et al. [7]. However,
there was slow convergence for downward infiltration. All the results indicate that the terms of the governing

equation containing rw
rw

k
k

�
1

 are the cause for slower convergence in some cases. The severe non-linearity of

the soil-water curve near saturation makes the task of computing the term rw
rw

k
k

�
1

 in (14) a very difficult

one, because in some points near saturation there are high values of rwk�  combined with very small values of

rwk . The code loses accuracy when it has to calculate rwk�  and the water advances in a sharp front that

resembles a step function, as it happens in case 2. Case 2 shows that the problem can be resolved by using mesh
refinement. However, mesh refinement in 3D increases much more computer requirements in terms of CPU and
memory than in the cases of 1D and 2D.
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