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STABILITY AND BIFURCATION OF A DISCRETE-TIME
THREE-NEURON SYSTEM WITH DELAYS

Shangjiang Guo & Yuming Chen

ABSTRACT: In this paper, we consider a simple discrete three-neuron network model with delays. The
characteristic equation of the linearized system at the trivial solution is a polynomial equation involving very
high order terms.We derive some sufficient and necessary conditions on the asymptotic stability of the trivial
solution. We also consider the existence of three types of bifurcations: fold bifurcations, flip bifurcations, and
Neimark-Sacker bifurcations (also called Hopf bifurcations for map). The stability and direction of Neimark-
Sacker bifurcations are studied by applying the normal form theory and the center manifold theorem.
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1. INTRODUCTION

In the recent years, more and more attention has been paid to the study of neural networks because of their
potential in applications such as optimization, image processing, pattern recognition, and associative memories.
In practice, due to the finite speeds of switching and transmission of signals in a network, delayed systems have
been the starting point of investigations.

Most of the models are described by delay-differential systems. Due to the high dimensionality of the
problem, mathematical analysis has been restricted to special networks with either small number of neurons or
simple architecture like a ring of identical neurons (see, for example, [1, 2, 3, 5, 6, 7, 8, 12, 15, 16, 21]). In most
cases, delay can destabilize the network and create oscillatory behavior. Thus it is important to study bifurcations
such as Hopf bifurcation when there is a loss of stability.

In order to implement the continuous-time network for computer simulation, experimental or computational
purposes, one often discretizes the continuous-time network. We refer to [4, 11, 13, 18, 19] for  related discussions
on the importance and the need for discrete-time analogues to reflect the dynamics of their continuous-time
counterparts. Though the discrete-time model inherits some of the dynamical characteristics of the continuous-
time network, there are some differences. For example, discrete-time version can possess spurious steady-state
solutions and spurious asymptotic behavior which are not inherent in the original continuous systems. The
discussion on the importance of discrete-time analogues in preserving the properties of stability and bifurcation
of their continuous-time counterparts have been studied by some authors. Though much has been done on
bifurcations for delay-differential systems, only bifurcations for discrete networks of two neurons have been
studied (see [9, 17, 18, 19, 20]).

Motivated by the above discussion, in this paper, we consider the following delayed discrete system
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where xn, yn, and zn denote the respective activations of the three neurons, a �(0, 1) is the internal decay of the
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neurons, w1, w2, and w3 are connection weights, the nonnegative integers kj � � (j = 1, 2, 3) denote the synaptic
transmission delays, fj : � � � (j = 1, 2, 3) are the activation functions. Throughout this paper, we always
assume that w1w2w3 � 0 (otherwise the system is decoupled), k1 + k2 + k3 = 3k, and fj (j = 1, 2, 3) are at least C1-

smooth with fj(0) = 0. Without loss of generality, we also assume (0) 1,jf ��  j = 1, 2, 3.

System (1) can be regarded as a discrete analogy of the differential system
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where � > 0 characterizes the decay rate of the neurons with which each neuron will reset its activation to the
resting state in isolation when disconnected from other neurons, �j (j = 1, 2, 3) are non-negative and denote the
synaptic transmission delays. Existence, multiplicity, stability, and even the spatio-temporal patterns of periodic
solutions of (2) have been studied by Guo and Huang [5] and Wei and Li [14].

The purpose of this paper is to study the asymptotic stability of the trivial solution and discuss possible
bifurcations. Because of the normalization we will use the product of the connection weights (more precisely,
the cubic root of the product) as the bifurcation parameter. It turns out that there exist three types of bifurcations:
fold bifurcations, flip bifurcations and Neimark-Sacker bifurcations. We should mention that there is no flip
bifurcations in the discrete networks of two neurons in the above mentioned literature. Moreover, we shall
study the direction and stability of Neimark-Sacker bifurcation by using the techniques developed by Kuznetsov
[10]. These theoretical results are important to complement the experimental and numerical observations made
in living neural systems and artificial neural networks for better understanding the mechanisms underlying
them.

This paper is organized as follows: In Section 2, we discuss the associated characteristic equation with the
linearized system. Followed in Section 3 are the linear stability and possible bifurcations with focus on the
direction and stability analysis of the Neimark-Sacker bifurcation.

2. THE CHARACTERISTIC EQUATION

Linearizing (1) at the origin (the trivial solution of (1)) leads to
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The characteristic matrix of (3) is
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and hence the characteristic equation is

det�(�) = (� – a)3 – b3 �–3k = 0,

where b � �  such that b3 = w1w2w3. The characteristic equation can be decomposed as
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2
0det ( ) [ ] 0,j k

j a b �
�� � � � � � �� � � (4)

where � �2
3exp i�� �  and 1i � �  (this is the reason why we assume that k1+ k2+ k3 = 3k). Regarding b as the

bifurcation parameter, we first determine when (4) has a root on the unit circle. It is well known that the trivial
solution of the nonlinear system (1) is locally asymptotically stable if all roots of (4) lie inside the unit circle.

If k = 0, which implies k1 = k2 = k3 = 0, then the three roots of (4) are a + b, a + �b, and a + �2b.

Theorem 1 Assume that k = 0. Then the following statements hold.

(i) det  �� (�) is of  Schur type (i.e. ,  all zeros are inside the unit circle) if and only if
2 2 2 21

21 (1 ).a b ab a b� � � � � �

(ii) If a + b = 1 (respectively, –1), then det�(�) has a zero 1 (respectively, –1) and the other two zeros are
inside (respectively, outside) the unit circle.

(iii) If a2 + b2 – ab = 1, then on the unit circle det�(�) has a pair of complex conjugate zeros a + �b and a
+ �2b. Moreover, the third zero a + b is outside (respectively, inside) the unit circle if b > 0 (respectively,
< 0).

Proof: Note that |a + �b|2 = |a + �2b|2 = a2 – ab + b2. Also note that 2 21
2 (1 )ab a b� � �  is equivalent to (a + b)2 < 1.

Then (i) follows immediately.

Now, suppose a + b = 1. The case where a + b = –1 can be dealt with similarity. Then we have det�(1) = 0
and |a + �b|2 = |a + �2b|2 = a2 – ab + b2 =  a2 – a(1 – a) + (1 – a)2 = 3a2 – 3a + 1 < 1 since a � (0, 1). This proves
(ii).

Finally, we assume that a2 + b2 – ab = 1. Then |a + �b| = |a + �2b| = 1, i.e., det�(�) has two zeros a + �b and
a + �2b on the unit circle. Moreover, we have b > 1 or –1 < b < 0, otherwise a + b = a3 + b3 < a + b, which is
absurd. If b > 0 and hence b > 1, then a + b > 1; while if b � (–1, 0), then it is easy to see that |a + b| < 1. This
completes the proof.

In the sequel, we consider the following polynomials with k �� 1, a � (0, 1), and b � �,

Pj(�) = �k+1 – a�k – �jb,  j = 0, 1, 2. (5)
Define a parametric curve � with

( ) cos( 1) cos ,

( ) sin( 1) sin .

u t k t a kt

v t k t a kt

� � ��
�

� � ��
(6)

Let �(t) = v(t)/u(t). Then
��(t) = u–2(t)[v�(t) u(t) – u�(t) v(t)]

= u–2(t) [(a2 + 1)k + 1 – a(2k + 1) cos t]

� u–2(t) [(a2 + 1)k + 1 – a(2k + 1)
= u–2(t)[k(1 – a) + 1](1 – a)

> 0
for all t �� such that u(t) � 0. Therefore, as t increases from 0 to �, the corresponding point (u(t), v(t)) on the
curve � moves anticlockwise around the origin. Moreover, it follows from u2(t) + v2(t) = 1 + a2 – 2a cos t that
the part of the curve � with parameter t � [0, �] is simple, i.e., it can not intersect itself.

Let 0 � �0 < �1 < . . . < �k <  �k + 1  � � be the k + 2 zeros of v(t) in the interval [0, �]. Obviously, we have �0

= 0, �1 � (0, �/(k + 1)), and �k+1 = �. Then the curve � intersects the u-axis at points (u(�j), 0), j � �(0, k + 1).
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Here and in the sequel, for m �� n � �, �(m, n) = {m, m + 1, . . . , n}. It follows from the anticlockwise property

of the curve � that (–1)ju(�j) > 0 for all j � �(0, k + 1). In addition, we have 2| ( ) | 1 2 cos .j ju a a� � � � �

Hence |u(�j)| is increasing in j, and

2( ) ( 1) 1 2 cos .j
j ju a a� � � � � �

In particular, u(�0) = 1 – a and u(�k+1) = (–1)k+1(1 + a). Moreover, we further claim that

(–1)j v� (�j) > 0 for j � �(0, k + 1) and (–1)ju� (�j) > 0 for  j � �(1, k). (7)

In fact, the first inequality follows from the anticlockwise property of the curve �. Since u2(t) + v2(t) is
increasing in t � (0, �), u�(t)u(t) + v�(t) v(t) > 0 for all t � (0, �). It follows that u�(�j)u(�j) > 0 for all j � �(1, k),
which combined with (–1)ju(�j) > 0, produces the second inequality in (7).

Now, we apply the above results to P0(�) to obtain the following results.

Lemma 1 Assume that k � 1.

(i) P0(�) has a zero of modulus 1 if and only if b = u(�j) for some j � �(0, k + 1). Moreover, if b = u(�j) for
some j ���(0, k + 1) then all the zeros of P0(�) of modulus 1 are e�i�j, which are simple.

(ii) P0(�) has a simple zero � = 1 on the unit circle and all other zeros of P0(�) are inside the unit circle if
and only if b = 1 – a.

(iii) P0(�) has a simple zero � = –1 on the unit circle and all other zeros of P0(�) are inside the unit circle
if and only if b = (–1)k + 1 (a + 1).

(iv) For a fixed j � �(0, k + 1), there exist � > 0 and a C1-mapping � : (u(�j) – ���u(�j) + �) � � such that

�(u(� j)) = ji
e

�  and �(b) is a zero of P0(�) for all b � (u(� j) – �, u(� j) + �). Moreover,

( )
( 1) | ( ) | 0.

j

j d
db b u

b
� �

� � �

(v) P0(�) = 0 has all solutions with modulus less than 1 if u(�1) < b < 1 – a = u(�0), exactly 2s + 1 solutions
with modulus greater than 1 if u(�2s) < b � u( �2(s+1)), s � �(0, [(k – 1)/2]}; exactly 2s solutions with
modulus greater than 1 if u( �2s+1)  � b < u( �2s–1), s � �(1, [k/2]); exactly k + 1 solutions with modulus
greater than 1 if b < u( �1+2[k/2]) or b > u( �2[(k+1)/2]). Here [·] is the greatest integer function.

Proof : It is easy to check that if b = u(�j) then P0(�) has zeros .ji
e
� �  On the other hand, if ei� with � � [0,

�] is a zero of P0(�), then separating the real and imaginary parts of P0(e
i�) gives us

cos((k + 1)�) – a cos(k�) = b and sin((k + 1)�) – a sin(k�) = 0. (8)

It follows that there exists j0 � �(0, k + 1) such that 
0j

� � �  and hence 
0

( ).jb u� �  It also follows from (8)

that 2| | 1 2 cos .b a a� � � �  Since cos� is monotonic on [0, �], it follows that when b = u(�j) the only zeros of

P0(�) of modulus 1 are .ji
e
� �  It is easy to see that ji

e
� �  are simple zeros. This proves (i).

If P0(�) has a zero � = 1, then P0(1) = 1 – a – b = 0 gives b = 1 – a. Suppose b = 1 – a. Then P0(�) =
�k+1 – 1 – a(�k – 1). This, together with conclusion (i), implies that � = 1 is the unique zero of P0(�) on the unit
circle, which is simple. Now, we show that all other zeros of P0(�) are inside the unit circle. In fact, if there
exists a zero �0 outside the unit circle, i.e., |�0| > 1, then |�0|

k+1 � a|�0|
k+1 – a. Thus, |�0|

k+1 –1 � a(|�0|
k – 1). It

follows that
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which contradicts with a � (0, 1). This proves (ii).

The proof of (iii) is similar to that of (ii) by noting

P0(�) = (–1)k+1{(–�)k+1 – 1 – a[(–�)k  – 1]}

when b = (–1)k+1(1 + a).

Note that 
0 ( ) 0jiP e � �  if b = u(�j). The existence of � and the mapping ��follow from the implicit function

theorem. Note
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Since a2k2+(k + 1)2 – 2ak(k + 1) cos �j > 0, the sign of 
2

( )
| ( ) |

j

d
db b u

b
� �

�  is determined by v�(�j), whose sign

was given in (7). It follows that 
2

( )
( 1) | ( ) | 0

j

j d
db b u

b
� �

� � �  and hence ( )
( 1) | ( ) | 0.

j

j d
db b u

b
� �

� � �  This proves

(iv).

Finally, we come to prove (v). First observe that, for each b � �, P0(�) has k + 1 zeros, which can be
regarded as C1-functions of b according to the implicit function theorem. It is easy to see that all these zeros are
inside the unit circle when b = 0. As b decreases and passes through u(�1), it follows from conclusion (i) and

1( )
| ( ) | 0d

db b u
b

� �
� �  that only two of these k + 1 zeros move from the interior onto the boundary and then to the

exterior of the unit circle. Similarly, as b further decreases and passes through u(�3), another two of these k + 1
zeros move from the interior onto the boundary and then to the exterior of the unit circle. Thus, there exist
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exactly two zeros of P0(�) outside the unit circle if u(�3) � b < u(�1). One can continue in this manner to finish
the remaining proof also with the help of conclusions (ii) and (iii).

Let �j , j � ��(k+1) := {�1, �2, �(k + 1)}, be the 2k + 2 zeros of

( ) 3 ( ) 2sin ( 1) 2 sin
3 3

v t u t k t a kt
� �� � � �� � � � � �� � � �� � � �

in the interval (–�, �) with –� < �–k–1 < . . . < �–2 < �–1 < 0 < �1 < . . . < �k < �k+1 < �. Obviously, we have �–1 �

(–�/(k + 1), 0) and �1 � (0, �/(k + 1)). This means that the curve � intersects the line 3 0v u� �  at points

(u(�j), v(�j)), j � ��(k+1). Moreover, we have ( ) 3 ( ) [ ( ) 3 ( )] 0,j j j jv u v u� � � � � � �� � � �  which implies that

the curve � intersects the line 3 0v u� �  at points (u(–�j), v(–�j)), j � ��(k+1). Therefore, it follows from the

anticlockwise property of the curve ��that

�s–1 < –�–s < �s < �s < –�–s–1 < �s+1 < �s+1, s � �(1, k) (9)
and

(–1)j u(�j) sign (j) > 0,

(–1)j v(�j) sign (j) < 0,

( 1) si ( )[ ( ) 3 ( )] 0j
j jgn j v u� � �� � � � (10)

for all j � ��(k+1). In addition, we have 2 2 2( ) ( ) 1 2 cos .j j ju v a a� � � �� � �

Let

1 2( 1) sin ( ) 1 2 cos .j
j jb gn j a a�� � � � �

It follows from (9) that

u(�2(s –1)) < –b1–2s < b2s –1 < –u(�2s –1) < b–2s < –b2s < u(�2s) (11)

for s � �(1, [k/2]).

Applying the above discussion to P1(�) gives the following results.

Lemma 2 Assume that k � 1.

(i) P1(�) has a zero of modulus 1 if and only if b = bj for some j � ��(k+1). Moreover, if b = bj for some j � ��(k+1)

then P1(�) only has one simple zero ji
e
�  with modulus 1.

(ii) For a fixed j � ��(k+1), there exist � > 0 and a C1-mapping � : (bj – �, bj + �) ��� such that ( ) ji
jb e� � �  and

�(b) is a zero of P1(�) for all b � (bj – �, bj + �). Moreover, ( 1) si ( ) | ( ) | 0.j d
jdbgn j b� � �

(iii)P1(�) has all zeros with modulus less than 1 if b–1 < b < b1; exactly s zeros with modulus greater than 1 if
b2s–1 < b � b–2s or b2s � b < b1–2s, s � �(1, [(k + 1)/2]). Moreover, all the k + 1 zeros are outside the unit circle
if b < b–�(k+1) or b > b�(k+1), where � = (–1)k.

Proof : To prove (i), first note that any zero of P1(�) with modulus 1 is simple. If b = bj , one can check that

P1(�) has a zero .ji
e
�  Now suppose P1(�) has a zero � = ei� with � � (–�, �). It follows from eik�(ei� – a) = �b that
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1
( )

2
u b� � �   and  

3
( ) .

2
v b� �

Then  � � � �( ) 3 ( ) 0v u  and hence � = �j for some j � ��(k+1). Now, suppose b = bj and ei� is a zero to P1(�).

Then there exists s � ��(k+1) such that � = �s. We claim that s = j. Otherwise, s � j, which together with (9),

implies that 2 2| | 1 2 cos 1 2 cos | | .j j jb a a a a b� � � � � � � ��  This proves (i).

To prove (ii), note that 
1( ) 0jiP e ��  if b = bj. The existence of � and the mapping � follow from the implicit

function theorem. From

                                               2 ( ) ( )
| ( ) | ( ) ( )

d d b d b
b b b

db db db

� �
� � � � �

= 1 1

( ) ( )
,

( 1) ( ) ( ) ( 1) ( ) ( )k k k k

b b

k b ak b k b ak b� �

�� ��
�

� � � � � � � �

we have

                                             
3 32

2 2 2

( 1)cos ( 1) cos
| ( ) | 2

( 1) 2 ( 1)cos

j j
j

j

k k ak kd
b

db k a k ak k

� �� � � �� � � � �� � � �� � �
� � � �

� �

�

= 2 2 2

( ) 3 )
.

( 1) 2 ( 1)cos
j j

j

v u

k a k ak k

�
�

� � � �

� � ���

�

The denominator (k + 1)2 + a2k2 – 2ak(k + 1) cos �j is strictly positive. Therefore, the sign of 2| ( ) |d
jdb b�  and

hence the sign of  | ( ) |d
jdb b�  is determined by the numerator, whose sign was given in (10). Then

( 1) si ( ) | ( ) | 0j d
jdbgn j b� � �  and (ii) is proved.

Finally, we come to prove (iii). We first observe that, for each b � �, P1(�) has k + 1 zeros, which can be
regarded as C1-functions of b according to the implicit function theorem. It is easy to see that all these zeros are
inside the unit circle when b = 0. In the following, we only consider the case where b increases from 0 to � as
the case where b decreases from 0 to –� can be dealt with similarity. As b increases and passes through b1, it

follows from 1| ( ) | 0d
db b� �  (see conclusion (ii) just proved) that only one of these k + 1 zeros moves from the

interior onto the boundary and then to the exterior of the unit circle. As b further increases and passes through

b–2, it follows from 2| ( ) | 0d
db b�� �  that another zero moves from the interior onto the boundary and then to the

exterior of the unit circle. Thus, there exists exactly one zero of P1(�) outside the unit circle if b1 < b � b–2. By

induction, there exist s zeros of P1(�) outside the unit circle if 1( 1) ( 1) ( 1)
,s ss s

b b b�� � �
� �  s � �(1, k). As b eventually

passes through b�(k+1), it follows from ( 1)| ( ) | 0d
kdb b� �� �  that all the k +1 zeros move to the exterior of the unit

circle. This completes the proof.

We observe that if � is a zero of P1(�) then � is a zero of P2(�) and vice versa. In view of Lemma 2, we have

Lemma 3 Assume that k � 1.
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(i) P2(�) has a zero of modulus 1 if and only if b = bj for some j � ��(k+1). Moreover, if b = bj for some j �

��(k+1) then P2(�) only has one simple zero ji
e
� �  with modulus 1.

(ii) For a fixed j � ��(k+1), there exist � > 0 and a C1-mapping � : (bj– �, bj +��) � � such that ( ) ji
jb e�� � �

and �(b) is a zero of P2(�) for all b � (bj – �, bj +��). Moreover, ( 1) si ( ) | ( ) | 0.j d
jdbgn j b� � �

(iii) P2(�) has all zeros with modulus less than 1 if b–1 < b < b1; exactly s zeros with modulus greater than
1 if b2s–1 < b � b–2s or b2s � b < b1–2s, s � �(1, [(k + 1)/2]). Moreover, all the k + 1 zeros are outside the
unit circle if b < b–�(k+1) or b > b�(k+1), where � = (–1)k.

With the help of Lemmas 1, 2, and 3, we obtain the following results.

Theorem 2 Suppose k � 1.

(i) All zeros of det�(�) are inside the unit circle if and only if b–1 < b < 1 – a.

(ii) If b = bj , j � ��(k+1), on the unit circle det�(�) has a pair of simple zeros .ji
e
� �  In particular, when b =

b–1, except for a pair of simple zeroes  exp{�i�–1}, all zeros of det�(�) are inside the unit circle; when
b = 1– a, except for a simple zero � = 1, all zeros of det�(�) are inside the unit circle.

(iii) There exist � > 0 and a C1-mapping � : (bj – �, bj + �) � � such that ( ) ji
jb e� � �  and �(b) is a zero of

det�(�) for all b � (bj – �, bj +��). Moreover, ( 1) ( ) | ( ) | 0.j d
jdbsign j b� � �

(iv) det�(�) has a simple zero � = 1 on the unit circle if and only if b = 1– a.

(v) det�(�) has a simple zero � = .1 on the unit circle if and only if b = (–1)k+1(a + 1).

(vi) For a fixed j � �(0, k + 1), there exist � > 0 and a C1-mapping � : (u(�j) –��, u(�j) +��) � � such that

�(u(� j)) = ji
e
� and �(b) is a zero of P0(�) for all b � (u(� j) – �, u(� j) + �). Moreover,

( )
( 1) | ( ) | 0.

j

j d
jdb b u

b
� �

� � �

Proof : Here, we only verify conclusion (i) because others follow easily from Lemmas 1, 2, and 3. It is easy
to see that all zeros of det�(�) are inside the unit circle if and only if u(�1) < b < 1 – a and b–1 < b < b1. It then
follows from (11) that –u(�1) > b1 > –b–1 > 1– a. Thus, all zeros of det�(�) are inside the unit circle if and only
if b–1 < b < 1– a. This completes the proof.

3. BIFURCATION ANALYSIS

In view of Theorems 1(i) and 2(i), we can obtain the linear stability of the trivial solution of (1).

Theorem 3 The trivial solution of (1) is linearly asymptotically stable if and only if one of the following two
conditions holds.

(i) k = 0 and 2 2 2 21
21 (1 ).a b ab a b� � � � � �

(ii) k � 1 and b–1 < b < 1– a.

If b = 1– a, then it follows from Theorems 1(ii) and 2(iv), det�(�) has a simple zero � = 1 on the unit circle,
and all other zeros are inside the unit circle. If b = (–1)k+1(a + 1), then it follows from Theorems 1(iii) and 2(v),
on the unit circle det�(�) has only a simple zero � = –1. Therefore, we have established
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Theorem 4 Near b = 1 – a, a fold bifurcation (or saddle-node bifurcation) occurs in system (1). Moreover,
near b = (–1)k+1(a + 1), a flip bifurcation (also referred to as period-doubling or subharmonic bifurcation)
occurs in system (1).

If b = b–1 and k � 1, then it follows from Theorem 2 that on the unit circle det�(�) has only a pair of simple
complex conjugate zeros, which take the form of exp{�i�–1}, all other zeros of det�(�) are inside the unit circle.
Since �–1 � (–�/(k + 1), 0) � (–�/2, 0), exp{is�–1} � 1 for all s = 1, 2, 3, 4. This, together with Theorem 2(iii),
implies the occurrence of Neimark-Sacker bifurcation in system (1) near the origin and b = b–1. Thus, we have
reached the following conclusion.

Theorem 5 Assume that k � 1. Then, near b = b–1, a Neimark-Sacker bifurcation occurs in system (1), i.e.,
a unique closed invariant curve bifurcates from the origin.

Remark 1 For system (1) without delays, i.e., k1 = k2 = k3 = 0, there exists no Neimark-Sacker bifurcations
for all b.

In order to analyze the Neimark-Sacker bifurcation stated in Theorem 5, we compute the reduced system on
the center manifold associated with the pair of complex conjugate solutions exp{�i�–1} of the characteristic
equation (4). The reduced system enables us to determine the bifurcation direction, i.e., supercritical bifurcation
(b > b–1) or subcritical bifurcation (b < b–1). Recall that �–1� (–�/(k + 1), 0). For convenience, let b0 = b–1 and �0

= exp{–i�–1}. We further assume that fj satisfies

� � � � �3( , ),( (0) (0) 0, (0) 0 for all 1,2,3.j j j jf C f f f j� � � �

We can rewrite (1) as Xn+1 = F(Xn), where Xn is a (3k + 3)-dimensional vector with the j-th component
defined as

3

1 3

1, 3

2, 3 1 3

3 1 3

1 1,

2 2,

, 3 3( 1),

n j
j
n n j k

n j k k

x j k

X y k j k k

z k k j k

� �

� � �

� � � �

� � �
��� � � � � ��
� � � � � ���

and F = (F1, F2, . . ., F3(k+1))
T : �3(k + 1) � �3(k + 1) is defined by

1 3

3

1 3 3

21
1 1

2 3( 1)
2 2 3

2 1
3 3 1 3

1
3 1 3

( ), 1

( , 2
( )

( ), 2,

, 1, 2 and 2.

k k
n n

k k
n n

j n k k k
n n

j
n

aX w f X j

aX w f X j k
F X

aX w f X j k k

X j j k j k k

� �

� �

� � �

�

� � �
�
� � � ��� �

� � � ��
�

� � � � � ���

Let � = DF(0), � = D2F(0), and C = D3F(0). It is easy to see that

det(�Id3(k+1) – �) = �3k det�(�).  (12)

Namely, eigenvalues of � are the zeros of det�(�). From Theorem 2(ii), det�(�) has exactly a pair of

simple zeros 1
0
��  at b0, while all the other zeros are inside the unit circle. This means that on the unit circle � has

exactly one pair of simple zeros 1
0
�� at b0. Moreover, it easy to see that � continuously depends on b. Then we

regard � as a continuous map with respect to b and rewrite � as �(b). Let

1 22
1 1 2 0 3 0 20 0, , ( ) / .k kc w c a c a w�� � � � � � � �

Then c = (c1, c2, c3)
T � �3 satisfies �(�0)c = 0. Consider q0 � �3(k+1) with the s-th component given by
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3

1 3

1
1 0 3

20
2 3 1 30

3
3 1 30

, 1 1

, 2 2,

, 3 3( 1).

s

k s
s

k k s

c s k

q c k s k k

c k k s k

�

� �

� � �

� � � � �
��� � � � � � ��
�

� � � � � ���

Then q0 is an eigenvector for �(b0) corresponding to the eigenvalue �0; namely

�(b0)q
0 = �0q

0.

The adjoint equation of (1) is

3

1

2

1 3 3

1 1 1

1 2 2

( ),

( ),

( ),

n n n k

n n n k

n n n k

x ax w f z

y ay w f x

z az w f y

� �

� �

� �

� � �
�� � ��
� � ���

(13)

The associated characteristic matrix of the linearized system of (13) at the origin is

3

1

2

1
3

1
1

1
2

0

* ( ) 0 .

0

k

k

k

a w

w a

w a

�

�

�

� �� � � �
� �
� �� � � � � � �
� �
� �� � � �� �

Therefore,

det �*(�) = (�–1 – a)3 – b3�3k = 0. (14)

It is easy to see that �*(�–1) = �T (�). Then � � � satisfies det �*(�) = 0 if and only if det�(�–1) = 0.

Therefore, at b0, det �*(�) has exactly a pair of simple zeros 1
0
��  on the unit circle while all the other zeros are

outside the unit circle. Let d = (d1, d2, d3)
T � � satisfy � �1Td c  and � � � �0( ) 0.Td  Indeed, we have

3 21 2 1
1 3 2 0 2 3 00 0, ( ) / , ( ),k kd Dw d D a w d D a�� �� � � � � � � � �

where � �� � �� � � � �1 3 11 1 11
1 3 003 [( 1) ] .k kD w w k ak  Then �*(�0) d = 0. Consider p0� �3(k+1) with the s-th component

given by

3

1 3

1

1 2
1 0 0 3

2 30
31

2 0 3 1 30

3, 1 3

31
3 0 1 30

, 1,

( ) , 2 1,

, 2,

( ) , 3 2,

3,

( ) , 3 3 3.

s

s k s

k k s

d s

d a s k

d s k
p

d a k s k k

d s k k

d a k k s k

� �

� ��

� � ��

��
�

� � � � � ��
� � ��� �

� � � � � � � ��
� � � �
�
� � � � � � � � ��

Then p0 is an eigenvector for AT (b0) corresponding to the eigenvalue 1
0
�� � namely

0 0
0 0( )T b p p� ��
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Then < p0, q0 > = 1 and 0 0, 0,p q� � �  where < . , .>  means the standard scalar product in �3(k+1):

, .Tp q p q� � �  Any vector X � �3(k+1) can be uniquely represented for b near b0 as

( ) ( )X zq b zq b� �

for some complex z, where p, q : � � �3(k+1) are smooth in b with q(b0) = q0 and p(b0) = p0. Obviously, z =< p(b),
X>. Thus the mapping F : �3(k+1) � �3(k+1) can be transformed for b near b0 into the following form:

( ) ( , , ),z b z g z z b� �� (15)

where �(b) can be written as �(b) = [1 + �(b)]ei�(b) and �(b) and �(b) are smooth functions with �(b0) = 0 and
�(b0) = –�–1, and

2

1
( , , ) ( ) .

! !
s l

sl
s l

g z z b g b z z
s l� �

� �

Let z = rei�. Then we can rewrite the normal form (15) as

r � r + Cr(b – b0) + Ar3 + h.o.t.,

� �� + B + Er2 + h.o.t., (16)

where 0 0| arg( ) |, | ( ) |,d
dbB C b� � � �  and

2
20

0 21 0 11 0 20 0 11 0 02 0
0

(1 2) 1
Re( ( )) Re ( ) ( ) | ( ) | | ( ) | .

1 2
A g b g b g b g b g b

�� �� �
� � � � �� �

� �� �� �

Therefore, the direction and stability of the Neimark-Sacker bifurcation of (1) can be determined by the
signs of the coefficients A and C; B and E give the asymptotic information on rotation numbers. More precisely,
if AC < 0 (respectively, > 0), then the Neimark-Sacker bifurcation of (1) at b0 is supercritical (respectively,
subcritical) and the unique closed invariant curve bifurcating from (0, 0, 0) for b near b0 has the same stability
as the trivial solution had before the occurrence of bifurcation (respectively, unstable). In fact, in view of
Theorem 2(iii), we have C < 0.

Under the condition (H), by a direct computation, we have

g20(b0) = 0, g11(b0) = 0,  g02(b0) = 0,

and

31 2
21 0 1 1 2 2 2 2 2 3 3 3 3 3 1 1 10 0 0( ) (0) (0) (0) kk kg b b f d c c c b f d c c c b f d c c c �� �� � � � � ��� �� ��

� � �

= 1 33 8 3 3
0 1 3 1 0 2 2 0 1 3 3 0{ (0) (0) (0)} k k kD b w w f b w f b w w f � � ��� � � ��� �� ��

=
8 8 101 1 4
3 3 3 3 3 3 1 32 2

1 2 3 1 2 30 2 3 1 2 3 0{ (0) (0) (0)} k k kD w w w f b w w f w w w f
� � � �� � � ��� �� ��

=
5 5 71 1 1
3 3 3 3 3 3

1 2 3 1 2 31 2 3 1 2 3
1

{ (0) (0) (0)}
3

w w w f w w w f w w w f
�

� � ��� �� �� .

1 1
0 0.[( 1) ] kk ak � �� � � �
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3 1 1
0 0 0

1
[ 1) ] ,

3
kb K k ak � �� � � � � �

where

2 2 2 2
1 0 2 2 0 1 2(0) (0) (0).K f b w f b w f� �� � ��� �� �� (17)

Therefore,

sign(AC) = –sign(A)]

= 0 21 0si {Re ( ))}gn g b� �

=
0

0
0

Re
( 1)

k

sign b K
k ak

�� ���� �� � �
� � �� �� �

= � �2 2
1 13 3( 1)cos ( 1) cos( )sign K k k ak k� �

� �� �� �� � � � � � �� �� �� �

= � �1si ( ) 3 ( )gn K v u�� �� �� ���� � � �

= { }.sign K�

The last equality follows from (10). Therefore, we have the following results.

Theorem 6 Assume that k � 1 and (H) holds. Then, at b = b–1, system (1) undergoes a Neimark-Sacker
bifurcation. The direction of bifurcation and the stability of the bifurcating closed invariant curve are determined
by K. More precisely, if K > 0 (respectively, < 0), then the bifurcation is supercritical (respectively, subcritical),
i.e., the bifurcating closed invariant curve exists for b > b–1 (respectively, < b–1), and the bifurcating closed
invariant curve is orbitally asymptotically stable (respectively, unstable).

Remark 2 In particular, if system (1) has the same activation functions, i.e., f1(x) = f2(x) = f3(x) = f(x), then
sign{K} = sign{f�� (0)}. Therefore, The direction of bifurcation and the stability of the bifurcating closed
invariant curve are determined by f��(0). More precisely, if f���(0) > 0 (respectively, < 0), then the bifurcation is
supercritical (respectively, subcritical), i.e., the bifurcating closed invariant curve exists for b > b–1 (respectively,
< b–1), and the bifurcating closed invariant curve is orbitally asymptotically stable (respectively, unstable).

Remark 3 In this section, we only consider the Neimark-Sacker bifurcation at b = b–1. In fact, we can obtain
the existence of Nemark-Sacker bifurcating closed invariant curves with b at other Neimark-Sacker bifurcation
points, such as u(�j) (j � �(1, k)) and bs (s � �±(k+1) \ {–1}). Moreover, these bifurcating closed invariant curves
are all unstable because of the unstable manifold containing the origin. Similarly, we can use the above discussion
to obtain their bifurcation direction.
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