
International Journal of Applied Mathematics & Engineering Sciences
Vol. 1, No. 1, January-June 2007

GENERATING UNIFORM POINTS ON THE BOUNDARY OF
BOUNDED SPECTRAHEDRON WITH APPLICATIONS TO RANK

CONSTRAINED LINEAR MATRIX INEQUALITY PROBLEM

Shafiu Jibrin

ABSTRACT: This paper presents an algorithm for generating (asymptotically) uniform points on the boundary
of a bounded spectrahedron (a closed convex set defined by a set of linear matrix inequality constraints). This is
an extension of the running shake-and-bake algorithm from linear constraints to linear matrix inequality constraints.
The algorithm can be used to visualize boundary shapes of bounded spectrahedra in �2 and �3. It can also be
used to get approximate solution of any semidefinite programming problem that attains its solution on the boundary.
We show an application of the algorithm to the rank constrained linear matrix inequality problem, which is an
important problem in engineering and mathematics. Our numerical results indicate the effectiveness of this
approach.

KEYWORDS: Semidefinite programming, linear matrix inequalities, asymptotically uniform points, shake- and-
bake method, simulation, rank constraints, visualization.

AMS Subject Classification: 15A39, 65C05, 68U05, 90C22, 62P30

1. INTRODUCTION

A semidefinite programming problem is an extension of a linear programming problem where the linear constraints
are replaced by linear matrix inequality (LMI) constraints. Semidefinite programming also generalizes
quadratically constrained quadratic programming QCQP [17]. Semidefinite programming problems arise in a
variety of applications e.g., in engineering, statistics and combinatorial optimization ([1], [6]). Semidefinite
Programming has been the subject of intense research since the early 1990’s in both theory and applications. A
semidefinite programming program (SDP) has the form:

SDP : min cTx

s.t.
() () ()

0
1

() : 0, 1,2, . . . ,
n

j j j
i i

n

A x A x A j q
�

� � �� �� (1.1)

where �� (), ,n j
ic x A are mj × mj symmetric matrices. The constraint A(j)(x) � 0 is called a linear matrix inequality

(LMI) and B � 0 means that B is positive semidefinite.

We assume that m1 � m2 � . . . � mq.

Consider the feasible region � defined by the set of linear matrix inequalities (1.1). The region � is called
a spectrahedron and is convex. This is a polyhedron when all the LMI constraints are linear. We assume that �
is bounded and full-dimensional.

Hit-and-run algorithms for generating uniform points in the interior of � when ��is a polyhedron, are
described in ([3], [12]) in the context of detecting necessary linear constraints. These were extended to LMI
constraints in [10]. It has been shown by R. L. Smith that hit-and-run algorithms do not generate uniform points
on the boundary of � [5]. We illustrate this point in the case of the coordinate directions (CD) hit-and-run
algorithm. Consider the following polyhedron in Figure 1, which is a rectangle with length 1 and width 1/2. The
regions 1 and 2 partition the polyhedron into two equal parts. We apply CD to the polyhedron.

International Journal of Applied Mathematics and Engineering Sciences
Vol. 2 No. 1 (June, 2017)

28 Shafiu Jibrin

Consider the boundary segments a, b and c. Let pij be the probability of hitting boundary segment j along a
random coordinate direction from region i of the polyhedron in an iteration of CD. Then, p1a = p2b = p2c = p1c and
p2a = p1b = 0. So, pa = p1a + p2a = p1c

Figure 1. The Boundary Segments a, b, c do not have the Same hit probabilities

1/2

a

1

1/2

b

2 c
1/2

and pc = p1c+ p2c = p1c+ p1c = 2p1c. Hence, pa � pc. This means that the points generated by CD on the boundary
of the polyhedron are not asymptotically uniform.

In the special case of linear constraints, the so-called shake-and-bake algorithms for generating asymptotically
uniform points on the boundary of � are given in [4]. The most efficient of them is the running SB algorithm.
To describe running SB, suppose � is the polyhedron

� � � ��{ : , 1,2, . . . , }n T
j jx a x b j q�

where each || aj || = 1. Find a point x0 on the boundary of � and determine the boundary point x1 as follows:

1. Choose a random point u on the (relative) interior of the intersection of the (n – 1)-dimensional unit

hypersphere centered at the origin and the hyperplane
0

0T
xa x �

2. Define s to be the inward unit vector whose projection on
0

0T
xa x � is equal to u

3. Find the boundary hit point y0 of � along the ray {x0 + �s :�� > 0}

4. Set x1 = y0 with probability p = 1

By repeating the above procedure, we generate a sequence of points {xk} on the boundary of �. We state the
following result.

LEMMA 1.1. [4] In the running SB algorithm the points {xk} converges (asymptotically) to uniform points
on the boundary of �

McDonald in 1989 [13] showed that shake-and-bake algorithms can be generalized, in principle, to almost
all bounded convex regions. A key element is the ability to compute supporting halfspaces at boundary points.
It is also essential that intersection points of a random ray with the boundary can be computed efficiently.

In this paper, we extend running SB to the spectrahedron �. We call the extension running spectrahedron
shake-and-bake algorithm (running SSB). We give examples to show that running SSB can be used to visualize
boundary shapes of bounded spectrahedra in �2 and �3. The algorithm can also be used to find approximate
solutions of difficult-to-solve semidefinite programming problems which attain their solutions on the boundary.
As an example, we study an important application of the algorithm to the rank constrained linear matrix inequality
problem, which is an NP-hard problem. Our numerical results indicate the usefulness of this approach. Rank
constrained linear matrix inequality problem arises in robust control, output feedback, signal processing,
computational geometry and statistics ([8], [9], [15]).

Generating Uniform points on the Boundary of Bounded... 29

All numerical experiments were done using a Dell OptiPlex GX300 computer with codes written in MATLAB
Version 7.1.

2. DETERMINING SUPPORTING HALFSPACES AND LMI BOUNDARY INTERSECTION POINTS

In this section, we show how to determine the supporting halfspace at a boundary point of an LMI constraint.
We also show how to find the boundary intersection points of an LMI constraint from both interior and infeasible
points.

For simplification, we consider a single LMI here

0
1

() : 0
n

i i
i

A x A x A
�

� �� �

where x � �n and Ai are m × m symmetric matrices. We assume throughout this section that A(x) � 0 is strictly
feasible. Let w be a point on the boundary of A(x) � 0 and that the boundary is smooth at w (see Figure 2).

Figure 2. a
w
 is a normal vector at the boundary point w.

We determine the supporting halfspace at w. Let rank (A(w)) = r and consider an orthogonal decomposition
of A(w)

A(w) = [Q1Q2]diag(0, . . . , 0, �1, �2, . . . , �r)[Q1Q2]
T .

where �1, . . . , �r are the positive eigenvalues of A(w).

LEMMA 2.1. ([2], [11]) An (outward) normal vector aw at w on the boundary of A(x) � 0 is given by:

1 1() (1,2, . . . ,).T
w i ia Q A Q i n� � �

Hence, the supporting halfspace at w is given by

T
w wa x b�

where .T
w wb a w� The time complexity for finding the supporting halfspace is O(m3 + nm2 + n2). Next, we show

how to determine the boundary intersection points(s) of A(x) � 0 from interior and infeasible points. Let x0 be
a point in �n and choose a search direction s.

Consider the case when x0 is an interior point of the LMI (see Figure 3). The boundary intersection point of
the LMI along the ray {x0 + �s : � > 0} is defined by x0 + �1s, where �1 is the solution of the following problem:

30 Shafiu Jibrin

max �����

s.t. A(x0 + �s) � 0

Figure 3. In the figure, x0 is an interior point of �

Note that A(x0) � 0 (positive definite). Define the symmetric matrix

1/ 2 1/ 2
0 0 0

1

(,) : () () ()
n

i i
i

B x s A x s A A x� �

�

� � �

LEMMA 2.2. [10] The boundary intersection point of A(x) � 0 along the ray (x0 + �s : � > 0} is given by
x0 + �1s, where

1 max 01/ ((,))B x s�� � �

If A(x0) � 0 and 1
n
i i is A�� is of rank one or two, another method for finding the boundary intersection point

is given in [7].

Now, consider the case when x0 is an infeasible point of the LMI (see Figure 4).

Figure 4. In the figure, x
0
 is an infeasible point of �

The boundary intersection points of A(x) � 0 along the ray {x0 + �s : � > 0} are defined by x0+��1s and x0+
�2s, where �1 and �2 are the optimal solutions of the following problems

Generating Uniform points on the Boundary of Bounded... 31

max ���
s.t. A(x0 + �s) � 0

min ���
s.t. A(x0 + �s) � 0

We have the following theorem:

THEOREM 2.1. Suppose that A(x0) is invertible. The boundary intersection points of A(x) � 0 along the ray
{x0 + �s: � > 0} are given

�1 = max {��|1/�� is an eigenvalue of
�

�

� � ��1
0 0

1

() (), () 0}
n

i i
i

A x s A A x s �

�2 = min{� |1/��is an eigenvalue of
�

�

� � ��1
0 0

1

() (), () 0}
n

i i
i

A x s A A x s �

Proof: The determinant of A(x) is zero at boundary intersection point since it is a boundary point. So, if x0

+ �s is intersection point, then

0| () | 0A x s� � � 0
1

| () () | 0
n

i i
i

A x s A
�

� � � ��

1
0

1

|1/ () () | 0
n

i i
i

I A x s A�

�

� � � ��

1
0

1

1/ is an eigenvalue of () ()
n

i i
i

A x s A�

�

� � � �

The rest of the proof follows from the previous definition of LMI boundary intersection points.

We see that Lemma 2.2 and Theorem 2.1 reduce the problem of finding boundary intersection points to an
eigenvalue problem. The time complexity in each case is O(m3 + nm2).

3. DETERMINING SPECTRAHEDRON BOUNDARY HIT POINTS

In this section, we show how to determine the boundary hit points of �. We will use the results of the previous
section. Recall that � is the spectrahedron

� = {x � �n | A(j)(x) � 0, j = 1, 2, . . . , q}.

Furthermore, recall that � is assumed to be bounded and full-dimensional. It follows that for each
j, A(j)(x) � 0 is strictly feasible. The boundary �� of � is smooth except possibly on a subset of zero (n – 1)-
dimensional Lebesgue measure.

Let xk be a point on the boundary �� of � such that �� is smooth at xk. Let l be the index of the LMI binding

at xk and consider the supporting halfspace
k k

T
x xa w b� at xk determined by A(�)(x) � 0. Without loss of generality,

we assume that
kxa is a unit vector. Let s be a random direction such that 0.

k

T
xa s �

How to efficiently determine the point yk hitting on �� from xk along the ray {xk + �s : � � 0}? We first state
the following lemma and its corollary:

32 Shafiu Jibrin

LEMMA 3.1. [16] Any real-valued polynomial function on �n, is either identically 0, or non-zero almost
everywhere.

COROLLARY 3.1. For each j, A(j)(x) is invertible for almost all x � �n.

Proof: By assumption, A(j)(x) � 0 is strictly feasible. So, there is an x such that the determinant |A(j)(x)| ���.
Hence, by Lemma 3.1, the polynomial |A(j)(x)| is nonzero for almost all x�� �n.

Now, define the spectrahedron

�
�
 = {x � �n | A(j)(x) � 0, j = 1, 2, . . . , � – 1, � + 1, . . . , q}

We can determine the point hitting on ��
�
 from xk along the ray {xk + �s : � � 0} as follows:

1. Find the boundary intersection points (if any) of A(j)(x) � 0 from xk along the ray for j = 1, 2, . . . , � – 1,
� + 1, . . . , q. Note that xk is an interior point of each A(j)(x) � 0 for j = 1, 2, . . . , � – 1, � + 1, . . . , q. So,
Lemma 2.2 can be used.

2. Find the boundary intersection point z closest to xk in above (if any)

Figure 5. y
k
 is the point hitting on � along the ray {x

k
 + s : 0}

Figure 6. �
�
 is unbounded along the ray {x

k
 + s : 0},

Generating Uniform points on the Boundary of Bounded... 33

There two cases to consider:

Case 1: The ray {xk + �s : � � 0} is unbounded in �
��
. (see Figure 6).

In this case, there are no boundary intersection points on �
�
 from xk along the ray. The point yk hitting on ��

is given by the second boundary intersection point of the �th LMI from z along the ray {z + �s : � � 0}, where z
= xk – s. See Figure 7. This can be found using Theorem 2.1. Note that A(�)(z) � 0. That is, A(�)(x) � 0 is infeasible
at z. Note that since z is random, by Corollary 3.1, A(�)(z) is invertible.

Case 2: The ray {xk + �s : � � 0} is bounded in �
�
.

Figure 7. y
k
 is the second boundary intersection point of the �th LMI from z along the ray {z + s : 0}

First, we determine the point z of ��
�
 from xk along the ray {xk + ��s : � � 0}. Then we consider two

subcases:

Case 2.1: A(�)(z) � 0, that is, z is an infeasible point of A(�)(x) � 0 (see Figure 8).

Figure 8. z is an infeasible point of A(�)(x) � 0

The point yk hitting on �� is given by the first boundary intersection point of the �th LMI from z along the
ray {z + �(–s) : � � 0}. See Figure 9. This can be found using Theorem 2.1. Note that z is random, then by
Corollary 3.1, A(�)(z) is invertible.

34 Shafiu Jibrin

Case 2.2: A(�)(z) � 0 (see Figure 10).

Here, the point yk hitting on �� is the point z.

Figure 9. y
k
 is the first boundary intersection point of the �th LMI from z

Figure 10. z lies on the boundary �

4. EXTENDING RUNNING SB ALGORITHM TO SPECTRAHEDRON: RUNNING SSB

In this section, we use ideas developed in the previous sections to give an extension of the running SB algorithm
to linear matrix inequality constraints. We call the extension running spectrahedron shake-and-bake algorithm
(running SSB).

Consider the spectrahedron

� = {x � �n | A(j)(x) � 0, j = 1, 2, . . . , q}

Recall that � is assumed to be full-dimensional and bounded. The boundary �� is smooth except possibly
on a subset of zero (n –1)-dimensional Lebesgue measure. So, the normal vector and the supporting halfspace
can be found at any random point on ��. The following describes running SSB. Step 1 and Step 3 use the
techniques given in Section 2 and Section 3 (respectively).

Generating Uniform points on the Boundary of Bounded... 35

Running SSB algorithm

0. Find some point x0 � ��. Set k = 0.

1. Determine the supporting halfspace
k k

T
x xa x b� at xk on � with || || 1.

kxa �

2. i. Choose a random point u on the (relative) interior of the intersection of the (n – 1)-dimensional unit

hypersphere centered at the origin and the hyperplane 0.
k

T
xa x �

ii. Define s to be the inward unit vector whose projection on the hyperplane 0
k

T
xa x � is equal to u.

3. Find the point yk hitting on �� from xk along the ray {xk + �s : � � 0}

4. Set xk+1 = xk and update k � k + 1. Return to Step 1 and repeat.

The time complexity of Step 1 is 3 2().O m nm�� � Step 2 is O(n) [4], and Step 3 is 3 2 2().O m nm n� �� �

THEOREM 4.1. In the running SSB algorithm {xk} converges (asymptotically) to uniform points on ��.

Proof: After n + 1 boundary points are generated, consider the polyhedron formed by the supporting
halfspaces determined by the generated points. Asymptotically: (1) by Lemma 1.1 the generated points are
uniform on the limiting polyhedron (2) the polyhedron converges to the spectrahedron . A more formal proof
follows from Theorem 5.3 in [13] applied to a spectrahedron.

We give two examples to show an application of running SSB in estimating the boundary shape of a
spectrahedron. We ran 5000 iterations and plot the boundary points generated in each case. Figure 11A shows
an example in �2 with n = 2, m = [3, 1, 2, 2, 2], q = 5. An example in �3 with n = 3, m = [2, 4, 5, 3], q = 4 is given
in Figure 11B.

It is a challenge to describe the shape of a spectrahedron even if the bounding (necessary) LMI constraints
are known. Running SSB gives us the means to visualize the shape. The more iterations are made, the better is
the estimate of the shape.

Figure 11. (A) Shape in �2 using running SSB. (B) Shape in �3 using running SSB

5. APPLICATIONS TO RANK CONSTRAINED LINEAR MATRIX INEQUALITY PROBLEM

In this section, we show an application of running SSB to finding solutions of rank constrained linear matrix
inequality problem.

36 Shafiu Jibrin

The rank constrained linear matrix inequality problem (RCLMIP) has a wide range of applications across
many disciplines of engineering and computational sciences ([8], [9]). In general, RCLMIP is NP-hard [17].
Algorithms available for RCLMIP are largely heuristic in nature and are not guaranteed to converge to a solution
even if one exists [15]. We consider the following special case:

(1) (1) (1)
0

1

() : 0
n

i i
i

A x A x A
�

� �� � (5.1)

(2) (2) (2)
0

1

() : 0
n

i i
i

A x A x A
�

� �� � (5.2)

rank[A(2)(x)] � m2 – 1 (5.3)

where x � �n. Also (1)
iA are m1 × m1 and (2)

iA are m2 × m2 symmetric matrices. We assume that the solution set

is either empty or has a nonzero (n – 1)-dimensional Lebesgue measure.

Note that the solution set of problem RCLMIP (5.1)-(5.3) is precisely where the boundary of A(2)(x) � 0
intersects the boundary of the set

� = {x � �n | A(j)(x) � 0, j = 1, 2}.

We assume that � is bounded and full-dimensional. We say that A(2)(x) � 0 is redundant in � if its removal
does not change the feasible region �, otherwise it is called necessary. We give the following result.

THEOREM 5.1. Assume that on the boundary of ��, A(1)(x) � 0 and A(2)(x) � 0 coincide on at most a
(n – 1) dimensional subset of �� of Lebesgue measure zero. Then RCLMIP (5.1)-(5.3) has a solution if and only
if A(2)(x) � 0 is necessary in �.

Proof: Suppose RCLMIP (5.1)-(5.3) has a solution. By assumption, the boundary subset of � where A(1)(x)
� 0 and A(2)(x) � 0 intersect has a nonzero (n – 1)-dimensional Lebesgue measure. Hence, removal of A(2)(x) �
0 will change the feasible region �. So, A(2)(x) � 0 is necessary in �. Suppose A(2)(x) � 0 is necessary in �.
Then the boundary of A(2)(x) � 0 intersects the boundary of �. Any point on the intersection is a solution to
RCLMIP (5.1)-(5.3).

Theorem 5.1 shows that determining whether or not RCLMIP (5.1)-(5.3) has a solution is equivalent to the
semidefinite redundancy problem described in [10] and hence an NP-complete problem. Even if a solution
exist, the lack of convexity of the rank constraint (5.3) makes computing a solution of RCLMIP (5.1)-(5.3) a
very hard problem ([8], [15]).

Running SSB can be used to find a solution set of RCLMIP (5.1)-(5.3) as follows: Use running SSB to
generate boundary points of �. Any generated point that satisfies the feasibility condition rank[A(2)(x)] � m2 – 1 is
a solution to RCLMIP (5.1)-(5.3). Since the points generated by running SSB are asymptotically uniform, many
solutions (if they exist) will be found after a finite number of iterations.

We now give numerical experiments that indicates the effectiveness of running SSB to solving RCLMIP

(5.1)-(5.3). In all of the examples used, each LMI
() ()
0

1

0
n

j j
i i

i

A x A
�

�� � was generated as follows: ()j
iA is an

mj × mj diagonal matrix with each diagonal entry chosen from U(0, 1). Each () (1)j
iA i n� � is a random mj × mj

symmetric and sparse matrix with approximately 20.8* jm nonzero entries; each entry is the sum of one or more
normally distributed random samples. Note that the origin is an interior point for each problem.

Table I compares running SSB with LMIRank [14], a Newton-like method given in [15]. A maximum of
5000 iterations were used in the case of running SSB for each problem. The columns give the example number,

Generating Uniform points on the Boundary of Bounded... 37

the dimension n, the matrices sizes m1 and m2. They also give the number of iterations and time (in seconds)
taken by running SSB and LMIRank to solve the problems.

Table I. The effectiveness of running SSB

Ex n m
1

m
2

running SSB LMIRank

Iter Time Iter Time

1 2 5 4 94 0.4531 5 0.3906

2 2 5 7 5 0.2031 * *

3 3 6 5 267 1.1094 4 0.2969

4 4 8 7 199 1.2188 * *

5 4 9 5 152 1.1250 10 0.5156

6 5 8 6 38 0.3906 7 0.4063

7 7 10 8 377 2.9063 8 0.4531

8 7 12 6 96 0.7969 6 0.4063

9 4 10 7 * * * *

10 10 10 10 15 0.3125 6 0.3906

11 10 10 5 250 2.0938 5 0.3438

12 5 6 10 35 0.4531 * *

It is interesting to observe that while LMIRank converges faster than running SSB, it fails to converge with
Example 2, 4, 9 and 12. On the other hand, running SSB found a solution in all the examples except Example 9.
It is possible that Example 9 has no solution. We also note that running SSB has lower cost per iteration than
LMIRank. We conclude that running SSB can be an effective tool in finding a solution to the rank constrained
linear matrix inequality problem.

6. CONCLUSION

We have extended the running SB shake-and-bake algorithm for asymptotically generating uniform boundary
points from polyhedron to spectrahedron. We gave examples to show that the algorithm can be used to visualize
shapes of bounded spectrahedra in �2 and �3. The algorithms can also be used to get approximate solutions of
semidefinite programming problems which attain their solution on the boundary. Our numerical experiments
indicate the effectiveness of this approach to the rank constrained linear matrix inequality problem.

ACKNOWLEDGEMENTS

The author would like to thank Arnon Boneh for his helpful comments during the preparation of this article.

REFERENCES

[1] F. Alizadeh, “Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization”,
SIAM Journal on Optimization, 5, no. 1, (1995) 13-51.

[2] F. Alizadeh, J.A. Haeberly and M. Overton, “Complementarity and Nondegeneracy in Semidefinite Programming”,
Math. Programming, 77, no. 2, ser. B, (1997) 111-128.

[3] H.C.P. Berbee, C.G.E. Boender, A.H.G. Rinnooy Kan, C.L. Scheffer, R.L. Smith and J. Telgen, “Hit-and-run
algorithms for the identification of nonredundant linear equalities”, Math. Programming, 37, (1987) 184-207.

[4] C.G.E. Boender, R.J. Caron, J.F. McDonald, A.H.G. Rinnooy Kan, H.E. Romeijn, R.L. Smith, J. Telgen and A.C.F.
Vorst, Operations Research, 39, (1991) 945-954.

38 Shafiu Jibrin

[5] A. Boneh, Private Communication with S. Jibrin, 2005.

[6] S. Boyd and L. El Ghaoui, “Linear Matrix Inequalities in System and Control Theory”, SIAM, 15, Philadelphia, PA,
1994.

[7] R.J. Caron and N.I.M Gould, “Finding a Positive Definite Interval for a Parametric Matrix”, Linear Algebra and its
Applications, 52, (1986) 19-29.

[8] M. Fazel, “Matrix Rank Minimization with Applications, Proceedings of American Conrol Conference”, PhD Thesis,
Stanford University, 2002.

[9] K.M. Grigoriadis and E.B. Beran, “Alternating Projection Algorithms for Linear Matrix Inequalities Problems with
Rank Constrained”, in L. El Ghaoui and S.-I. Niculescu, editors, “Advances on Linear Matrix Inequality Methods in
Control”, SIAM, 1999, 251-267.

[10] S. Jibrin and I.S. Pressman, “Monte Carlo Algorithms for the Detection of Necessary Linear Matrix Inequality
Constraints”, International Journal of Nonlinear Sciences and Numerical Simulation, 2, (2001) 139-154.

[11] S. Jibrin and D. Stover, “Identifying Redundant Linear Constraints in System of Linear Matrix Inequalities”,
Optimization Online: http:www.optimization-online.orgDB HTML2006/061408.html, (2006).

[12] M.H. Karwan, V. Lofti, J. Telgen, and S. Zionts, “Redundancy in Mathematical Programming”, Chapter 10, Springer-
Verlag, Berlin, 1983.

[13] J.F. McDonald, “Monte Carlo Procedures for Generating Points Uniformly Distributed Over the Surface of a
Bounded Convex Region”, WMR Report 89-03, University of Windsor, 1989.

[14] R. Orsi, “LMIRank: software for rank constrained LMI problems”, http://rsise.anu.edu.au/ robert/lmirank/, (2005).

[15] R. Orsi, U. Helmke, and J.B. Moore, “A Newton-Like Method for Solving Rank Constrained Linear Matrix
Inequalities”, Submitted to: Automatica, (2006).

[16] T. Traynor and R.J. Caron, “The Zero Set of a Polynomial”, WSMR Report 05-02, University of Windsor, 2005.

[17] L. Vandenberghe and S. Boyd, “Semidefinite Programming”, SIAM Review, 38, (1996), 49-95.

Shafiu Jibrin
Department of Mathematics and Statistics
Northern Arizona University, Flagstaff
Arizona 86011-5717
(shafiu.jibrin@nau.edu)

