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APPLIED DOMINANT TRANSFER AND FUZZY LOGIC FOR
NONLINEAR WAVE-WAVE INTERACTIONS

Adhi Susilo, Will Perrie, Matiur Rahman

ABSTRACT: Third generation wave modeling demands an accurate computation of the nonlinear wave-wave
interactions. The latter play an important role in the evolution of wind waves, representing a mechanism for
shifting wave energy to lower and higher frequencies within the spectrum. The original formulation for wave-
wave interactions was proposed by Hasselmann (1962) more than four decades ago. However, the implementation
of this method is time consuming and not practical. Using estimated dominant transfer as representative of the
whole spectrum, Susilo and Perrie (2006) developed a new method called Dominant Transfer Approximation,
DTA. This method does not need the entire spectrum but uses only a specific wave number which gives the
dominant transfer and a scaling factor, F

d 
, which is denoted the ‘dominant factor’. Some experiments must be

performed to determine the F
d
. To install the DTA method in a wave model a reliable program to compute F

d

must be established. In this study, we try to address this problem using fuzzy logic.
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1. INTRODUCTION

The energy conservation relation for wind-generated waves in the deep water usually is stated as

4inp nl wcap
dE

S S S
dt

� � � (1)

where Sinp is the energy input by wind, Snl4 is the non-linear quadruplet wave-wave interactions, and Swcap represents
the energy dissipation by white-capping and wave breaking.

The basic equation describing Snl4 is the Boltzmann integral or kinetic equation, proposed by Hasselmann
(1962). Although Hasselmann and Hasselmann (1981) developed their pioneering systematic computation of
Snl4, the so-called the exact method is not practical for operational applications, because it is hampered by the
complexity of the functional form. Its computation is several orders of magnitude more expensive than all other
terms in equation (1).

More recently, Hasselmann et al. (1985) developed the Discrete Interaction Approximation, DIA, which
dramatically increased the computational speed. DIA enabled the development of third generation wave prediction
models such as WAM and SWAN. However, DIA has a number of shortcomings. For example it compares
poorly with full integrations of Snl4 for many types of spectra (Van Vledder, 2000).

Improvements to the full nonlinear computation method have been attempted, for example by Lin and
Perrie (1999), and the DTA method by Susilo and Perrie (2006). The latter combines the full Snl4 formulation
with a simple scaling algorithm. However this method relies on finding an accurate dominant factor Fd. The
present study attempts to compute Fd with fuzzy logic (FL).

2. DOMINANT FACTOR

The Snl4 term is the rate of change of action density at a particular wave number due to resonant interactions
between quadruplets of wave numbers. This is given by the following six-fold Boltzmann integral:
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Equation (2) describes the rate of change of n1 at wave number k1 due to all quadruplet interactions involving
k1. Webb (1978) introduced a transfer function T(k1, k3)

1
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� � k k k (3)

where

T(k1, k3) = 1 2 3 4 1 3 4 2 2 4 3( , , , [ ( ) ( )]iC n n n n n n n n� � �� � k k k k
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where ni is the action density n(ki) at wave number ki, �i is the angular frequency at ki, the �(. . .) is the Dirac
delta function and the term C is the coupling coeficient (Webb, 1978; Tracy and Resio, 1982) and

�(x) = 1 if x > 0

�(x) = 0 if x � 0

x = |k1 – k4| – |k1 – k3|. (5)

Applying resonance conditions, �1 + �2 = �3 + �4 and k1 + k2 = k3 + k4, equation (4) can be solved. Finally,
in polar coordinates system the nonlinear energy transfer, equation (3), can be computed from the following
equation,

21
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( , ) .
dn

T k d dk
dt

� �
� �� � k k (6)

This implies that the nonlinear energy transfer must be computed over the entire 2-dimensional spectrum.
However, the DTA formulation selects a set of (k1, k3) which gives a maximum transfer and uses a multiplication
factor or a scaling factor to approximate the integral over the 2-dimensional spectrum. Equation (6) can be
rewritten as:

�
� � � ��

21
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d dd
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F T k d d
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k k (7)

where Fd is a scaling factor, the so-called dominant factor and 1 3( , )
d

k k  is a set of k1 and k3 where maximum

transfer occurs.

3. FINDING DOMINANT FACTOR, Fd

As shown by Susilo and Perrie (2006), Fd is a function of peakedness (�) and spectral spreading factor, for a
given spectrum. Thus, there are two inputs to get one output. Because peakedness and spectral spreading are
usually only defined once at the initialization of a simulation, we need to specify these variables so they can be
determined at any time.

We define new variables, slopeg to represent peakedness and slopes to represent the spectral spreading,
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where n is the action density, � is the incremental factor, (kmax, �max) is the location of (k, �) where n is maximum.
See Figure 1 for detail.

The next step is to find a method to compute the Fd(slopeg, slopes). We choose the fuzzy logic (FL) method
as a tool to solve this problem. Using if-then rules, FL provides a simple way to determine Fd based on some
numerical experiments that have to be done. On the other hand, a number, such as Fd, also can be defined by FL
(Kosko, 1993). For instance, a number 0.9 can be defined as 90% of unity or 10% of zero (see schematic model
suggested in Figure 2). Thus, we apply FL as a methodology to determine Fd.

Figure 1: The slope
g
 and slope

s
.

Figure 2: A Number Defined by FL.
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Before we discuss this method further, we would like to review the fuzzy logic method. Going back a
couple of millennia, Aristotle formulated the idea of a bivalent value (two crisps value or crisp set), for example
A or not-A, alternately, an apple or not an apple. Aristotle’s teaching is basic to the digital era, consisting of
0 or 1. However, not all cases can be analyzed by bivalent values. Let’s eat the apple bit by bit. Finally there is
no apple anymore. You see, we have gone from apple to nothing. When you have half an apple, is it an apple or
nothing (not-apple) ? Given a glass that is half full of water, is it half full or half empty ? In this case, we can not
say ‘A or not-A’ but we have to say ‘A and not-A’. Now we are entering a new concept of multivalence,
commonly called fuzzy logic. This is a system of logic in which a statement can be stated as a continuum of
values in between ‘false or true’ or ‘0 or 1’. In the 1960s, Prof. Lotfi A. Zadeh at the University of California
Berkeley, introduced the fuzzy set. But this idea originally received a huge amount of criticism. However, in the
next decade he continually broadened the fuzzy set theory. In 1974, Mamdani developed a controller for the
steam engine based on a fuzzy algorithm from Zadeh’s paper. Since then, applications of the fuzzy set or fuzzy
logic in industrial settings have boomed, especially in Japan and Europe. More history about fuzzy logic can be
found in Yen and Langari (1999).

Next, we are going to review the crisp and fuzzy set in more detail. Table 1 shows some differences between
bivalence and multivalence as listed by Kosko (1993).

Table 1
Bivalence vs Multivalence

BIVALENCE MULTIVALENCE

A or not-A A and not-A

all or none some degree

0 or 1 continuum between 0 and 1

Figure 3 depicts a diagram of bivalence (or crisp set) and multivalence (fuzzy set) and its membership
function, µ, or it is called grade of belonging. In crisp set, a membership of element x of set A or not - A is

Figure 3: Bivalence and multivalence.

Figure 4: Logic of fuzy set shown in bold line.



Applied Dominant Transfer and Fuzzy Logic for Nonlinear Wave-wave Interactions 15
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However, in fuzzy set theory, the membership µ is defined by µA(x) � [0, 1] or µnot-A(x) � [0, 1], that
expresses the degree to which x belongs to A or not – A.

As a membership function differs between two sets, the logic of sets is also different.

Crisp logic defines:

• AND : A � B

• OR : A � B

• NOT : A�.

Fuzzy logic defines (the diagrams are shown in Figure 4):

• AND : µA�B = min[µA(x), µB(x)]

• OR : µA�B = max[µA(x), µB(x)]

• NOT : µA� = 1– µA(x).

An example showing how the fuzzy logic formulation works can be depicted as shown in Figures 5-6. The
Fuzzifier will compute the membership of inputs, then the Interencer will denote the membership of outputs
based on the logic of the fuzzy set. The Interencer also aggregate all outputs. Of course, in the end we need a

Figure 5: Fuzzy controller.

Figure 6: Example of fuzzy controller
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single value or crisp value, not a multivalence value, and this is a job that is specified by the Defuzzifier when it
determines the crisp value.

In this paper, a fuzzy controller gives one output from two inputs. The x and y represent slopeg and slopes

while f (x, y) represents Fd (slopeg, slopes) respectively. Case examples are conducted to collect the FL required
data, then sets of rules are determined. Samples are taken, representing windsea as well as swell cases, for
peakedness varying as = 1, 3, 5, and 7 and spectral spreading varying as cos2p� where p = 1, 2, and 6.

Table 2 shows data from computed samples. Before establishing FL rules, it is convenient to relabel each
case with a simple naming convention. We classify as ‘Tiny’, ‘Small’, ‘Big’ and ‘Large’ representing small
slopeg to large slopeg and we also classify varying spreading factor as ‘Low’, ‘Mid’, and ‘High’ for small slopes

to large slopes conditions, respectively, in Table 3. From Table 3, we define the rules as shown on Table 4.
Membership functions of Table 4 can be depicted as shown in Figure 7.

Table 2
F

d
 from computed samples.

F
d

slope
g

0.16144 8.14315 9.18954 9.75586

slope
s

0.69768 3.7209 2.0181 1.7889 1.6875

1.37433   3.2459 1.8951  1.7037 1.6217

3.88293 2.3765  1.6473 1.5317 1.4835

Table 3
Rewriting matrix of F

d
 in simplified form.

Tiny Small Big Large

Low F
d
1 F

d
2 F

d
3 F

d
4

Mid F
d
5 F

d
6 F

d
7 F

d
8

High F
d
9 F

d
10 F

d
11 F

d
12

Table 4
If-then FL rules from study cases.

1. If Low AND Tiny then F
d
1

2. If Low AND Small then F
d
2

3. If Low AND Big then F
d
3

4. If Low AND Large then F
d
4

5. If Mid AND Tiny then Fd5

6. If Mid AND Small then F
d
6

7. If Mid AND Big then F
d
7

8. If Mid AND Large then F
d
8

9. If High AND Tiny then F
d
9

10. If High AND Small then F
d
10

11. If High AND Big then F
d
11

12. If High AND Large then F
d
12
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The next example will show how the FL method works. Suppose we have inputs slopes and slopeg as shown
in Figure 8(a) and Figure 8(b).

The fuzzifier gives

µLow(slopes) = 0.4

µMid(slopes) = 0.6

µSmall(slopeg) = 0.2

µBig(slopeg) = 0.8.

With outputs from the fuzzifier, the inferencer defines 4 rules which are ‘fired’ or activated because of
input combinations. Condition ‘Low AND Small’ will turn on rule number 2. ‘Low AND Big’ will turn on rule
number 3. Other combination pairs, ‘Mid - Small’ and ‘Mid - Big’ will fire rules number 6 and 7 respectively.
Following is a summary of ‘fired’ rules and the corresponding value of Fd(µA � µB) = min(µA, µB).

Rule 2. If Low AND Small then Fd 2

µLow(slopes) � µSmall(slopeg) = min[µLow(slopes), µSmall(slopeg)]

  = min[0.4, 0.2] � 0.2 Fd2

Rule 3. If Low AND Big then Fd3

Figure 7: FL membership function of inputs and output.

Figure 8: Inputs.

(a) Membership function of slope
s
.                 (b) Membership function of slope

s
.

(c) Membership function of Fd.
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µLow(slopes) � µBig(slopeg) = min[µLow(slopes), µBig(slopeg)]

         = min[0.4, 0.8] � 0.4 Fd3

Rule 6. If Mid AND Small then Fd6

µMid(slopes) � µSmall(slopeg) = min[µMid(slopes), µSmall(slopeg)]

           = min[0.6, 0.2] � 0.2 Fd6

Rule 7. If Mid AND Big then Fd7

µMid(slopes) � µBig(slopeg) = min[µMid(slopes), µBig(slopeg)]

         = min[0.6, 0.8] � 0.6 Fd7.

The final step is the defuzzifier, which maps the fuzzy set from inputs to the output. There are many
approaches to defuzzification, as mention by Patyra (1996), i.e.

• Centre of area (COA)

• Centre of gravity (COG)

• Height defuzzification (HD)

• Centre of largest area (COLA)

• Mean of maxima (MOM).

Two methods which are common are centre of gravity (COG) method and centre of average (COA) method.
The COG method calculates the centroid of the area of all membership outputs, and in most cases the centre of
gravity is the same as the centre of area. Therefore these names often refer to the same method. More detailed

Figure 9: Methods of defuzzification.
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definitions of the defuzzification method can be found in Patyra (1996). The methods are illustrated in Figure 9.

We denote the final output as ucrisp and we compute the output with the COA method as defined by the
following relation (see Passino, 1998),

( )

( )

i

i

i premise icrisp

i premise

f
u

� �
�

� � . (10)

Finally, we obtain defuzzification results from the inferencer, which yields

0.2 2 0.4 3 0.2 6 0.6 7
.

0.2 0.4 0.2 0.6
crisp d d d dF F F F

u
� � �

�
� � �

In this case, ( )ipremise�  is ( )ipremise� (slopes) and ( )ipremise� (slopeg). The final output, ucrisp, is the average of all

Fd’s from four relevant results that follow from the inputs.

Figure 10: Spectrum energy for different spreading factors at  = 1.0.

(a) f (cos2 )

(b) f (cos4 )

(c) f (cos12 )
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4. RESULTS

Figures 10a-10c show the reference spectra for spreading exponents p = 1, 2 and 6, and peakedness � = 1.
Similar results can be plotted for peakedness � = 3, 5, and 7 and are not shown here. With these spectra, FL rules
are determined as shown in Table 4. These cases assume a JONSWAP spectrum with parameters (unless otherwise
stated) � = 0.01, peak spectral width parameters �a = 0.07 and �b = 0.09, and fp = 0.3 Hz.

Tested spectra are JONSWAP spectra with the same parameters as determined by the experiments but
having different peakedness and spreading factors. The spectra use � = 2, 4, and 6 with the Hasselmann-Mitsuyasu
spreading factor defined by Hasselmann and Hasselmann (1981). These spectra are depicted on Figure 11 and

Figure 11: Spectrum energy for different  = 2, 4, 6 with Hasselmann-Mitsuyasu spreading factor
(Hasselmann and Hasselmann, 1981).

(a) � = 2.0

(a) � = 4.0

(a) � = 6.0



Applied Dominant Transfer and Fuzzy Logic for Nonlinear Wave-wave Interactions 21

Figure 12: Two-dimensional S
nl
, with  = 2.0.
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Figure 13: Two-dimensional S
nl
, with  = 4.0.
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Figure 14: Two-dimensional S
nl
, with  = 6.0.
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Figure 15: One-dimensional S
nl
 for different  = 2, 4, 6.
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computed Snl are shown in Figures 12-15. These figures show the comparisons between the full Boltzmann
method and the DTA-FL method, in both 1-dimension and 2-dimensions.

5 CONCLUSION

Based on several numerical cases and experiments, as presented in this paper, fuzzy logic can determine the
required dominant factor for given spectra. As shown in Figures 12-15, DTA-FL gives good agreement with
results from the full Boltzmann formulation. Based on simple rules, the fuzzy logic (FL) method requires
straightforward instructions for computer programming. By finding an accurate Fd, the FL method makes DTA
a possible candidate to be installed in an operational wave forecast model.
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