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SCATTERING OF WATER WAVES BY THE EDGE OF A
FLOATING ELASTIC PLATE IN PRESENCE OF SMALL

UNDULATIONS ON THE OCEAN BED

A. Chakrabarti

ABSTRACT: The problem of scattering of surface water waves by the edge of a semi-infinite thin elastic plate
floating on water in an ocean of finite depth with its rigid bed possessing patches of small undulations, is studied.
By utilizing the Wiener-Hopf technique, in conjunction with a perturbation analysis, an approximate solution of
the resulting boundary value problem is determined and analytical formulae are obtained for the reflection and
transmission coefficients up to first order of accuracy in terms of the small parameter of undulations.

1. INTRODUCTION

Problems of scattering of surface water waves in the two-dimensional linearised theory have created varieties
of challenges to applied mathematicians(see Stoker (1957), Newman (1965), Ursell (1947), Weitz and Keller
(1950), Keller and Weitz (1953) ,Evans and Linton (1994), amongst others ), willing to handle a class of mixed
boundary value problems for the two-dimensional Laplace’s equation under different types of mixed boundary
conditions occurring in the modeling of realistic physical situations applicable to ocean engineering sciences.

In the present paper we have considered the problem of scattering of water waves involving an ocean of
finite depth whose rigid bed has small patches of undulations, to take care of reality, whereas on the upper
surface of the ocean two different boundary conditions are met with on two sides of a line of discontinuity,
constituting the edge of a semi-infinite thin elastic plate floating on the surface. Such discontinuous surface
boundary conditions are realized in practical problems involving very large floating structures ( VLFS ) as well
as in problems in which the top surface of the fluid is composed of two different distributions of ice particles
(see Weitz and Keller (1950), Gabov et al (1989), Evans (1994) ). A boundary value problem of similar nature,
involving an ocean of infinite depth, was handled some time back by Chakrabarti (2000), by the use of singular
integral equations of Carlemann type.

The method of solution of the presently considered boundary value problem involves the use of a suitably
designed perturbation approach and the Wiener-Hopf technique (see Jones (1964), Noble (1958) ). The wiener-
Hopf technique has been recently employed by Tkacheva (2001) (see Balmforth and Craster (1999) also), for
the problem of scattering by the edge of a floating elastic plate , involving an ocean of finite depth whose rigid
bed is simply flat. By utilizing the kind of arguments similar to those of Tkacheva (2001), we have solved the
present boundary value problem in two stages, after introducing a perturbation approach to determine the unknown
velocity potential associated with the irrotational motion of the fluid under consideration, by expanding this
potential in a regular perturbation series involving a small positive parameter � , representing the smallness of
the bed undulations, explained later on. In the first stage , we have presented the analytical solution of the zero
order term of the perturbation series introduced and , in the second stage, we have obtained the analytical
solution of the first order term, thus determining the complete solution of the problem at hand, up to the first
order of accuracy, involving the small parameter 0�� .

Analytical expressions are then derived for the determination of the reflection and transmission coefficients
of the scattering problem under consideration here.
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2. FORMULATION OF THE PROBLEM

We assume that water in the ocean of finite depth under consideration in the present paper is an ideal and
incompressible fluid and that there exists a thin semi-infinite elastic plate floating on the surface of the fluid.. It
is also assumed that the ocean bed has patches of small undulations in the shape of humps, as described below,
through certain mathematical equations. A plane incident wave of small amplitude propagates normally to the
edge of the floating plate and we wish to determine the reflected and the transmitted waves after the incident
wave hits the edge and understand the effect of the bed undulations in such scattering problems.

Introducing Cartesian coordinates ),( yx , with the origin O representing the bifurcation point, the linearised

version of the problem is as described below.

To determine the velocity potential Re { )}exp(),( tiyx �� � of the irrotational flow of the fluid , with t
denoting time and�  denoting angular frequency, such that
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where�  and H are known positive constants, )0(��  is a known small parameter and )(xc  is a known

differentiable function of compact support ( i.e., ,0)( �xc  as ��x  ),  so that the equation )(xcHy ����

represents the rigid bed of the ocean possessing small patches of undulations (humps), and n�� /  represents
derivative in the direction of the outward normal to the bed..

We also need ,an edge condition requiring that )()0,( xOx ��  as �� 0x , ensuring finiteness of energy

near the edge as well as the conditions:
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where � and '� are the positive roots of the two transcendental equations in � ,  as given by:

�)(1 �K � tanh )( H� 1� = 0  and �)(2 �K )1( 4 ��� �  tanh 01)( ��H� , so that �  and '�  represent the

wave numbers of the incident wave(exp )( tixi �� � ) and the transmitted wave (exp )( ' tixi �� � ) respectively

and R  andT  represent the unknown reflection and transmission coefficients to be determined along with the

unknown function .�

3. ANALYTICAL SOLUTION

We solve the boundary value problem posed through the relations (2.1) to (2.6), approximately, for small values
of the undulation parameter � , in two stages, as described below.

Firstly, we express the boundary condition (2.2), to the first order of approximation , by writing the normal
derivative in terms of the derivatives with respect to the coordinate axes in an usual manner and expand in
powers of the small parameter�  ( see Mandal and Chakrabarti (1989, 2000)) to obtain the condition as given by
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Then, we assume that the following perturbation expansion holds good, for the unknown function )(x�  and

the unknown complex constants R and T:
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Substituting the above expansions in the relations ( 2.1), (2.3) to (2.6) and (3.1), we find that we can solve
the boundary value problem of our concern above, approximately, to the first order of � , by solving two

independent boundary problems for the two functions 0�  and 1� , both of which satisfy Laplace’s equation (2.1)

in the region 0, �������� yHx  and the two boundary conditions (2.3) and ( 2.4) on the boundary

0�y , whereas the boundary conditions on the other boundary Hy �� , are :
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Also both the functions 0�  and 1�  must satisfy the edge conditions (2.5).

The infinity conditions (2.6) and (2.7) give rise to the following conditions to be satisfied by the two

functions 0�  and 1� :
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We shall next utilize the Wiener-Hopf technique to solve the two independent boundary value problems for

the two functions 0�  and 1� , as employed by Tkacheva (2001), to solve a similar boundary value problem for

the two dimensional Laplace’s equation.

Solution of the Problem for 0�

To start with, we assume that�  and '�  possess small imaginary parts (see Jones (1964)) which will be taken to

be zero at the end of the analysis, as such an assumption will help transforming the boundary value problem
here, as well as in the next part of this paper, into Wiener-Hopf problems valid in a certain strip of the complex
� -plane , as explained below.
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where )(1 �K  is as introduced before, )(�U  is an unknown ( to be determined ) entire function and )(��V  is an

unknown (to be determined) analytic function in the upper half of the complex �-plane, )Im(�  > 1c ,where 1c

is a suitably chosen real number so that the Fourier transform of ),(0 yx�  represents an analytic function in a

strip 21 )Im( cc �� � , 2c  being another appropriately chosen real number. The details ( see Tkacheva (2001))
of the choices of the constants 1c  and 2c  depend on the zeros of the functions )(1 �K  and )(2 �K , and we use
the convention that the zeros �  and '�  lie in the upper half plane 1)Im( c�� where also lie all complex zeros

with positive imaginary parts, whereas the zeros ��  and '�� , as well as the complex zeros with negative

imaginary parts all lie in the lower half plane 2)Im( c��  .

It is important to note that , because of the requirement of finite energy in the neighbourhood of the edge

at ,0�x  we must have that the integrand in the relation(3.10), at the point, yx �� 0  must be )
1

(
2�

O ,

as ���  .

We observe that the above choice (3.10) of the function 0�  satisfies the boundary condition (2.3) on the

boundary 0�y  automatically , and, it will also satisfy the other boundary condition (2.4) , if we select the

function )(��P , such that

)(

)(

)(

)(

21 �
�

�
�

K

Q

K

V �� �  and )(

)(

2 �
�
�
��

K

Q
 = 1, (3.11)

where )(��Q  is another unknown ( to be determined ) analytic function in the lower half plane 2)Im( c�� ,

and  )(
2
�K  is as introduced before.
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 The first of the two relations in (3.11) represents a simple Wiener-Hopf problem , whose solution is given
by the following relations:
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Then, by utilizing the behavior of the integrand in (3.10), as ���  ( see above), we find that we must
have the following results:
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Thus, using the relations (3.12) ,(3.13) and (3.14) in the representation (3.10), we determine the

solution ),(0 yx�  completely, as given by the following formula:
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The unknown constants a  andb  can be determined by utilizing the edge conditions (2.5), satisfied by the

function 0�  and, we find, by using the analysis which is the same as that of Tkacheva (2001), that we must

have 2

1

�
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��b  .

Then, the zero order reflection and transmission coefficients 0R  and 0T , as defined by the relations (3.6)

and (3.8) can be easily determined by using the solution formula (3.15), by closing the contour in the upper half
plane for 0�x  and in the lower half plane for 0�x ,  respectively, along with the identity :
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and
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We find (see Tkacheva(2001)) that the following identities hold good:
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Solution of the problem for 1�

The solution of the boundary value problem for the function ),(1 yx� , satisfying the conditions (2.3) , (2.4),

(3.5), (3.7) and (3.9) can be converted into a two-part Wiener-Hopf problem, by using Jones’s method ( see
Noble (1958)and Tkacheva (2001) ), in a straightforward manner.

Leaving aside the details, we find that the resulting Wiener-Hopf functional relation to be solved is:
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(for�  belonging to the strip 21 )Im( cc �� � , introduced before)

where the Wiener-Hopf unknowns )(��F  and )(��G  are the half-range Fourier transforms which are analytic

functions in the upper and lower half of the complex � -plane, as defined by the relations:
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The function ),(1 yx�  can be obtained by using the Fourier inversion formula, as given by
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The Wiener-Hopf problem (3.19) can be solved in an usual manner, by using the factorization of the

function )()()( ��� ��� KKK  , used before, and we obtain the following results:
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The complete solution for the function ),(1 yx�  can thus be determined by the aid of the relations (3.24) to

(3.30) and we obtain, in particular, the following results of importance:
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The above results (3.31) and (3.32) can be used effectively to determine the first order reflection and
transmission coefficients by evaluating the integrals on the right side by closing the contour in the upper or
lower half plane according as 0�x , or 0�x .
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We find the following formulae, which are in terms of known functions described above:
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It is possible to cast the above expressions in (3.33) in terms of the zeros of the functions )(1 �K  and )(
2
�K

( see Evans and Linton(1994) and Tkacheva (2001)), by using the relations (3.30) and the residue calculus

which helps in obtaining numerical results for specific choices of the undulation function )(xc .

This completes the description of obtaining the analytical solution of the boundary value problem considered
in this paper, valid up to the first order accuracy in terms of the small undulation parameter � .
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