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ESTIMATION OF CONTAMINANT TRANSPORT IN A LAYERED
AQUIFER USING ARTIFICIAL NEURAL NETWORKS AND

FINITE DIFFERENCE METHOD

 S. S. Kadam, S. K. Das & A. S. Warke

ABSTRACT: In this paper, we estimate the contaminant transport in a two-layered aquifer by employing Artificial
Neural Network (ANN) that uses Multi Layer Perceprton (MLP) architecture. The input data for ANN was
generated from the output of Finite Difference (FD) method based on advection-dispersion equation in coupled
form. Employing Alternate Direction Implicit (ADI) scheme, coupled transport equations were solved numerically
to generate the inputs. Using back propagation technique, ANN model was trained corresponding to inputs of
upper and lower layers of contaminant concentration for fixed values of parameters and time period. This trained
ANN model was then used to estimate the contaminant transport beyond the specified training period. To measure
the error between ANN predicted contaminant values and those computed by the Finite Difference model, we
have used three different error measures, namely, the root mean square error, the mean absolute error, and the
percent mean relative error for proper interpretation of the results. The results based on ANN and the FD models
have shown good agreement. Based on this methodology, it is possible to show that a three-layer feed-forward
back propagation ANN model with a nonlinear differentiable log-sigmoid transfer function in both the hidden
and output layers and a variable learning rate, can replace traditional transport modeling.

KEYWORDS: Contaminant transport; Artificial Neural Network; Aquifer; ADI scheme; Layered model;
Advection-diffusion; Root Mean Square Error; MLP architecture.

NOMENCLATURE

uc  contaminant concentration in upper layer

lc  contaminant concentration in lower layer

uxD , uyD  dispersion coefficient along horizontal and vertical directions in upper layer

lxD , lyD  dispersion coefficient along horizontal and vertical directions in lower layer

,u lu u  seepage velocities in upper and lower layer respectively (horizontal direction)

,u lv v  seepage velocities in upper and lower layer respectively (vertical direction)

k  exchange coefficient

�  reaction parameter

jx  input layer

ia  hidden layer

jy  output layer

i�� , j��  updated threshold values

ih� , jiw  weights

jd , je  errors in the output and hidden layers

iE  total error
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1. INTRODUCTION

Traditionally, the extent of contaminant spread is predicted by solving advection-dispersion equation analytically
for simplified problem, otherwise by using numerical model [2, 26]. As the number of unknown parameters
become large, the model error becomes significant, particularly when the model equations are unsteady, non-
linear or coupled in form. For such complex problem the performance of the numerical method depends upon
the scheme applied, and its inherent error control mechanism. The groundwater models are usually developed
for various process-based components to take into account all relevant details, i.e., advection, dispersion, sorption,
biodegradation etc, and their complex interactions. However, variability of hydro-geologic parameters further
complicates and makes it most uncertain to quantify. Field measurement, which is considered to be an integral
part to verify the model results, is either not adequate or poorly represented [9]. In recent years, lot of concerns
on numerical solution has focused on predicting accurate solution that is somewhat free from unphysical numerical
oscillations. The increased applications of higher order numerical schemes applicable to nonlinear systems of
advection-diffusion-reaction type problems tend to show unphysical oscillation in the presence of steep
concentration gradient [10]. Another drawback common to these traditional techniques is that they suffer from
cancellation effect when compensating errors in two or more coefficients produce reasonable prediction. Carrera
[3] described the state of the art of the inverse problem applied to flow and solute transport equations and
emphasized the difficulty in modeling due to: (i) increased complexity of the problem, (ii) conceptual limitations
of the transport processes in groundwater environment, (iii) drawback common in the traditional technique due
to cancellation effects. According to this motivation, we apply ANN technique to estimate and compare
contaminant transport in a coupled unsteady two-layered aquifer.

In recent years, Artificial Neural Network (ANN) is being increasingly applied as an efficient mathematical
tool to represent complex relationships in many branches of hydrology [11, 14-17, 20, 22]. ANN’s flexible
structure can provide good estimation to various problems in hydrology such as water quality modeling, stream
flow forecasting, groundwater modeling and precipitation forecasting, etc, [3]-[5]. Yeh [23] has reported various
techniques to solve inverse problem of parameter evaluation in groundwater. In particular, the back propagation
algorithm as a theoretical framework have resulted wide application in various civil engineering problems [1].

In the present study, we consider a numerical model that serves as a template to describe the contaminant
transport in a two-layered system wherein the data generated by solute transport model is being trained by the
ANN model and applied to estimate future scenarios when interface and other reactive boundary conditions are
considered. The main objectives of the present study are to obtain realistic ANN simulation and to estimate the
extent of contaminant spread, when rain infiltration and chemical reaction take place simultaneously at the
upper and lower layer boundaries respectively. The present study may find application in estimating leachate
movement due to the leakage of underground storage tanks.

2. MATHEMATICAL FORMULATION

We consider two-dimensional, two-layer advection-diffusion equation in a finite computational domain described
by Cartesian coordinate system where each layer is homogeneous and isotropic and connected through patchy,
pervious interface (Figure1).

The governing equations describing the sub-surface transport of a non-conservative solute through a saturated
and non-deformable aquifer with reactive lower layer boundary can be represented as [21].
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Here, X-axis is along the longitudinal direction (aquifer length) and Y-axis is vertically upward (towards

upper surface). The governing equations (1)-(2) are written in dimensionless form where UC  and LC  are the

solute concentrations, UU  and LU are seepage velocities along X-direction, UV  and LV  are seepage velocities

along Y-direction, ULD  and LTD  are the dispersion coefficients (L2/T) along X-direction, UTD and LTD  are the

dispersion coefficients (L2/T) along Y-direction, UR and LR  are retardation factors for upper and lower layers

respectively. K is the exchange coefficient between upper and lower layer and 0C  is the reference concentration.

Solution of transport equation requires a specified initial concentration and appropriate boundary conditions
at the top and base of the soil column. Hence, corresponding to the model equations (1) and (2), the dimensionless
form of initial and boundary conditions can be specified as

� �, ,0U UinputC X Y C�  and � �, ,0L LinputC X Y C� (4)

Figure 1: Schematic Diagram of Layered Aquifer
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The interface boundary condition between the upper and lower layers can be posed as

� � � �,0, ,1,U LC X T C X T�  for 3 4X X X� �  and 5 6X X X� � (8)

The boundary condition at the lower layer bed can be described as [13];

0
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(9)

Equation (9) represents mixed boundary condition to specify first order chemical reaction. This condition
not only provides zero gradient condition but also indicate depletion at the lower layer bed. The governing
equations (1) and (2) are coupled due to the presence of source or sink terms and are not amenable to closed
form solution owing to interface and reactive boundary conditions prescribed by the equations (8) and (9).

3. NUMERICAL COMPUTATIONS TO GENERATE ANN INPUT

In order to solve equations (1) and (2) together with the prescribed boundary conditions (4)-(9), we apply
Alternate Direction Implicit (ADI) - finite difference method based on Doglas-Rachford scheme [6]. The finite
difference analogues of the governing equation using double sweep technique are represented by
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where (P, Q, R, S) and (U, V, W, Z) are the known coefficients at / 2t�  and t�  time steps respectively. The
finite difference representation of the initial and boundary conditions are
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where the superscripts in (12) indicate the layer associated corresponding to the boundary grid points. It may be
noticed that the resulting finite difference equations (10) and (11) are simultaneous linear algebraic equations
with tri-diagonal coefficient matrix. We apply double sweep algorithm consisting of two steps involving the
solution of tri-diagonal sets of linear equations along the lines parallel to X and Y-axis at the first and second
time steps respectively. In the first time step, X sweep is carried out by taking the implicit difference formulation

for 
2

2
 iC

Y

�
�

along Y-direction and explicit difference formulation for 
2

2
iC

X

�
�

, i=L, U. In the second time step, the

above difference formulation is reversed. The difference scheme described here is unconditional stable and
provides second order accuracy in time and spatial directions [6]. In order to control numerical oscillation and
dispersion grid Peclet and Courant numbers are checked and found to be well within the limits. To obtain the
ANN inputs, we perform numerical simulation by assuming the values of various parameters as [21]:

0.5ULD � , 0.05UTD � , 0.5LLD � , 0.05LTD � , 1.0UR � , 1.0LR � , 0.0025T� � , 1.0K �  and VU is

the rain infiltration velocity in the upper layer whereas LV , UU  and LU  are zero in the respective layers.

Initially, we consider that lower layer is free from contaminant concentration ( L
inputC =0.0) whereas in the

upper layer it is assumed to be unity ( U
inputC  = 1.0). The model area covers a distance 500m along longitudinal

direction and 200m along vertical direction whose non-dimensional distance varies between 0 to 5 along the
length and 0 to 1 along the depth of aquifer for each layer. A square grid cell with Dx = Dy = 0.1, equivalent to
dimensional distance of 10m is considered for which the total number of grids along (X, Y) for each layer
become (50,10). The interface boundary conditions are described between the grids (10-20) and (30-40) along
X direction, where exchange of flow and transport processes take place through leaky pervious medium. The
main objective of this procedure is to obtain concentration values in each grid points in the upper and lower
layers indicating the contaminant spread due to the effect of rain infiltration in the upper layer and first order
reactive boundary condition imposed at the bottom boundary of lower layer [13]. Prior to make numerical
computation for rain infiltration and boundary reaction, we verify and calibrate the model with the available
result of Warke and Das [21]. The computations were carried out from one year (T=0.365) to ten years (T=3.65)
period to access the long-term effect and year wise outputs are stored for all the grid points. These simulated
data constitute necessary input for the ANN model.

4. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are computational models characterized by a series of processing elements (PEs),
called neurons or nodes, which enable them to process patterns within the data. These neurons interact with
each other through weighted connections or weights, and work in unison to solve a computational problem by
performing two important processes: (i) internal activation; and (ii) transfer function. In the internal activation
process, the values of incoming information are multiplied by the corresponding connection weights to produce
an internal activation value using a summation function. On the other hand, the transfer function calculates the
activation level of neurons from their corresponding internal activation values. The neurons in a neural network
are usually arranged in layers, and a typical neural network consists of one or more such layers.

A layer is associated with three functions, namely, summation, transfer (activation), and output, which are
used to compute the outputs of all neurons in that layer. We present the patterns to the neural network through
the input layer where neurons communicate with the neurons in one or more hidden layers and actual processing
is done via a system of weighted connections. The hidden layers are then linked to an output layer where the
output of the neural network is produced. Amongst many available neural network architectures, we have used
the multi-layer perception architecture (MLP) as depicted in Figure 2. Although there are many different types
of learning rules, the most commonly used delta rule under the class of back propagation techniques has been
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applied in our study. With the delta rule, learning becomes a supervised process that occurs with each cycle or
‘epoch’ through a forward activation flow of outputs, and backward propagation of errors for weight adjustments.
For a given input pattern, the MLP neural network computes the output and compares it with the expected
output pattern, and then adjusts the network connection weights in order to minimize the error between the
expected and the computed output. Within each hidden layer, a typical sigmoid activation function is adopted,
which polarizes the network activity and helps it to stabilize.

The formal algorithm to train the back propagation neural network is illustrated below and is based on the
work of Hechst-Nielsen [8] and Simpson [19]. An implementation of this algorithm can be found in Demluth
[7] and Masters [12].

1. Randomize the network weights in the range [-1, 1]

2. For each pattern � � � � � � p,...,,k,y,...,y,y,x,...,x,xY,X k
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where Qi and Tj are threshold values, and � � � �xexf ��� 11  is the sigmoid transfer function

(iii) Estimate the “error term” between computed and desired output values of PEs in the output and hidden
layers using

Figure 2: A Three Layer Fully Interconnected MLP Architecture
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3. Update the threshold values

jj d ��� � (17)

ii e ��� � , where � and � are learning rates (18)

4. Repeat steps 2-3 until error dj is sufficiently low for each j = 1,2,…,n and k = 1,2,..,p

The above-mentioned algorithm performs a gradient descent procedure to obtain global minimum along the
steepest vector of the error surface. As the error surface could be hyper-paraboloid in nature, but rarely smooth,
the solution space contains irregular solution vectors, which may cause the network to settle down in a local
minimum. In such case the errors made by network are given by

ij EEE �� (19)

where jE  is the total error in neurons in the output layer, and iE is the total error in neurons in the hidden layer.

These error components can be expressed as
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j
jjii dwE
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where � � � �j
k
jjjj yyyyd ���  1  is the error term in neurons of the output layer. This learning procedure attempts

to modify the network weights towards global minima using built-in mathematical expressions to control the
speed (beta-coefficient) and momentum.

A large number of individual runs were taken to determine the best solution, since the nature of the error
space could not be determined a priori.

5. TRAINING AND TESTING

In the present application, we have employed a supervised back propagation neural network comprising three
layers, simulated with the MATLAB@ Neural Network Toolbox (Release-12) [7] loaded on a personal computer
running under Windows@ 2000 operating system. In the training stage, a set of training data with input examples
and their corresponding desired outputs was prepared. The network weights, which eventually store the learned
patterns, were initially set to random values. During the learning process, the example inputs are given to the
network and the output of each neuron in the network is calculated. After comparing the computed and desired
outputs, an error term is calculated, which is used to change the network weights in an iterative manner [18].
The processing of information is done by the log-sigmoid transfer function in both the hidden and the output
layers. The log-sigmoid function generates outputs between 0 and 1 as the neuron’s input goes from negative to
positive infinity. The advantage of using a log-sigmoid function over a threshold-type function is that the
former is continuous and differentiable, which allows the gradient of the error to be used in updating the weights.
We have used a variable learning rate during the training process. The use of variable learning rate improves the
convergence of the network by ten to one hundred times than the standard steepest descent methods with fixed
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learning rate. The training data comprised contaminant values in the upper and lower layer of the aquifer taken
over several years.

Figure 3 (a): Schematic Diagram of Layer Wise Computational Grid Points
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Figure 3 (b): Training and Testing Processes
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For a particular year, two sets of 561 (51x11) contaminant values were taken, one in the upper layer and the
other in lower layer of the aquifer as shown in Figure 3(a). The layers were separated by an impervious boundary,
but also had patchy finite strips of pervious interfaces. The entire data comprised 11 pairs of upper and lower
layer contaminant values representing different years as shown in Figure 3(b). The contaminant values were
normalized to unity at their maximum values. The neural network was separately trained with 6, 7, and 8-years
of contaminant data (k = 6, 7, 8). Then each trained ANN was subsequently tested with 4, 3, and 2-year contaminant
data (comprising grid points in the upper and lower layer respectively). Figures 4-6 show the contaminant
distribution in the presence of rain infiltration (Vu = 0.1, 1.0) and boundary reaction (beta = 5,10) after two, six
and ten years of simulation. The symmetric nature of contaminant plume under the above-mentioned condition
provides a good check for numerical simulation.

In order to study the growth of error in prediction with increasing prediction times (years), the back
propagation neural network model was separately trained with different sets of training data (comprising pairs
of the upper and lower layer contaminant values) to obtain three separate trained networks. Each trained network
was tested with pairs of contaminant values for the remaining years as shown in Figure 3(b). For example, the
neural network model was initially trained with pairs of the upper and lower layer contaminant values for first
six years to obtain the trained network ANN1, while the pairs of contaminant values for the remaining four
years were used to test this trained network. Similarly, the neural network was retrained with 7-year and 8-year
pairs of the upper and lower layer contaminant values to obtain trained networks ANN2 and ANN3, respectively.
The trained ANN2 and ANN3 networks were tested with the subsequent 3-year and 2-year pairs of the upper
and lower layer contaminant data, respectively.

For measuring the error between the ANN predicted contaminant values and those computed by the Finite
Difference model, we have used three different error measures, namely, the root mean square error (RMSE),
the mean absolute error (MAE), and the percent mean relative error (PMRE), the expressions for which are as
given below,
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Figure 4 : Contaminant Dispersion in Layered Aquifer with Reaction Beta = 10 at Vu = 1 after 2 Years
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where, k
jy  represents the ANN computed contaminant value, jy  represents the corresponding value computed

by FD method, N is the total number of contaminant values in a layer for particular year, and M is the total

number of non-zero � �0�jy  contaminant values in a layer for particular year computed by the FD method.

The RMSE and MAE are measured in the same units as data and are therefore easy to understand. Both
represent the size of a typical error between the contaminant values predicted by the neural network and the
corresponding values computed by the FD model. However, most researchers prefer unit-free measures for
comparing methods [24]. The PMRE, unlike RMSE and MAE, is a unit-free measure that gives percent mean
relative error between the computed and expected values. Moreover, RMSE has low reliability [25], nevertheless,
it has been widely used for comparing forecasting methods [24]. The three error measures were taken in order
to analyze the comparative results form different perspectives, take care of sensitivities due to small changes in
large number of data series, and draw reliable and proper conclusions.

The learning curve in Figure 7 shows how the total sum-squared error (SSE) converges in the process of
iterative learning for ANN1. The learning curves for ANN2 and ANN3 are similar. By total sum-squared error

Figure 5 : Contaminant Dispersion in Layered Aquifer with Reaction Beta = 5 at Vu = 0.1 after 6 Years
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Figure 6 : Contaminant Dispersion in Layered Aquifer with Reaction Beta = 5 at Vu = 0.1 after 10 Years

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 X

0.00 

0.50 

1.00 

1.50 

2.00 

Y

Figure 6: Contaminant dispersion in layered aquifer with reaction beta=5 at Vu=0.1 after 10 years
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we mean� �p
i

iE 2

, where p ranges over all the training patterns, and i ranges over the entire network neurons

(Ei is error at the ith neuron given by Equations 20-21). The learning process terminates either after a certain
number of runs through all the training data (each run through all the training data is called an epoch), or when
the total sum-squared error reaches some predefined target value or goal. In this study, we fixed the target SSE
(Goal) to 0.01, and the maximum number of epochs to 5000. The number of epochs required to achieve the
target SSE of 0.01 while training ANN1, ANN2, and ANN3 were 3063, 3994, and 4998, respectively.

Figure 7 : Convergence of Training curve with respect to the total SSE observed while
training ANNI neural network

In the testing stage, test patterns are given to the corresponding trained networks and information in the
form of stored weights is used to determine the class of a test pattern in terms of training classes. The performance
of the ANN method was judged by comparing the contaminant values determined from the ANN and by the FD
model. Table 1.0 displays values of different error measures that were applied to the contaminant values predicted
by the three ANNs and the corresponding values computed by the FD method. Since ANN1 was trained with
pairs of the upper and lower layer contaminant values for initial six years, it was used to predict the contaminant
values for the remaining four years (i.e., for 7th, 8th, 9th, and 10th year). The entries in Column I (‘ANN1 prediction
errors’) of Table 1.0 display prediction errors in the contaminant values computed by ANN1 relative to those
computed by the FD method. Similarly, as ANN2 and ANN3 neural networks were respectively trained with
initial 7-year and 8-year contaminant data, they were used to predict the contaminant values for the remaining
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four and three years, respectively (i.e., for 8th, 9th & 10th year; and 9th & 10th year). The entries in column II and
column III of Table 1.0 display prediction errors for ANN2 and ANN3, respectively.

Table 1
Prediction Errors in Contaminant Values Computed by ANNs and the FD Method

Prediction ANNI prediction errors ANN2 prediction errores ANN3 prediction errors
for year (I) (II) (III)

RMSE MAE PMRE RMSE MAE PMRE RMSE MAE PMRE

7 0.0079 0.0073 1.71 %

8 0.0157 0.0144 3.47 % 0.0078 0.0071 1.67 %

9 0.0248 0.0228 5.60 % 0.0149 0.0136 3.30 % 0.0072 0.0065 1.56 %

10 0.0347 0.0320 8.04 % 0.0233 0.0213 5.29 % 0.0135 0.0122 3.01 %

The column entries in Table 1.0 show how the error in prediction gradually increases with increase in
prediction times (years). However, as the number of training samples is increased, the error in prediction decreases
significantly with increase in prediction times. For example, the contaminant values predicted for the 10th year
show RMSE, MAE, and PMRE as 0.0347, 0.0320, and 8.04% using ANN1 (trained with 6-year contaminant
data) relative to corresponding values computed by the FD method. The same sample when predicted using
ANN2 (trained with 7-years data) and ANN3 (trained with 8-year data), shows decrease in prediction errors as
seen from the entries in last row of Table 1.0 under column II and III, respectively. Similar trend can be
observed while predicting the contaminant data for 9th year. Both the 9th and 10th year contaminant data was
used for testing all the three trained ANNs, since it did not form part of the training data of the three ANNs. The
decrease in prediction errors with increase in training samples used for training the networks can be observed
by comparing entries under column I of Table 1.0 with the corresponding entries under column II and
column III.

The 3-D plots of the contaminant values computed by the ANN method and the FD model together with the
3-D plots of absolute error between the ANN predicted and model computed contaminant values are depicted in
Figures 8-10. Figure 8 shows the 3-D scatter plot of the contaminant values computed by the trained ANN1 and
the FD model for four subsequent years (i.e., for 7th, 8th, 9th and 10th year). As seen from the Figure 8, the
contaminant values predicted by ANN1 are almost same as those computed by the FD model. The plot of the
absolute error between contaminant values computed by ANN1 and the FD model for four subsequent years is
shown in Figure 9. From Figure 9, it can be observed that the absolute error values are significantly small; the
corresponding MAE values are enlisted in column I of Table 1.0. Figure 10 displays the plot of absolute error
between the contaminant values computed by ANN2 and the FD model (first two plots), and ANN3 and the FD
model (last two plots) for the 9th and 10th year. The two 3-D plots depicted in the last row of Figure 9 together
with the 3-D plots depicted in Figure 10 show the manner in which the prediction errors decrease with increase
in training data. The contaminant values for the 9th and 10th year can be predicted using all the three trained
ANNs (i.e., ANN1, ANN2, and ANN3).

The 3-D plots show that the growth of error in prediction decreases (error curves become flatter) with
increase in training samples used for training the neural network. The actual values of the prediction errors have
been depicted in the last two rows of Column I, II, and III in Table 1.0. The maximum RMSE, MAE, and PMRE
between the contaminant data computed by the ANN (ANN3) and the FD model when trained with optimal
number of training samples are 0.0135, 0.0122, and 3.01%, respectively. Overall, the result based on ANN and
the FD model show good agreement. Although the prediction errors gradually increase with increase in prediction
times, they show decreasing trend when more samples are used for training the back propagation neural network
model.
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Figure 8 : Comparison of the Lower Layer Contaminant Values Computed by ANNI and the FD Model for Four
Subsequent Years
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Figure 9 : Plot of the Absolute Error Between Contaminant Values Computed by ANNI and the FD Model for Four
Subsequent Years (7th, 8th, 9th and 10th year)

  

  

ANN1 

Figure 10 : Plot of the Absolute Error Between Contaminant Values Computed by ANN2 and FD Model (First two Plots)
and ANN3 and FD Model (Last two Plots) for the 9th and 10th Year
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6. CONCLUDING REMARKS

An ANN-based methodology to determine the contaminant values in the upper layer of the aquifer based on the
values in the lower layer was presented and tested using the aquifer data taken over several years. The methodology
is based on the idea that although the spread of contaminant values in the upper and lower layers of the aquifer
changes over time due to various factors, the variation of contaminant values are interrelated and can be well
estimated through ANN simulations. A three-layer feed-forward back propagation ANN with a nonlinear
differentiable log-sigmoid transfer function in both the hidden and the output layer, and a variable learning rate
has proved to be useful in replacing the traditional modeling of transport processes. In order to study the growth
of error in prediction with increasing prediction times, the back propagation neural network model was separately
trained with different sets of training data (comprising pairs of the upper and lower layer contaminant values) to
obtain three separate trained networks. Each trained network was then tested with pairs of contaminant values
for the remaining years. To measure the error between ANN predicted contaminant values and those computed
by the Finite Difference model, we have used three different error measures, namely, the root mean square
error, the mean absolute error, and the percent mean relative error, for proper interpretation of the results.
Overall, the results based on ANN and the FD models have shown good agreement. Although the prediction
errors gradually increase with increase in prediction times, they show declining trend when more samples are
used for training the back propagation neural network model. The ANN based prediction versus the model-
based observations of the contaminant values are characterized by a maximum root mean square error of 0.0135,
maximum mean absolute error of 0.0122, and maximum percent mean relative error of 3.01%, when trained
with optimal number of training samples. The application of this validated neural network methodology could
be applied in other scenarios where complicated hydro-geologic parameters are involved while estimating aquifer
pollution.
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