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Abstract: In this paper, we have proposed a new approach for checkpointing and recovery for concurrent failures in distributed
computing environment. The proposed idea enables a process to restart from its recent checkpoint and hence ensures the
least amount of re-computation after recovery. It also means that a process needs to save only its recent local checkpoint.
The proposed value of the common check pointing interval enables an initiator process to log the minimum number of
messages sent by each application process. The message complexity of the proposed check pointing algorithm as well as the
recovery approach is O(n). Analytical performance-comparison with noted existing works also highlights the advantages of
our scheme.
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1. INTRODUCTION

Checkpointing and rollback recovery techniques are
used to allow a distributed computing to progress in
spite of a failure [1]-[8]. A global checkpoint of an n-
process distributed system consists of n checkpoints
(local) such that each of these n checkpoints
corresponds uniquely to one of the n processes. A global
checkpoint C is defined as a consistent global
checkpoint (state) if no message is sent after a
checkpoint of C and received before another checkpoint
of [3]. The checkpoints belonging to a consistent global
checkpoint are called globally consistent checkpoints
(GCCs).

The two fundamental approaches for check
pointing and recovery are: asynchronous approach and
the synchronous approach. In the asynchronous
approach, taking checkpoints is very simple since
processes take their checkpoints independently. After
a system recovers from a failure, a procedure for
rollback-recovery attempts to build a consistent global
checkpoint. The procedure of finding a consistent
global checkpoint is usually quite complex because of
the possible presence of domino effect. Synchronous
check pointing approach assumes that an initiator
process which is different from the application
processes invokes the check pointing algorithm
periodically to determine a consistent global
checkpoint. All processes coordinate through the
exchange of control messages to determine a consistent

global checkpoint. This makes the checkpointing
approach very complex, where as the recovery
approach is very simple because there is no need to
determine a consistent global checkpoint after a system
recovers from a failure unlike in asynchronous
approach. The above discussion is all about
determining a recovery line such that there is no orphan
message in the distributed system. In this work, in
addition to orphan messages, we also take care of any
lost and delayed messages as well in order to ensure
correct computation. In this context, it may be noted
that a message is known as an orphan if its sending
event is not recorded in a checkpoint of the sender,
but its receiving event is recorded in a checkpoint of
the receiver. A lost or delayed message is the one such
that its sending event is recorded in a checkpoint of
the sender, but because of a failure either the receiving
event is not yet recorded in a checkpoint of the receiver,
or the message does not arrive at the receiver. So to
ensure correct computation of an application program,
all these messages must have to be considered when a
system restarts after a failure.

Problem formulation: In this work we address
the following problem: given the respective recent
local checkpoints of all process in a distributed system,
after the system recovers from a failure, how to handle
properly any orphan, lost, or delayed message so that
all processes can restart from their respective recent
(recent) checkpoints which form together the recent
consistent global checkpoint of the distributed system.
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Note that to ensure correct computation all the above
mentioned different types of messages have to be
handled properly. Our work will be independent of the
number of processes that may fail concurrently.

To fulfill our objective, we aim at designing a two-
fold scheme stated as follows: first a single phase non-
blocking check pointing approach will be considered
that will ensure the non-existence of any orphan
message with respect to the checkpoints of the
application processes; second a recovery approach will
be designed which will take care of any lost messages
with respect to the recent checkpoints of the processes.

We shall use the following idea about the duration
of the check pointing interval T: the time between two
consecutive invocations of the check pointing
algorithm, T is larger than the maximum message
passing time between any two processes in the system.
The impact of this idea will be clear when we discuss
delayed and lost messages in Section 2.2. Note that
the above idea about the check pointing interval was
introduced to handle recovery in cluster computing
environment [16].

2. RELEVANT DATA STRUCTURES AND
CHECK POINTING INTERVAL

The distributed system has the following characteristics
[1], [9], [10]: processes do not share memory and they
communicate via messages sent through channels;
processes are deterministic and fail stop.

2.1. Relevant Data Structures

Consider a set of n processes {P1, P2,……, P
n
} involved

in the execution of a distributed algorithm. We assume
that application messages are piggybacked with unique
sequence numbers, i.e. the kth application message will
have k as its sequence number. These sequence numbers
are used to preserve the total order of the messages
received by each process. Process P

i
’s xth check pointing

interval is the time between its checkpoints Ci
x-1 and Ci

x

and is denoted as (Ci
x – Ci

x-1). Each process P
i maintains

two vectors, each of size n at its xth checkpoint C
x
i; these

are: a sent vector Vi
x(sent) and a received vector Vi

x(recv).
These vectors are initialized to zero when the system
starts. These vectors are stated below.

(i) Vi
x(sent) = [S

i1
x, Si2

x, Si3
x, … , Sin

x
], where Sij

x

represents the largest sequence number of all
messages sent by process P

i
 to process P

j
 in

the interval (Ci
x – Ci

x-1). Note that Sii
x
 = 0.

(ii) Vi
x(recv) = [R

i1
x , R

i2
x , R

i3
x , … , R

in
x
], where Rij

x

represents the largest sequence number of all
messages received by P

i
 from P

j
 in the check

pointing interval (Ci
x – Ci

x-1). Also Rii
x
 = 0.

2.2. Check Pointing Interval

We now state the reason for considering the value of
the common check pointing interval T to be just larger
than the maximum message passing time between any
two processes of the system. In our explanation we
will follow the same logic as was first given in [16]. It
is known that to take care of the lost and delayed
messages the existing idea is message logging. So
naturally the question arises for how long a process
will go on logging the messages it has sent before a
failure (if at all) occurs. We have shown below that
because of the above mentioned value of the common
check pointing interval T, a process P

i
 needs to save

in its recent local checkpoint Ci
x
 only all the messages

it has sent in the recent check pointing interval
(Ci

x – Ci
x-1). In other words, we are able to use as little

information related to the lost and delayed messages
as possible for consistent operation after the system
restarts.

Consider the situation shown in Fig. 1. As before
we will explain using a simple system of only two
processes and the observation is true for distributed
system of any number of processes as well. Observe
that because of our assumed value of T, the duration
of the check pointing interval, any message m sent
by process P

i
 during its check pointing interval (Ci

x-1 –
Ci

x-2) always arrives before the recent checkpoint Cj
x

of process P
j
. Now assume the presence of a failure f

as shown in the figure. Also assume that after recovery,
the two processes restart from their recent xth

checkpoints. Observe that any such message m does
not need to be resent as it is processed by the receiving
process P

j
 before its recent checkpoint Cj

x
. So it is

obvious that such a message m can not be either a lost
or a delayed message. Therefore, there is no need to
log such messages by the sender P

i
 at its recent

checkpoint Ci
x
. However, messages, such as m’ and m’’,

sent by process P
i
 in the interval (Ci

x – Ci
x-1) may be

lost or delayed. So in the event of a failure, f, in order
to avoid any inconsistency in the computation after the
system restarts from the recent checkpoints, we need
to log only such sent messages at the recent checkpoint
Ci

x
 of the sender so that they can be resent after the

processes restart. Observe that in the event of a failure,
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any delayed message, such as message m’’, is
essentially a lost message as well. Hence, in our
approach, we consider only the recent process
checkpoints of the processes and the messages logged
at these recent checkpoints are the ones sent only in
the recent check pointing interval. From now on, by
‘lost message’ we will mean both lost and delayed
message. Observe that without such an assumption
about the value of the common check pointing interval
T, the messages logged at Ci

x
 may include not only the

ones which a process P
i
 has sent in its current interval

(Ci
x – Ci

x-1), but also those which Pi sent in the previous
intervals as well. Note that in the above discussion,
we have implicitly assumed the non-existence of any
abnormally excessive delay in message communication
that violates our logical assumption that any message
m sent by process P

i
 during its check pointing interval

(Ci
x-1 – Ci

x-2) always arrives before the recent checkpoint
Cj

x
 of P

j
.

solution. The following discussion although considers
only two processes, still the arguments given are valid
for any number of processes. Consider a system of two
processes P

i
 and P

j
. Assume that the check pointing

algorithm has been initiated by an initiator process P*
and it has sent a request message M

c
 to P

i
 and P

j
 asking

them to take a checkpoint each. In our approach no
additional control message exchange is necessary for
making individual recent checkpoints mutually
consistent. That is, in this case both processes P

i
 and

P
j
 will act independently. Let P

i
 receive the request

message M
c
 and take its checkpoint C1

i. Let us assume
that P

i
 now immediately sends an application message

m to P
j
. Suppose at time (t + €), where € is very small

with respect to t, P
j
 receives m. Also suppose that P

j

has not yet received M
c
 from the initiator process. So,

P
j
 processes the message. Now the request message

M
c
 arrives at P

j
. Process P

j
 now takes its checkpoint

C1
j. We find that message m has become an orphan

due to the checkpoint C1
j. Hence, C1

i and C1
j cannot be

consistent.

To avoid this problem we state a very simple
solution. Process P

i
 piggybacks a flag, say $, only with

its first application message, say m, sent (after it has
taken its checkpoint for the current execution of the
algorithm and before its next participation in the
algorithm) to a process P

j
, where j � i, and 0 � j � n–1.

Process P
j
 after receiving the piggybacked application

message learns immediately that the check pointing
algorithm has already been invoked; so instead of
waiting for the request it takes its checkpoint first, then
processes the message m and later it ignores the current
request when that arrives.

Note that in our approach an initiator process
interacts with the other processes only once via the
control message M

c
. After receiving M

c
 each such

process, independent of what others are doing, just
takes its checkpoint. That is why we consider it as a
single phase algorithm.

4. THE CHECK POINTING AND RECOVERY
ALGORITHMS

Assume that it is the xth invocation of the check pointing
algorithm. The algorithm produces n globally
consistent checkpoints for a distributed system with n
processes.

Figure 1: Message m Cannot be a Delayed Message

3. PROBLEMS ASSOCIATED WITH NON-
BLOCKING APPROACH

It is known that the classical synchronous check
pointing scheme has three phases: first an initiator
process sends a request to all processes to take
checkpoints; second the processes take temporary
check points and reply back to the initiator process;
third the initiator process asks them to convert the
temporary check points to permanent ones. Only after
that processes can resume their normal computation.
In between every two consecutive phases processes
remain blocked. In this work our objective is to design
a single phase non-blocking synchronous approach;
however it does have some problem. We explain first
the problem associated with non-blocking synchronous
check pointing approach. After that we will state a
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Algorithm Non-blocking

At each process P
i
 (1 � i � n)

if P
i
 receives M

c

takes checkpoint Ci
x
;

continues its normal operation;

else if P
i
 receives a piggybacked application message

<m, $> & & P
i
 has not yet received M

c
 for the current execution

of the check pointing algorithm

takes checkpoint Ci
x
 without waiting for M

c
;

continues its normal operation;
// processes the received message m and ignores M

c
,

when received later

Proof of Correctness: In the ‘if’ block every
process P

i
 takes its xth checkpoint Ci

x
 when it receives

the request message M
c
. That is, none of the messages

it has sent before this checkpoint can be an orphan. In
the ‘else’ block, a receiving process P

i
 takes its xth

checkpoint Ci
x
 before processing any application

message m, sent by a process which took its xth

checkpoint first before sending the message m to P
i
.

Therefore the message m can not be an orphan as well.
Since this is true for all the processes, hence the recent
xth checkpoints Ci

x
, 1 � i � n are globally consistent

checkpoints.

4.1. Performance of the Checkpoint Approach

The algorithm is a synchronous one. However it differs
from the classical synchronous approach in the
following sense; it is just a single phase one unlike the
three phase classical approach, it does not need any
exchange of additional (control) messages except only
the request message M

c
, there is no synchronization

delay, and finally it is non-blocking. About message
complexity the initiator process broadcasts M

c only
once. So the message complexity is O(n).

Comparison with some noted existing works:
We use some analytical results from [8] to compare
our algorithm with some of the most notable algorithms
in this area of research, namely [1], [7], and [8].

The analytical comparison is given in Table 1. In
this Table:

Cair is cost of sending a message from one process
to another process;

Cbroad is cost of broadcasting a message to all
processes;

nmin is the number of processes that need to take
checkpoints.

n is the total number of processes in the system;

ndep is the average number of processes on which a
process depends;

Tch is the check pointing time;

Table 1
System Performance

Algorithm Blocking time Messages Distributed

Koo-Toueg [1] n
min

 * T
ch

3 * n
min

 * n
dep

 * C
air

Yes

Elnozahy [7] 0 2 * C
broad

 + n * C
air

No

Gao-Singhal [8] 0 � 2 * n
min

 * C
air

 + min Yes
(n

min
 * C

air
, C

broad
)

Our Algorithm 0 C
broad

Yes

Fig. 2 illustrates how the number of control
messages (system messages) sent and received by
processes is affected by the increase in the number of
the processes in the system. In Fig. 2, ndep factor is
considered being 5% of the total number of processes
in the system and Cbroad is equal to n*Cair. We observe
that the number of control messages does increase in
our approach with the number of processes, but it stays
smaller compared to other approaches when the
number of the processes is higher than 7 (which is the
case most of the time).

Figure 2: Number of Messages vs. Number of Processes for Four
Different Approaches

4.2. Recovery Scheme

Our recovery approach is independent of the number
of processes that may fail concurrently. In order to
identify lost messages in the event of a failure, we adopt
only one idea from the classical centralized approach
[13] for message logging: all application messages are
routed through the initiator process P

I
. But, we differ

from the centralized approach in that the messages sent
to a process P

k
 are logged at P

I
 according to the order
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of their arrival at P
I
 and some of these messages may

become lost messages in the event of a failure. This is
a major difference because the approach in [13] only
logs copies of the messages which have been
exchanged between any two processes with the help
of an extra acknowledgment protocol. In our work we
denote this message log for process P

k
 as MESGk,

where 1 � k � n for an n process distributed system.
Another major difference is that in our work the
initiator process P

I
 does not save the checkpoints of

the n processes. It is rather the responsibility of the n
processes themselves.

The proposed recovery scheme is dependent on the
following computation done by the initiator process
P

I
. Let us assume that after the processes have taken

their respective xth checkpoints a failure has occurred.
It may be concurrent failures also. After the system
recovers, each application process sends its sent and
received vectors at its recent (say xth) checkpoint to
P

I
. Thus P

I
 gets all the n sent and n received vectors

from the n application processes. Using these vectors
PI determines the lost messages, if any, sent by all other
processes, P

i
 (1 � i � n, i � k) to each P

k in the interval
(Ci

x – Ci
x-1) in the following way:

Algorithm Recovery

For each process P
k
 and 1 � i � n, i � k

if Sik
x
 > Rki

x

P
I
 records these sequence numbers (Rki

x
 + 1) to Sik

x
 in

lost-from-P
i
k;

// messages with sequence numbers
 
(Rki

x
 + 1) to Sik

x
 are the

lost messages from P
i
 to P

k
.

P
I
 forms the total order of all lost messages sent by every

P
i
, i � k to P

k

using lost-from-P
i
k
 
and the message log MESG

k 
for P

k
;

P
I
 sends to each P

k
 the lost messages following their total

order;

Theorem 1: Algorithm Non-blocking together
with the recovery scheme results in correct computation
of the underlying distributed application.

Proof: According to the check pointing algorithm
there does not exist any orphan message with respect
to the recent checkpoints of the processes. Also, the
initiator process P* identifies the lost messages, if any,
with respect to the recent local checkpoints of the
processes and the recovery approach ensures that the
lost messages are resent following their total order to
the appropriate destinations after the system restarts.
Therefore there does not exixt any orphan or lost

message with respect to the recent checkpoints. Hence
the correctness of the underlying distributed
computation is ensured.

4.3. Performance of the Recovery Approach

The following are the salient features of our approach.
First of all, processes restart from their respective
recent checkpoints; that is there is no further rollback.
It also means that processes save only their recent
checkpoints replacing their last ones. Second, the
choice of the value of the common check pointing
interval T enables to use as little information related
to the lost messages as possible for consistent operation
after the system restarts. Third, our work is independent
of if it is a single failure or concurrent failures. Fourth,
the recovery approach needs just one control message
from each of the n processes, which carries the sent and
received vectors of this process at its recent checkpoint.
Therefore it needs only n control messages and so the
message complexity is O(n). About the recovered lost
messages, it depends on the nature of the distributed
application. These messages are computational
(application) messages and have to be resent for correct
computation. So they do not contribute in any way to
the complexity of the recovery approach.

Comparison with Some Noted Existing Works

In the work [6] during normal computation each time
a process receives an application message, it has to
check if it needs to take a checkpoint so that the
received message can not be an orphan. In our work it
is not necessary because of the check pointing scheme.
Hence we avoid some unnecessary comparisons
involved in such checking. The message overhead in
[6] is O(F), where F is the number of recovery lines
established, where as in our work it is absent. Note
that by ‘message overhead’ it is meant the size of the
control information that is piggybacked with
application messages which are exchanged during
normal computation. Another important difference is
that the work in [6] will establish a recovery line for
each failure and then establish a consistent recovery
line for the distributed system after the occurrence of
concurrent failures. It is not needed in our work,
because in our work it does not depend on if it is a
single failure or concurrent failures; our recovery line
always consists of the recent checkpoints of the
individual processes of the system independent of
single or concurrent failures.



94 International Journal of Computational Intelligence Theory and Practice

When compared to the classical work in [11] the
following differences are observed. In [11] there is
always an extra control messages for each application
message, i.e. it requires receive sequence number
(RSN) and acknowledgement messages in addition to
the application message. We don’t require it. Besides
the work in [11] has the restriction that during normal
computation receiver of a message can not send a new
message until it receives the acknowledgement for the
RSN it has sent to the sender of the message which it
has already received. This obviously results in slower
execution. Our work does not have any restriction of
any kind during normal computation. Finally, we
handle both single and concurrent failures where as it
is only single failures in [11].

The work in [12] employs fault-tolerant vector
clock and history mechanism to track causal
dependencies, orphan messages, and obsolete messages
to bring the system to a consistent state after failures.
Our approach is very simple. Our simple check pointing

scheme makes sure that there is no orphan message.
Always the consistent state is the set of the recent
checkpoints of individual processes. So we do not need
any extra effort to determine a consistent state.

The work in [15] introduced the idea of optimistic
recovery. However, the recovery scheme proposed may
suffer from the domino effect which may cause
processes to roll back exponential number of times with
respect to the number of processes. Also it considers
only single failures. Our work is domino-effect free
and also can handle concurrent failures. The work in
[14] has presented an optimistic recovery algorithm
that has a message complexity of O(n2) and a message
overhead of O(1). In our work we don’t have any
message overhead and also the message complexity of
the proposed check pointing algorithm as well as the
recovery approach is O(n). Below in Table 2 we state
a brief summery of comparisons of some important
features of the the different check pointing / recovery
approaches.

Table 2
Brief Summary of Comparisons

Required Message Maximum rollbacks Message Message Number of
ordering Per failure Overhead Complexity concurrent Failures

Manivannan[6] None 1 O(F) O(n2) n

Johnson[11] None 1 O(1) O(n) 1

Juang[14] None 1 O(1) O(n2) n

Damini[12] None 1 O(n) O(n2) n

Our Algorithm None 1 None O(n) n

5. CONCLUSIONS

In this work, we have proposed a check pointing
approach that is a single phase one and non-blocking
in nature; besides it does not have any synchronization
delay. It makes sure that at the time of recovery we do
not have to deal with orphan messages unlike most of
the existing works. The choice of the value of the
common check pointing interval T enables to use as
little information related to the lost messages as
possible for consistent operation after the system
restarts. It also means that processes can restart from
their respective recent checkpoints. Our work is
independent of the number of processes that may fail
concurrently. Besides, the message complexity of the
proposed check pointing algorithm as well as the
recovery approach is just O(n). Finally, note that our
check pointing and recovery schemes are independent

of the effect of any clock drift on the respective
sequence numbers of the recent checkpoints of the
processes, because we consider only processes’ recent
checkpoints irrespective of their sequence numbers.
Analytical performance-comparison with noted
existing works highlights the advantages of our
proposed schemes. Future work is directed at studying
the effect of message sizes on the assumed check
pointing intervals through simulation.
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