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Abstract: Using error rate as the scalar metric for the evaluation of one versus rest (OVR) classifier is a major challenge in
data-driven design of multi class brain computer interfaces. With unbalanced datasets, OVR classifiers require an accurate
measure of the performance that considers multiple quality metrics, such as sensitivity and specificity, in addition to overall
correct rates. With a 4-class BCI, the typical correct rates of 60-80% could be misleading as they are in the vicinity of 75%
recognition rate of trivial OVR classifier. By devising a scalar quality factor (Q), calculated from correct classification rates,
sensitivity, and specificity, we mitigated this degeneracy for a 4-class subject-independent brain computer interface implemented
by four SVM or naïve Bayesian OVR classifiers and wrapper feature selection. Using the Q factor we fitted a single model
to the motor cortex EEGs of 10 untrained subjects. The average cross-validation correct rate, sensitivity, and specificity of
the resulting OVRs were as high as 83.9%, 78.5% and 80.8%, respectively. Within the confines of our experiment, we
conclude that sensitivity and specificity-corrected accuracies, when used as the guide in wrapper methods, are able to avoid
trivial classification in multiclass subject-independent BCIs.
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1. INTRODUCTION

Brain Computer Interface (BCI) is a rather nascent
research topic dating back to the early 1970’s [37]. BCI
involves classification of various brain signals to
communicate with external devices. BCI can serve as
an alternative or augmentative communication pathway
by bypassing possibly non-funct ional motor
subsystems [19]. Brain activity can be monitored using
a variety of methods such as electroencephalography
(EEG), magneto-encephalography (MEG), positron
emission tomography (PET), and functional magnetic
resonance imaging (fMRI). However, EEG has been
the modality of choice for brain-state detection due its
affordability, ease of usage, and portability [20]. EEG
signals are mostly composed of small scalp-induced
potentials from the electrical activity of the cortex. It
is hypothesized that some movements and thoughts
might have unique EEG signatures across different
areas of the brain [7]. However, these signatures have
high variance between different subjects [3].
Additionally, the classifier aspect of BCI faces
challenges as the number of states increases, and thus
the majority of studies attempt to discriminate between
2 or 3 classes.

As any other pattern-recognition system, BCI
requires an effective evaluation criterion that is easy
to compute. When implementing multi-class BCIs with
two-class classifiers, a system of one vs. one or one
vs. the rest classifiers (OVR) may be used. In a one
versus one method for an N-class problem, all possible
pairs of classes are applied to dichotomizing classifiers.
This requires N(N-1)/2 classifiers which grows rapidly
with N, number of target mental states. On the other
hand, one can solve for the same problem using N
OVRs. However, simple error-based evaluation of
OVR classification may lead to degeneracy in this case,
where an N-class OVR classifier system with equal
number of instances from each class may show an (N-
1)/N correct rate while failing to properly detect a
single instance (trivial classification). This problem
becomes more pronounced as (a) the number of classes,
N, increases and the probability of chance
classification, 1/N for an evenly distributed dataset,
becomes smaller, (b) when feature selection and
classification are data-driven, where using the
aforementioned simple correct rate as selection
feedback signal may trap the system in the degenerate
trivial solution, and (c) when the OVR classifiers have
discrete outputs, and thus ROC-based metrics that
compensate for class-label frequencies cannot be
readily applied.
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A summary of recent approaches to remedy this
issue has been presented in the literature [2]. Some of
the more promising methods such as Cohen’s kappa
coefficient [1], information transfer rate [6, 21] and
utility metric [5] may yield desirable results. However,
they have not been applied to the problem of
degeneracy in classification quality feedback during
wrapper processes, not to mention their shortcomings
when dealing with the aforementioned issue [5].
Although many contributions were made to the field
of multi-class BCI [8], very few attempts have been
made to solve subject-invariant BCI (SIBCI) problems
[19], let alone multi-class SIBCIs [13, 20, 30], where
most of the offered solutions need re-calibration for
each subject. Classification-guided feature selection
(wrapper) methods have been reported in BCI designs
[26, 31, 32]. However, they utilize simple error rate as
classification feedback and the issue of imbalance
between sensitivity and specificity during degenerate
classification has not been systematically addressed.
Ultimately, the objective of subject invariant BCI is to
create a system that has minimal calibration or training
time for a new user.  This is accomplished by training
a single system in advance with data from a diverse
user population, in order to find the most common
features which represent the overall group [14, 25].
Here we propose a new a scalar quality factor (section
2.3) which considers the combined effects of the
confusion matrix and cost functions as a simple,
efficient, and arguably better alternative to guide
classification-guided feature selection and
classification, also known as wrapper methods [16].
By optimizing multiple classification objectives, our
quality factor will allow for a non-degenerate wrapper
method solution regardless of the number of classes
and frequency of their instances. As a challenging test
bed which usually leads to the trivial classifiers with
wrapper methods, we apply the proposed method to a
subject-invariant BCI (SIBCI) problem, noting that the
majority of current BCI systems offer subject-specific
solutions given the complexity of SIBCI realization.
As a proof of concept, we recruited 10 randomly
selected subjects and adapted one BCI to the whole
subject population with equal number of signal epochs
per subject, as detailed below.

2. METHODS

In this study, a four-class BCI system was developed
using EEG signals garnered from motor cortex areas
of 10 untrained volunteers attempting four body

movements [20, 21]. The target movements are left
hand, right hand, left leg, and right leg; and designated
as Movement 1, Movement 2, Movement 3 and
Movement 4, respectively. Our choice of the four motor
movements was based on the literature and our own
previous study [12, 28, 39, 43]. The recorded signals
thereafter undergo preprocessing, feature extraction,
feature selection, and classification (Fig. 1); with the
latter two being realized by an integrated supervised
learning scheme (wrapper method). Furthermore, to
increase the statistical power of the results and gauge
the generalization power of each classifier, we
performed a 5-fold cross validation with 10 Monte
Carlo repetitions for each OVR classification.

Figure 1: A Block Diagram of the Overall Method

2.1. Protocol

We recorded EEG signals from 10 untrained volunteers
(UMKC IRB #090218) using standard 10-20 electrode
placement with two ear references (Fig 2). The
microvolt-level scalp-collected EEG signals are
amplified and filtered to reject power line interference.
This was accomplished with a NeuroPulse Systems
MS-24R bioamplifier with 1.5 – 34 Hz bandpass filter
and a sampling rate of 256 Hz.
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The subjects were asked to perform four subtle
movements. No preliminary training sessions were
provided. Each of the four intended movements was
repeated for 24 times, producing 960 eight-second
epochs. Each subject attended two similar sessions
conducted 4-6 weeks apart. During each session they
were asked to perform 4 intended movements 12 times
each over the course of 2 hours. All the instructions to
the subjects were given using a computer screen
prompt, while asking them not to blink during the task
performance. They were asked to position their both
feet on a foam pad, loosely gripped rubber balls with
each hand, and apply slight pressure based on the
displayed instruction (pseudo movements). A short
audio tone preceded each displayed command prompt,
which stayed on the screen for the eight second
recording duration. Thereafter, subjects were given a
10 second break before the next pseudo movement task.
Although each task was recorded for eight seconds,
only the first two seconds was used for the analysis.
C3 and C4 electrodes captured the motor cortex signal
(Fig. 2). For better spatial resolution, large Laplacian
filters were applied, where the reference potentials
were derived from the difference of C3 and the average
of F3, T3, P3, and Cz (left hemisphere). Similarly, C4
was referenced to the average of F4, T4, P4, and Cz
(right hemisphere). Left and right hemisphere signals
were filtered separately.

Linear Predictive Coefficients

Linear predictive coding (LPC) filter coefficients are
popular in speech recognition [24], and have also been
successfully applied to time domain feature extraction
in BCI [10]. Our studies show that increasing LPC
orders initially improves the classification, followed
by a plateau and then increased cross validation error
due to over-parameterization when filter order reaches
the vicinity of 20 [4, 40]. Accordingly, after a three-
fold down sampling, 18th order LPC features of each
two-second EEG snippets were extracted.

Short Time Fourier Transforms

Given their non-stationarity, EEG signals maybe better
characterized by their time-frequency features, and in
this case by using the short time Fourier transforms
(STFT) [41]. As the second feature modality, EEG
STFTs with sliding window length of 1 second, 255
sample overlap, and a spectral range of 1-48 Hz were
aggregated into four 12 Hz frequency bins and used as
feature vectors.

Power Spectral Density

EEGs representing imagined motor tasks are attributed
to event-related desynchronization of neuronal signals.
This is reflected in power spectral energy (PSD) of
the EEG signals, and thus their choice as the study’s
spectral features [29]. The Welch periodogram spectral
estimation method with a Hamming window of length
33 and 97% overlap was used for the calculation of
frequency bin energies. The 1-48 Hz PSD span was
divided into twelve 4 Hz frequency bins, and then the
spectral energy was calculated as the area under each
non-overlapping bins. Settings were chosen by trial and
error.

Wavelets

As a multi-resolution time-frequency signal transform,
Wavelet decomposition coefficients from filter banks
(WDC) were used as spectro-temporal EEG features.
Wavelet packet decomposition (WPC) was used as
another feature extraction method [36]. Though
redundant for signal reconstruction, features from the
Wavelet packets may be better for classification, as they
retain subdivision of high frequency details into sub-
bands which might be advantageous in extracting high
frequency features [27, 45].

Based on their classification performance given our
previous study [18], from biorthogonal spline,

Figure 2: 10-20 EEG Electrode Placement System

2.2. Feature Extraction

After filtering and separating the data epochs by
subject, movement and session, each two-second signal
segment was processed to extract the following five
feature modalities.
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Gaussian, Morlet, Daubechies, Meyer, reverse
biorthogonal spline, Coiflet and symlet wavelet
families and their variants, we considered reverse
biorthogonal and symlet families for this modality.
Wavelet features were constructed using two methods:
as the filter banks outputs or aggregation of sub-band
energies, where the latter  foregoes temporal
information in the interest of time shift-invariance by
marginalizing over the shift parameter [36]. The
wavelet decomposition filter bank output coefficients,
or WDC, were calculated by reverse biorthogonal 3.7
wavelets. Wavelet packet filter banks output
coefficients, or WPC, were calculated with symlet 15
wavelets. The energy of wavelet decompositions were
next marginalized over shift (time) and their energies
across different scales (frequency) were calculated as
WDE feature sets using reverse biorthogonal 3.1
wavelets. Wavelet packets energy features, or WPE,
were calculated in a similar fashion.

2.3. Classifier Quality Factor

As intimated during the introduction, the classification
rate by itself may not successfully measure the
performance of an unbalanced OVR model, especially
when sensitivity and specificity rates are lopsided,
leading to degeneracy and trivial classification despite
seemingly high classification rates. This is an OVR
classification caveat, especially in conjunction with
wrapper methods (section 2.4) for data-driven co-
evolution of feature selection and classification using
challenging datasets. For instance, our experience
shows that simple error rate guided wrapper methods,
when attempted for a 4-class subject-independent BCI
(or SIBCI [17], where one classifier is used to fit a
group of subjects), tends to provide solutions with
accuracy figures around 75%. Upon closer inspection,
it is found that each classifier has a sensitivity or
specificity of either almost zero or one (trivial
classifier), indicating a premature convergence of the
wrapper method to a degenerate solution, where each
classifier keeps accepting or rejecting all its incoming
data points.

More specifically, in designing classifiers for M-
class BCI, we have investigated a type of the OVR
classifier that uses M individual classifiers wherein
each compares two groups. We place all of the samples
from one class in group 1, and the rest from the
remaining M-1 classes in group 2. Assuming an equal
number of samples from each of the M classes, our

model has M-1 times more samples in group 2 than in
group 1. With this unequal frequency between the two
groups, the accuracy calculation based on counting of
true positives and true negatives is biased. Knowing
that the theoretical degenerate accuracy rate for a
random classifier is 1/M, yet we see that an accuracy
calculation based only on true positives and true
negatives will produce (M-1)/M accuracy rate as one
of the two possible degenerate trivial classifier modes
in this particular OVR implementation1. This effect
becomes more critical as we implement multi-class
SIBCI, as this trivial classifier solution asymptotically
approaches 100% as the number of classes, M,
increases. In data-driven integrated feature-classifier
selection scenarios, such as wrapper methods, a poorly
functioning classifier at an apparently biased (M-1)/
M correct rate would be chosen over a working
classifier with a lesser but entirely acceptable accuracy.
As M increases, the trivial classifier would refuse a
larger range of classifiers otherwise showing less than
(M-1)/M performance. For the problem at hand, M=4,
and the corresponding degenerate mode settles at 75%.
This trivial classification rate is significant and critical
when we realize that for a given information transfer
rate the accuracy rate of a given BCI decreases for an
increasing number of classes [8]. At a constant bit per
trial rate, a two-class accuracy of 98% corresponds to
77% for 4 classes, which occurs very close to the
degenerate rate. Similarly, 66% overall accuracy
corresponds to six classes while the corresponding
degenerate mode occurs at 83% correct rate. Either of
the two degenerate modes can be detected by inspection
of the number of false positives and false negatives,
leading to the idea and definition of the later described
Q-factor.

In view of this, a better characterization of the
multi-class BCI would be through its confusion matrix,
where all the four descriptors of classification are
given. The main drawback of the confusion matrix for
wrapper methods utilizing discrete-output classifiers
is the need for a single scalar statistic as the classifier
feedback to its feature search and selection routine,
describing multiple objectives based on the main
diagonal of the confusion matrix (true positives and
negatives ) as well as magnitudes and the ratios of the
off-diagonal values (false positives and negatives).

Little has been done to directly resolve this multi-
class BCI problem. In fact, most solutions try to avoid
it by using other classifier arrangements. One method
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to address the issue was demonstrated in the BCI 2005
Competition through the use of Cohen’s Kappa
coefficient [1, 2]. It is a scalar value derived from the
confusion matrix and measures the correlation between
predicted and actual classes. The Cohen k statistic falls
in the category of chance-corrected agreement
statistics. One of the deficiencies of the Cohen’s
method was demonstrated by Gwet [22]. While
Cohen’s method was devised for the chance correction
problem, it is used to address the degenerate (M-1)/M
trivial classification rate. Cohen’s k statistic has been
shown to be biased by the overall trait prevalence rate,
that is the occurrence or deficiency of the true and false
positives. Unfortunately, this trait prevalence is
significant in the trivial classification mode mentioned
above, and manifests itself as some varying degree of
lopsidedness in the off-diagonal values of the confusion
matrix through its direct influence on the false positive
count while at the same time having no impact on the
false negative value.

Our approach addresses the problem by providing
a scalar metric derived from the confusion matrix. It
reflects the accuracy count of the main diagonal and
addresses the trivial (M-1)/M classification rate
problem while mitigating the trait prevalence issue or
any other causes of off-diagonal imbalances by
penalizing the lopsidedness between the off-diagonal
values, whether it occurs due to a higher value of false
positives or  false negatives. Addit ionally,  the
magnitudes of the off-diagonal terms are accounted for
by using the sensitivity and specificity of the confusion
matrix to calculate the penalty term, with a provision
for emphasizing or diminishing the sensitivity of the
metric to the lopsidedness of the sensitivity vs.
specificity.

This improved classification quality metric is
henceforth referred to as Quality factor, Q. More
specifically, one may define Q as the ratio of correct
rate to the sensitivity vs. specificity or its inverse,
whichever greater:

1
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specificity sensitivity
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where the optional parameter p adjusts the sensitivity
of Q to asymmetry between sensitivity and specificity,
set to 1 for this study. Q improves upon the simple
classification accuracy by making adjustments based

on the imbalance between true positive and true
negative rates. In the case where the sensitivity and
specificity are equal, Q defaults back to the overall
accuracy rate. This factor is especially valuable when
using classifiers with discrete output, such as support
vector machines, where metrics such as receiver
operating curves are not readily applicable. To further
increase the saliency of Q factor, it was calculated over
validation data using a 5-fold cross-validation, and
averaged over ten Monte Carlo reshufflings of the
dataset. This process adds to the statistical power of
the results while incorporating performance of the
classifier over unseen validation data (generalization)
into Q and thus the wrapper method.

2.4. Classification-guided Feature Ranking and
Selection

In data-driven pattern recognition, supervised
multivariate feature construction is a subset search in
the feature space to achieve the desired classification
by maximizing a quality metric [4, 16], essentially an
optimization process [4]. Ideally, given D feature
components, 2D-1 feature vectors need to be evaluated
to rule out redundant, irrelevant, or otherwise corrupted
or detrimentally correlated feature components.
However, an exhaustive search is not practical choice
for many problems with large D [4, 16], such as the
problem at hand with the plethora of feature elements
discussed in 2.2. Also known as wrapper methods [33],
a group of non-exhaustive solutions are based on
supervised searches in the feature space that are guided
by the subsequent classification rates. Thus wrapper
methods incorporate the embedded classifier ’s
capabilities and biases into their feature selection,
yielding superior performance by constructing features
vectors that are matched to the utilized classifier [33,
38]. One such method is based on classification-guided
feature ranking and concatenation. An incrementally
augmenting wrapper method builds feature vectors by
starting from the top of a ranked feature list,
concatenating elements in order until the classification
metric of choice is optimized over a predefined span
of D, essentially a variant of the best-first wrapper [34,
38]. This semi-greedy wrapper method assumes
independence between feature components in the
interest of speed [38]. Considering each continuous-
valued feature element as a univariate dichotomizing
discriminant, one may obtain a plot of sensitivity versus
1-specificity (false positive rate) by varying the binary
decision threshold. The resulting curve is known as
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the Receiver Operating Characteristic (ROC) curve,
which is an important tool in characterization of OVR
classification whenever indicator functions with
continuous outputs are available [42]. The area under
ROC curve, or ROC AUC, is a scalar descriptor of any
single feature’s overall classification power across all
the different decision thresholds. ROC AUC is
especially important for dealing with unknown or
multimodal class distributions, providing a distinct
advantage over traditional methods such as t-test that
require a priori knowledge of feature probability
distribution. Accordingly, and in preparation for the
above-mentioned wrapper method, the features within
each modality were ranked using ROC AUC, where a
higher area under the curve is indicative of better
overall sensitivity and specificity [42]. Using a ranked
list for each modality, features were aggregated from
the top until the Q factor was maximized. Since the
ranking was performed using data from all the 10
subjects, the results yield subject-independent feature
saliencies within that group.

2.5. Classification Methods

k-Nearest Neighbor Classifier

The k-Nearest Neighbor classifier (kNN) classifies an
unknown sample based on the majority vote of its k
nearest neighbors according to their class labels [44].
Feature space distance was calculated by Euclidean
metric. The value of k needs to be pre-determined for
better classification. In this study, k was varied from 1
to 100. kNNs with k values between 16 and 47 provided
relatively better results, though not as good as the next
two classification methods.

Bayesian Classifier

Naïve Bayesian classifiers assume independence of
variables and find the parameters for class distributions
such as means and the covariance matrices from the
training data through maximum likelihood method [35].
We used a Bayesian classifier with linear discriminant
function assuming normal multivariate distributions with
diagonal covariance estimate pooled across the classes.

Support Vector Machines

Support Vector Machines (SVM) separate classes in
their kernel space using maximum margin hyper-planes
[11]. Gaussian and Polynomial kernels were used in
this analysis. Gaussian kernels are characterized by

their spread, �, whereas the polynomial kernels are
defined by their order, n. The tested range was 1 to 25
for �, and 2 to 5 for n. The box constraint (or C
parameter) values were changed from 0.1 to 100 to
control sensitivity of SVM boundaries to outliers using
“soft” or “hard” margins, allowing a trade-off between
the slack variables, misclassification penalty, and the
discriminant rigidity [9].

3. RESULTS

Using the earlier described best-first wrapper method,
ROC-AUC ranked features from each modality were
provided to three classification methods, namely Naïve
Bayesian, kNN, and SVM. For kNN (k=1-100) and
SVMs (Polynomial with n = 2-5, and Gaussian with
� =1-25; and C=0.1-100 in both cases) all the different
variations of each classifier were examined. The input
vectors were constructed by incremental concatenation
from the top of each ranked feature list until the Q
factor was maximized. All results were calculated using
5-fold cross-validation with 10 Monte Carlo repetitions
to better gauge the predictive power of the results
(generalization).

3.1. Movement 1

Using the wrapper method, the Naïve Bayesian and
OVRs were able to classify Movement 1 verses rest of
the movements with a Q of approximately 72%,
followed by SVM, using WPC feature modality
(Table 1). The SVM box constraints (C) and � values
were chosen based on the best-attained Q factor.
Generally speaking, regardless of �, Q factor decreased
with C, indicating a preference for soft margins that
are less sensitive towards outliers. This is expected
given the low signal to noise ratio of EEG-based SIBCI
dataset. On the other hand, Q factor initially increased
with ó, followed by an abrupt decline for >15. Note
that although the third ranked classifier has a
better correct rate than the first, its Q factor is lower
(Table 1). Such Q-factor selection of the features and
classifiers enables the wrapper algorithm to escape
trivial classification and degenerate states related to
large imbalance between sensitivity and specificity not
reflected in correct-rate.

3.2. Movement 2

For movement 2, the Gaussian SVM OVRs
outperformed other classifiers, followed by naïve
Bayesians (Table 2). On the bottom of the list were
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kNNs, with a maximum Q of 47% (WPC features, k
value of 18). Again, smaller C values (0.1-0.2) provided
better SVM results. This indicates that more slack was
needed to allow for softer margins, meaning that
outliers in the training datasets needed to be
misclassified to yield a more sensible maximum margin
boundary. Our best results for Movement 2 were all
obtained from WPC modality (Table 2).

3.3. Movement 3

Similar to the first movement, naïve Bayesian was the
best OVR classifier for Movement 3, followed by the
Gaussian SVMs (Table 3). kNNs again failed to match

these numbers with their best result yielding a Q factor
of 52% (WDC features, k value of 31).

3.4. Movement 4

For this seemingly most challenging case, Gaussian
SVMs with ��= 15 and C = 0.1 or 0.2 yielded the best
results using WPC features (Table 4). The stronger
performance of Gaussian SVMs in detection of this
difficult class, as indicated by the Q figures, indicates
a more nonlinear decision boundary. Corroborating the
highly nonlinear nature of class boundaries for this
movement, low-order polynomial SVMs were only
able to reach quality factors in the vicinity of 50%.

Table 1
Best 5 Classifiers for Movement 1

Classifier Configuration Selected Features Feature type Sensitivity Specificity Correct rate Q factor
(ROC AUC ranks)

Naïve Bayes Diagonal Linear 1-79 WPC 0.7 0.801 0.832 0.727
Naïve Bayes Diagonal Linear 1-83 WPC 0.699 0.803 0.833 0.725
Naïve Bayes Diagonal Linear 1-81 WPC 0.695 0.803 0.838 0.725
Naïve Bayes Diagonal Linear 1-66 WPC 0.697 0.804 0.836 0.725
SVM � =15, C=2 1-17 WPC 0.689 0.734 0.749 0.703

Table 2
Best 5 Classifiers for Movement 2

Classifier Configuration Selected Features Feature type Sensitivity Specificity Correct rate Q factor
(ROC AUC ranks)

SVM � =15, C=0.2 1-70 WPC 0.72 0.804 0.827 0.741
SVM � =15, C=0.1 1-65 WPC 0.715 0.792 0.813 0.734
Naïve Bayes Diagonal Linear 1-80 WPC 0.701 0.808 0.839 0.728
Naïve Bayes Diagonal Linear 1-78 WPC 0.701 0.803 0.833 0.727
Naïve Bayes Diagonal Linear 1-68 WPC 0.700 0.801 0.834 0.727

Table 3
Best 5 Classifiers for Movement 3

Classifier Configuration Selected Features Feature type Sensitivity Specificity Correct rate Q factor
(ROC AUC ranks)

Naïve Bayes Diagonal Linear 1-90 WDC 0.702 0.757 0.772 0.716
Naïve Bayes Diagonal Linear 1-88 WDC 0.703 0.755 0.769 0.716
Naïve Bayes Diagonal Linear 1-89 WDC 0.698 0.751 0.769 0.715
Naïve Bayes Diagonal Linear 1-86 WDC 0.700 0.752 0.768 0.715
SVM � =15, C=0.1 1-80 WPC 0.700 0.755 0.770 0.714

Table 4
Best 5 Classifiers for Movement 4

Classifier Configuration Selected Features Feature type Sensitivity Specificity Correct rate Quality
(ROC AUC ranks) factor

SVM ��= 15, C=0.1 1-51 WPC 0.677 0.719 0.732 0.689
SVM ��= 15, C=0.2 1-50 WPC 0.679 0.718 0.726 0.687
SVM ��= 15, C=0.1 1-50 WPC 0.679 0.722 0.730 0.687
SVM ��= 15, C=0.1 1-40 WPC 0.674 0.707 0.718 0.685
Naïve Bayes Diagonal Linear 1-24 WDC 0.617 0.648 0.659 0.628
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4. DISCUSSION

As more complex BCI applications require the
discrimination between a larger number of brain states,
the use of multi-objective metrics such as the Q factor
will ease the required minimum number of individual
classifiers by permitting greater use of OVR models.
Used in conjunction with wrapper methods, we showed
that this metric can be successfully applied to multi-
class subject-invariant BCIs, a challenging problem
known to lead to trivial OVR classification. More
specifically, a simple best-first wrapper method
(Fig. 3), applied to ROC AUC-ranked features with Q
as the OVR classifier feedback, could successfully
realize a 4-class subject independent BCI. Given the
structure of Q, the resulting recognition rates were not
only better in terms of correct classification rates, but
also the overall sensitivity and specificity figures were
more in balance. On the other hand, using the same
dataset but without the Q factor, even more
sophisticated wrapper methods such as sequential
forward selection, sequential backward selection [38],
and classification guided subset selection [23] failed
to achieve any acceptable results, where the methods
degenerated to the trivial classification using the same
OVR models.

0.728 within the given 100 feature elements of the
modality. The Q factor fluctuations are due to the
presence of correlated elements in the concatenated
feature vector, also known as the nesting problem [38].
In wrapper processes, it is possible to remove such
features by backward passes after a sequential forward
feature aggregation, eliminating features detrimentally
correlated with subsequent selections during the
evolution of the feature vector. As an example, again
consider the plot of Q with respect to the length feature
vector D for Movement 1 Bayesian OVR (Fig. 3),
where D corresponds to number of selected features
from the ROC AUC ranked WPCs. Q reaches a
maximum of 0.728 at D=76, which is the conclusion
point for the utilized first-best wrapper, with average
cross validation sensitivity of 0.7, specificity of 0.801,
and correct rate of 0.832. However, by removing five
local minima at D = 4, 6, 34, 37, and 69 (marked with
dots on the graph), Q factor was raised to 0.738.
Though a small gain, this simple experiment confirms
the existence of nesting problem. Thus, we expect that
similar but more advanced sequential selection
methods, such as SFFS [38], when guided by Q factor,
lead to even better OVR solutions to multi-class SIBCI.
This will be the subject to our future work.

As for the choice of classifier models, and given
their interaction with the integrated feature selection
in wrapper methods, different naïve Bayesian, SVM,
and kNN classifiers were examined. Generally
speaking, naïve Bayesian classifiers with diagonalized
covariance matrices and normal distribution
assumption, followed by Gaussian kernel SVMs,
performed better than kNNs and polynomial kernel
SVMs. The prevalence and success of linear
discriminant naïve Bayesian classifiers can be ascribed
to (a) their stability and robustness given the
diagonalized covariance matrix and their ability to
estimate their parameters from a relatively small
number of data points, yielding better generalization
and validation-based Q, and (b) the assumption of
variable independence by the naïve Bayesian classifier,
which is in line with that of the univariate feature
ranking method used by our wrapper process.

Another interesting point is the superior
performance of wavelet features, both as packets and
regular decompositions, compared to other feature
modalities including wavelet energies marginalized
over shift, PSDs, and LPCs. This attests to the
importance of temporal progressions in the given BCI

Figure 3: Quality Factor Verses Number of Features using a Best-
first Wrapper with Naïve Bayesian OVR. Q Peaks at 0.728
using the first 76 Features from ROC-AUC Ranked WPC

The utilized best-first wrapper uses ROC AUC as
a measure of classifiabilty to rank features within each
modality. The input feature vector is then determined
as the first D elements from the ranked list that together
maximize the ensuing OVR’s Q, compared to all other
D values s from the same list. Figure 3 shows one such
wrapper feature selection by plotting Q factor vs. the
number of included features. As evident from the
figure, the aforementioned wrapper method selected
the first 76 ranked features, where Q factor peaked at
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problem, as features modalities that did not
appropriately incorporate such transients were left out
by the Q-guided wrapper method.

5. CONCLUSION

While the subject of BCI performance evaluation has
not received as much attention as the other aspects of
the field, it becomes more important as BCI is applied
to more complex situations such as subject invariant
or multiclass systems. As a challenging real world
application scenario, we designed a subject invariant
4-class BCI based on the EEG data of 10 different
untrained subjects. This is a complex problem given
the fact that the spatio-temporal characteristics of the
EEGs differ with respect to subject and trial [8]. This
inter- and intra- subject EEG variability, combined with
larger number of target classes and untrained subjects,
leads to degenerate multi-class BCI systems when
simple classification rate is used as the metric for data
driven OVR feature selection and classification. Here
we introduced a simple but effective metric, Q factor,
in conjunction with wrapper methods to avoid the
trivial classification. Overall, best performing Q-guided
classifiers employed features selected from either WPC
or WDC modalities. Gaussian SVMs and naïve
Bayesian classifiers with linear discriminant functions
outperformed kNN and polynomial SVM classifiers,
which is in line with other reports on the choice of
classifiers for BCI [15, 29].

Among the candidate feature modalities, WPC and
WDC emerged as the best using the Q-based wrapper
methods, as opposed to non-temporal modalities such
as PSD and wavelet scale energy features, except for
STFT. This means that within our experiment settings,
features that have proper shift (time) information are
more salient, and that the time-locked EEG information
benefits from multi-resolution, non-sinusoidal wavelet
decompositions during Q-guided wrapper feature
extraction and classification.

By using Q factor instead of simple error rate, we
not only avoided degenerate convergence of our
wrapper methods to trivial classification, but also
garnered robust results for an otherwise challenging
problem of fitting one multi-class BCI to a group of
untrained subjects. The best obtained OVRs for each
movement were as follows (Tables 1 through 4, cross-
validation results): Movement 1: sensitivity 0.7,
specificity 0.801, correct rate 0.832, and a Q factor of
0.727 (Naïve Bayesian classifier, 79 WPC features).

Movement 2: sensitivity 0.72, specificity 0.804, correct
rate 0.827, and a Q factor of 0.741 (SVM classifier, 70
WPC features). Movement 3: sensitivity 0.702,
specificity 0.757, correct rate 0.772, and a Q factor of
0.716 (Naïve Bayesian classifier, 90 WDC features).
Movement 4: sensitivity 0.677, specificity 0.719,
correct rate 0.732, and a Q factor of 0.689 (SVM
classifier, 15 WPC features). This compares favorably
with other studies which assert that 70% classifier
accuracy is adequate to control a two class BCI [9],
notwithstanding that we worked on a more complex
4-class problem, and calibrated a single BCI to 10
untrained subjects. This OVR result also compares with
our other cross validation results on the same data set
but with a different classification scheme, using error
correcting codes which replaces four OVRs with six
balanced non-OVR classifiers combined by majority
vote [17]. As a part of our future work, we intend to
use other wrapper methods with Q factor and larger
datasets, especially that the latter will allow for further
blind tests beyond the current cross validations. We
also wish to use Q factor in conjunction with data-
driven feature extraction and classification to help with
other challenging aspects of BCI system such as long-
term invariance, and introduction of loss functions into
Q to optimize OVRs according to costs of different
error types.

Acknowledgements

This work was supported in part by University of Missouri
Research Board and University of Missouri – Kansas City
Faculty Research Grant.

Note
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