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INTRODUCTION

Databases continue to grow in size and complexity, and
they are used in many diverse applications. For many real
world applications, it is necessary to incorporate some
type of uncertainty management into the underlying data
model. One characteristic of many imprecise databases
is that they allow sets of values in their tuples. This is
referred to as a non-first form or nested database [1, 2].
If the value of an attribute is non-atomic, i.e. set-valued,
then there is uncertainty as to which one of the values in
the set corresponds to the attribute. There are specific
aspects in different uncertain database models but all
share use of set values. Of particular interest here is
database modeling using fuzzy set and rough set
approaches to represent uncertainty.

Security is becoming more and more of an issue with
database applications [3], especially considering the
widespread problems associated with identity theft and
fraud, website visit history trackers, privacy and data
mining applications, and the plethora of SPAM. In this
paper we investigate the area of security for imprecise
databases, which have security issues similar to that of
statistical databases. We are not referring to the general
protection of the data from unauthorized use, but rather
controlling the type of data that may be accessed by a
valid user. For example, a user may be prevented from
deducing a specific non-key attribute value associated
with the key value, but could be allowed to retrieve an
averaged value.

There will always be some tradeoff between the
benefits of information sharing and that of privacy, and
while we often want to maximize the sharing and use of
data, we cannot allow protected data to be compromised.

In this paper we first overview relevant security issues
and then the general form for imprecise databases. Then
fuzzy and rough database models are described and
security issues and information measures of security in
such databases are discussed.

SECURITY AND STATISTICAL DATABASES

There are many advantages to database technology such
as the ability to share data and information and to allow
controlled access to data for the purpose of data mining.
However, with these advantages also come disadvantages,
particularly, there are security issues. Security, which has
been commonly defined as the protection of the database
against unauthorized use, has several aspects [4-7].
Safeguarding against the illegal modification or
destruction of data is one aspect of security, but our
concern here is with protection against unauthorized
viewing of data. In particular for imprecise databases,
permitting access to some information if the exact
correlations of data items remain unknown is considered.
This use of security is similar to the idea of security in
statistical databases. For example statistical information
such as the average salary of a large group of individuals
may be available, but not the exact salary of any one
individual.

To discuss security in imprecise databases we will
review the relevant concepts that have been developed
for statistical databases. Several researchers have studied
issues related to this type of database security [8-15]. In
statistical databases we can assume that any one query
cannot reveal specific data values that should be
protected. If someone can deduce confidential data from
one or more queries we say the database has been
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compromised. The primary approaches to compromising
these databases are to isolate a specific data value by
intersecting a set of queries. Solving a system of equations
based on these results may reveal a specific value of an
attribute. . Security violations can occur when one or more
queries reveal confidential information. Most of these are
based on the isolation of a single data value at the
intersection of several query sets. Four methods for
protecting against such violations have been studied [9]
which we describe next.

(1) Minimum query size controls violations using
very large or small query sets by a formula to
giving a lower bound on allowable query set size.
A query set is not allowed if the size is less than
this bound.

(2) Minimum overlap control is based on preventing
replies to queries based on the number of records
overlapping prior queries. Here queries are not
allowed if they have more than a predetermined
number of tuples in common with each of the
previous queries. This is impractical in a realistic
database as the potential number of queries over
a significant period of time requires a checking
that is computationally infeasible.

(3) Distortion of the data or the query response is
another approach. For example in statistical
queries this might be achieved by rounding an
answer to a query. This trades accuracy of an
answer for security of the data.

(4) Random sampling attempts to prevent violations
by not allowing the user to specially craft query
sets to overcome the controls described above.
This approach prevents inference of specific data
by no longer allowing a user to select specific
records to query for statistical queries. It can be
seen that random sampling using large samples
can reduce risk but maintain high statistical
accuracy.

We shall see that some of the security issues to be
discussed for fuzzy and rough set data models are
analogous to the ones described above for statistical
databases.

GENERAL FORM FOR IMPRECISE DATABASES

In this section we review the non-first form (NF2) for
databases that is the structure used in both the fuzzy set
and rough set data models. Then we introduce the concept
of interpretations for NF2 tuples which will play a key
role in discussion of security for such databases.

An NF2 relation is simply an unnormalized relation
scheme and an instance over this scheme. This form was

first suggested by Makinouchi [1] who relaxed the 1NF
assumption to allow attributes to become set-valued. A
number of researchers [16-18 ] generalized the NF2

database model by allowing elements of a tuple to be
either atomic or set-valued entries or even relations
themselves. This is called the NF2 assumption. Therefore,
the NF2 data model can be considered as a generalized
relational data model which treats flat relations and
hierarchical structures in a uniform way. A formal
definition of a NF2 data model can be stated as follows:

Definition: Let a relation scheme be a collection of
rules of the form R = {A

1
, A

2
,..., A

n
} and D

1
, D

2
,..., D

n
 be

corresponding domains from which values for attributes
A

1
, A

2
,..., A

n
 are selected. A NF2 scheme may contain any

combination of zero or higher order attributes on the right
hand side of the rules whereas a first normal form (1NF)
scheme can contain only zero order attributes on the right
hand side. (An attribute Ai is a higher order attribute if it
appears on the left hand side of some rule; otherwise it is
zero order.)

A tuple of a NF2 relation is denoted as (a
1
, a

2
,..., a

n
)

where the ith component is ai and each component may
be an atomic or null value or another tuple a

j
.

Furthermore, when A
i
 is a higher order attribute, the value

for attribute A
i
 may not be just a single value from its

zero order attributes, but an element of the subset of the
cross product of associated domains D

i
 from which the

corresponding attribute values are drawn. So a NF2

relation is a subset of the Cartesian product (D
i1
 × D

i2

×...× D
in
) × 2Di.

Several researchers have extended the ordinary
relational algebra for the NF2 model by extending the
basic set operators and introducing two new restructuring
operators, called the nest and unnest operators [19, 20]
(additionally, the pack and unpack operators in [21]).
These operators are used to transform a 1NF relation into
a NF2 relation and vice versa.

After applying the nest operator, we obtain an NF2

relation nested along a set of attributes A
i
 of a relation r,

if tuples in r agree in the remaining components. The
unnest operator inverts this process; that is, it takes a
relation nested on some set of attributes and disaggregates
it making a “flatter” structure. The formal definitions and
the properties of these operators along with ordinary
relational algebra operators extended for the NF2

relational model are given in [19-21].

A related approach to a more limited uncertainty
representation is that of range values [22]. For example
we may not know exact the age of an individual but we
know it is in the range of 25 to 30 years. So we have an
interval of values and know one is correct but do not
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necessarily know exactly which one. For range values
that are a discrete set this leads to the concept of the
possible interpretations of the range as a set. In the above
example of an age range this is the set: {25, 26, 27, 28,
29, 30} It is the idea of interpretations that we investigate
carefully in relationship to security concerns in imprecise
databases.

For our consideration of uncertainty data
representations in a fuzzy or rough database we will only
need to consider the form of NF2 relations for which an
attributes may have a set of values. Since we are
concerned with security violations we must discuss the
possible meaning or interpretation of such relations. For
example consider a simple tuple with two attributes A

1
,

A
2
 having the values: A

1
 = a; A

2
 = {b

1
, b

2
, …b

m
}. Then

there are m possible meanings or interpretations for this
tuple:

{[a, b
1
], [a, b

2
] ,… [a, b

m
]}

Assume we are concerned with not allowing some
exact values of attribute A

2
 corresponding to A

1
 to be

known. In this case there are m possible correspondences
and a query that returned this one tuple, (a, {b

1
, b

2
, …b

m
}),

would not directly violate our security concern. If the
value of attribute A

1
 were also a set of values, the possible

relationship between the attribute values of A
1
 and A

2

would be even more uncertain.

However it may be possible that multiple querying
of such set valued tuples could still lead to security
violations as described in the previous section. We will
now carefully consider under what conditions in NF2

databases, security could still be violated. To do this we
must consider the idea of tuple interpretations more
formally.

For a given tuple t(A
1
, A

2
, … A

n
) let the value of

attribute A
i
 be the set d

i
 � D

i
. Then each interpretation of

the tuple t has a specific value v
i
 for each attribute A

i
:

I = [v
1
, v

2
, … v

n
] , v

i
 �d

i

In general for every interpretation, I
j
,

I
j
 � d

1 
× d

2
 ×...× d

n

To count the number of interpretations P
k
 of the tuple

t
k
, let the cardinality of the value of the ith attribute be
�d

ki
�= p

i
. So then

P
k
 = 

1

.
�
�

n

i
i

p

Our discussion of interpretations allows us to address
the question of whether a sequence of queries can isolate
a single interpretation, thus violating security. Consider
the general case in which we want to prevent an exact
association between values of two attributes, A

j
 and A

k
,

when a set of r tuples {t
1
, t

2
,… t

r
} are retrieved by

querying. Then we have for each tuple the set of
interpretations for the two attributes:

I
1 
(j, k) = {I11  

(j, k), I12  
(j, k), … I

1n1
(j, k)}

I
2 
(j, k) = {I

21 
(j, k), I

22
 (j, k), … I

2n2
 (j, k)}

....
I

r 
(j, k) = {I

r1 
(j, k), I

r2 
(j, k), … I

rnr
 (j, k)}

where I
pq 

(j, k) is a specific interpretation of tuple t
p
 for

these attributes.

Let us consider an example of how interpretations
can be related to violations of security in retrieved set-
valued tuples with the two attributes A

j
 and A

k
. Assume

the following three tuples are retrieved:

t
1 
= ({a, b, c}, {r, s, t})

t
2 
= ({a, d, e}, {r, v, x})

t
3 
= ({e, f}, {s, t, z})

So these tuples have the interpretations :

I
1 
(j, k) = {[a, r], [a, s], [a, t], [b, r], ....[c, s], [c, t]}

I
2 
(j, k) = {[a, r], [a, v], [a, x], [d, r], ....[e, v], [e, x]}

I
3 
(j, k) = {[e, s], [e, t], [e, z], [f, s], ..., [f, z]}

Now these interpretations can be pairwise intersected:

I
1 
(j, k) � I

2 
(j, k) = {[a, r]}

and the other intersections are null:

I
1 
(j, k) � I

3 
(j, k) = I

2 
(j, k) � I

3 
(j, k) = �

Since the intersection of tuples t
1 
and t

2 
produces a

set of cardinality 1, we can definitely say the value a for
attribute A

j
 is uniquely associated with the value r of

attribute A
k
 which represents a security violation with

respect to these attributes. So in general there will be a
security violation if for any p, q

�I
p 
(j, k) � I

q 
(j, k)� = 1, p � q.

These sort of security violations are similar to the
minimum overlap control (2) discussed previously. Also
if a query can return a large query set size (1), then it is
more likely some tuple interpretations might overlap
resulting in a security violation as described.

FUZZY AND ROUGH RELATIONAL DATABASES
AND SECURITY

In this section we will discuss security issues for two
specific imprecise data models – fuzzy and rough set
database models. An overview of the appropriate fuzzy
and rough set concepts is first given and the data models
and their properties are described. Finally the security
issues relevant to these typical imprecise data models are
presented.
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Fuzzy Database Model

There are a number of approaches to fuzzy databases that
have developed [23, 24]. The approach we consider in
this paper uses fuzzy similarity relationships in an
imprecise relational model [25, 26]. The ordinary or non-
fuzzy relational database is a special case of this fuzzy
relational database approach. The identity relationship
used in non-fuzzy relational databases induces
equivalence classes (most frequently singleton sets) over
a domain, D, which affect the results of certain operations
and the removal of redundant tuples. The identity
relationship is replaced in this fuzzy relational database
by an explicitly declared similarity relationship [27] of
which identity is a special case. Next we present the basics
of similarity relationships.

Fuzzy Similarity Relationships

A similarity relationship, s(x, y), for given domain, D, is
a mapping of every pair of elements in the domain onto
the unit interval [0, 1] with the following three properties,
x, y, z �D [28]:

1. Reflexive: s
D
 (x, x) = 1

2. Symmetric: s
D
 (x, y) = s

D
 (y, x)

3. Transitive: s
D
 (x, z) � Max (Min [s

D
 (x, y), s

D
 (y,

z)]) : (T1)

This particular max-min form of transitivity is known
as T1 transitivity. Another useful form is T2 also known
as max-product:

3'. Transitive: s
D
 (x, z) = Max ([s

D
 (x, y) * s

D
 (y, z)]): (T2)

where * is arithmetic multiplication.

An example of a similarity relation satisfying T2
transitivity is:

s
D
 (x, y) = e–�* | y–x |

where � > 0 is an arbitrary constant and x, y �D.

A typical similarity relation for a finite scalar domain
base set satisfying T1 transitivity is shown in figure 1,
where D = {A, B, C, D, E}.

Sim(x,y) A B C D E

A 1.0 0.8 0.4 0.5 0.8

B 0.8 1.0 0.4 0.5 0.9

C 0.4 0.4 1.0 0.4 0.4

D 0.5 0.5 0.4 1.0 0.5

E 0.8 0.9 0.4 0.5 1.0

Figure 1: T1- Similarity Relation

Equivalence Classes and Partitions for Similarity Relations

If S is a similarity relation on a domain X, the �-level set
S� 

is an equivalence relation on X

S� 
= {(x, y) | s (x, y) � �}

This provides the following equivalence classes for
the similarity relation of figure 1.

{{A}, {B}, {E}, {D}, {C}} : S
1.0

{{A}, {B, E}, {D}, {C}} : S
0.9

{{A, B, E}, {D}, {C} } : S
0.8

{{A, B, E, D}, {C}} : S
0.5

{{A, B, E, D, C}} : S
0.4

It is useful to illustrate these classes in a tree structure,
called a partition tree in figure 2. Clearly as � increases
partitions get smaller.

Figure 2: Partition Tree
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Fuzzy Database Definitions

The basic concepts of fuzzy tuples and interpretations
follow the discussion we have given about set valued
domains of imprecise databases. A domain value, d

i
,

where i is the index of the attribute in the tuple, is a subset
of its domain base set, D

i
. That is, any member of the

power set may be a domain value except the null set.
The actual values in such a set, d

i
, are determined by the

similarity of the values as given the similarity relationship
associated with the domain D

i
.

A fuzzy tuple is a non-first normal form tuple, t
i
 = (d

i1
,

d
i2
, ..., d

im
) where d

ij
 � D

j
.

As discussed before these have interpretations,
I = [a

1
, a

2
, ..., a

m
] which is any value assignment such

that a
j
 ��d

ij
 for all j.

Similarity Thresholds

Given a domain, D
j
, in a relation, the similarity threshold

is defined to be:

Thres (D
j
) = min{min [s (x, y)] | �i x, y � d

ij
}
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Note that in a non-fuzzy database, the cardinality of
d

ij
 = 1 and s (x, x) = l, so Thres(D

j
) = 1 for all j. A minimal

threshold value given a priori can be used to determine
which tuples may be combined by direct set union of the
respective domain values. This essentially corresponds to
the elimination of redundant tuples in non-fuzzy databases.

Typically a fuzzy database involves some attribute
domains consisting of subjective or linguistic terms that
have varying degrees of similarity. For example consider
an opinion/evaluation survey in which a group of
evaluators assess the quality of various products using a
specified set of descriptive terms from which to select
their evaluations illustrated in figure 3. The domain of
such descriptors might range such as {poor, inferior, …,
excellent, superior} with a similarity relationship
provided over the domain.

ASSESSMENTS

PRODUCT EVALUATOR RATINGS

Prod X Eval 1 {poor, inferior}

Prod X Eval 2 mediocre

Prod Y Eval 1 excellent

Prod Y Eval 3 superior

….. ….. …..

Figure 3: Assessments Relation Example

As we shall discuss further the security issue of
concern is confidentiality of the evaluators’ ratings, i.e.,
can a querying of such a database reveal the exact ratings
of any specific evaluator.

A fuzzy relational query can use the same SQL
structure as an ordinary relational database. In addition,
there is a clause defining minimum similarity thresholds.
Consider the SQL type query

Select PRODUCT, RATINGS

From ASSESSMENTS

Where Thres (RATINGS) � 0.75

In this simple projection operation over the relation
we have extended the Where clause to provide the
threshold desired for the similarity of the Ratings values
to be used in the query result.

RESULT

PRODUCT RATINGS

Prod X {poor, inferior, mediocre}

Prod Y {excellent, superior}

….. …..

Figure 4: Query Result Relation

The relation RESULT in figure 4 created by the query
contains only the domains Product and Ratings. The final
form of the relation is obtained by merging tuples via the
set union of respective domain values until no additional
tuples can be merged without violating (falling below)
the minimum threshold for RATINGS (0.75). This
corresponds to the removal of duplicate tuples such as in
an ordinary relational algebra Project operation, but is
based on the similarity relationships for the respective
domains as opposed to identity in a crisp domain. The
minimum threshold constraints will be subsequently
referred to as the level values.

Anytime a level value is missing, it is assumed to be
one (1), that is, the same as assumed for a non-fuzzy
relational algebra command. It should be noted that in
practice, the numerical specification of level values can
be abandoned in favor of linguistic terms for which there
are precise meanings.

Redundancy and Uniqueness Properties

In a non-fuzzy database, a tuple is redundant if it is exactly
the same as another tuple. Any operation over a non-fuzzy
relation at least implicitly entails removing redundant
tuples. That is, any interpretation of the domains can be
found in at most one tuple in the relation. In a fuzzy
database, a tuple is redundant if it can be merged with
another through the set union of corresponding domain
values. The merging of tuples, however, is subject to
constraints based on the similarity thresholds.

Definition. The tuples t
i
 = (d

i1
, d

i2
, ..., d

im
) and t

k
 = (d

k1
,

d
k2

, ..., d
km

) are called redundant if

Level (D
j
) � min [s(x, y)]; x, y d

ij
 ��d

kj

for j = 1, 2,..., m and Level(D
j
) given a priori.

In a fuzzy database, each tuple can potentially
represent a large number of interpretations. Despite this,
it would be extremely satisfying if this definition of
redundant tuples were, in some sense, compatible with
the one for ordinary databases. The lack of redundant
tuples in an ordinary database is tantamount to the
absence of multiple occurrences of the same
interpretation. Therefore, given any interpretation of the
domains, a fuzzy relation should contain at most one tuple
with that interpretation. For example consider a subjective
interpretation of infra-red remotely sensed images in a
database. These images may be colour-coded to enhance
interpretation. Experts take into account the colour-codes
as well as the terrain and other information about a
particular site to provide their interpretations. Here we
illustrate the interpretation of colours as corresponding
to some imprecise linguistic terms that represent
temperatures in the relation IR_IMAGE of figure 5.
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Can the relation IR_IMAGE be reduced according
to some pair of level values to R’ in figure 5, where
{Yellow, Warm} is an interpretation of both tuples? The
question is important when one considers the impact of
the answer on the design of query languages and the
possibility of creating anomalies during updating. Also
it would then be possible to intersect such tuples’
interpretations risking security violations. Fortunately, the
situation illustrated above is impossible. Let T

i
 be the set

of possible interpretations for tuple t
i
.

Redundancy Theorem

Given a fuzzy relation with no redundant tuples and
each domain similarity relation formulated according to
Tl then

T
i
 � T

j
 = Ø if i � j.

Proof: Assume T
i
 � T

j
 � Ø and let I = (a

1
, a

2
, .....,

a
m
) � T

i
 � T

j
, where a

h
 ��d

ih
 � d

jh
. Now if it can be

demonstrated that for any h, the domain value d
ih
 can be

merged into a single domain value without violating the
Level(D

h
), then the tuples t

i
 and t

j
 are redundant.

Let x, y � d
ih
 be such that s (x, y) = min (s (u, v)), u,

v � d
ih
; also let x’� y’� d

jh
 be such that s (x’, y’) = min

(s (u, v)), u, v � d
ih
 Then, in particular for a

h

s(x, a
h
) � s(x, y), s(x’, a

h
) � s(x’, y’)

Taking the minimum on each side and using the
symmetric and Tl transitivity properties of similarity

min (s (x, a
h
), s (a

h
, x’)) � min (s (x, y), s (x’, y’))

and thus
s (x, x’) � min (s (x, y), s (x’, y’)).

By definition, Level(D
h
) � s (u, v) where u, v are in

the same domain value. Thus,

Level(D
h
) � min (s (x, y), s (x�, y�) ) � s (x, x�)

Again, applying the definition of level value and
applying transitivity, for all u �d

ih
, v �d

jh

s(x, v) � min (s(x, x�), s(x�, v)) � Level(D
h
)

and so

s (u, v) � min (s (u, x), s (x, v)) � Level(D
h
).

Hence all corresponding domain values in tuples t
i

and t
j
 can be merged without affecting their thresholds,

producing a contradiction. Thus, a non-redundant fuzzy
relation indeed is such that interpretations of any given
tuple are unique. QED.

The converse of the above theorem is also true. If no
two tuples can be interpreted in an identical manner, then
there exist level values for the domains under which no
two tuples are redundant.

If all domain similarity thresholds, Thres(Di), are one
(1), the relation is non-fuzzy and each tuple has a unique
interpretation with respect to all others. By the preceding
theorem, if the similarity thresholds are less than one,
the property of uniqueness of tuple interpretation still
remains.

Security in Fuzzy Databases

In this section we will present a description of how the
concept of a fuzzy database naturally lends itself to the
protection of security of data [29]. In a fuzzy database
with a non-first normal form (NF2) structure, each tuple
can potentially represent a large number of
interpretations. The merging of data into sets, depending
on the level values, provides a measure of inherent
security in the similarity-based fuzzy database. The
specific association of values, i.e., specific interpretations,
is blurred in the merging. As described for statistical
databases, distortion of data (3) provides security and the
blurring in the fuzzy database is analogous. Security
protection for a fuzzy database thus means that if some
data item, b � D

i
, is protected the value x � D

j
 associated

with b cannot be determined. This implies it should not
be possible to derive a tuple with two singleton sets that
contain only b and x respectively.

Set Intersection Security Violations

Let us assume a query has produced a result relation, r,
with no explicit violation of security for protected values,
i.e., protected values were merged into sets in the resulting
relation. However it might still be possible to manipulate
data in the relation to obtain some explicit associations
for protected values. In particular consider the intersection

Figure 5: Example of Multiple Interpretations

    Colours Temperatures

    Yellow     Warm
    Blue      Cool
    Black      Cold
    Red      Hot

IR_IMAGE

          Colours        Temperatures

    { Yellow,  Red }      { Warm, Hot }

 { Blue, Black, Yellow }   { Cool, Cold, Warm }

R’
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of the sets of values in different domains across several
tuples. For example, the intersection of the names and
salary domains of two tuples

(...{ Baum, Seither, Perez} ... {68,000, 77,300})

(...{Adams, Perez, Badeux} ... {51,000, 77,300, 92,500})

produces a security violation if the exact salary of Perez
should not disclosed

(... {Perez} ... {77,300}).

The reason that the intersection produced a security
violation was that the protected name and salary had
appeared, albeit merged with other data items, in two
tuples. So we are led to the following theorem:

Theorem

Intersection of tuples of a single relation in a similarity-
based fuzzy database cannot lead to a security violation.

Proof: Consider the intersection of tuples t
1
, t

2
, t

3
, ...

in relation r relative to the domains D
i
 and D

j
. In order to

have a security violation we must have for at least two
tuples p and q

| d
pi
 � d

qi
 | = 1

and correspondingly

| d
pj
 � d

qj
 | = 1

The resulting set are singletons, e.g., {b} and {x},
b � d

pi
, d

qi
; x � d

pj
, d

qj
. In other words, the interpretation

associating b and x, [b, x], must have been in the
interpretations of both tuples that were intersected.
However as we have shown a fuzzy relation based on
similarity measures cannot have two or more tuples
containing the same interpretation. Therefore the
intersection of tuples cannot produce a security violation.

Fuzzy Security Violations

Now we can examine other possibilities for security
violations. If two or more data items occur in the protected
domain values for a single retrieved tuple there is no
direct security violation, d

ki
 = {a, b}; d

kj
 = {x, y}:

t
k
 : (.... {a, b} .... {x, y} ...)

Security is not violated since it is not known which
element, x or y, is to be associated with b. However if the
Level (D

j
) value used in the query is a large value, N,

then the similarity of the elements of d
kj
 must be very

high.
s

j
 (x, y) � N

From an external point of view this may constitute a
security violation. Either value might be satisfactory to
the unauthorized individual if she knows the values are
very “similar.” This will be called a fuzzy security
violation. In general a fuzzy violation can occur with

any number of elements, d
ki
 = {a, b, c, d,..}; d

kj
 = {v, w, x,

y, z,}:

t
k
 = (...{a, b, c, d,...} ... {v, w, x, y, z,... } ...).

The pairwise similarity of all elements in d
kj
 is greater

than N, the Level (D
j
) specified, since they have been

merged. Thus any value, say w, could be associated with
b and so be considered as a fuzzy security violation. In
order to prevent a fuzzy security violation, it would be
necessary to have the highest level allowable value, N*,
specified along with the specific element, such as b, that
is to be protected. Enforcing this as a control on querying
can be related to the statistical approach of distorting data
(3) in the query response.

Information-Theoretic Measures

Fuzzy databases are used in applications which involve
some imprecision or uncertainty in the data and in
decision-making utilization of the data. In order to help
understand the impact of such imprecision, information-
theoretic characterizations have been developed which
measure the overall uncertainty in an entire relation.
Additionally, a variation of fuzzy entropy has been used
to determine how well a fuzzy query differentiates among
potential responses [30].

Fuzzy entropy may be measured as a function of a
domain value or as a function of a relation. Intuitively,
the uncertainty of a domain value increases as its
cardinality | d

ij
 | increases or when the similarity s

j
 (x, y)

decreases. So if a domain value in a relational scheme,
d

ij
, consisting of a single element represents exact

information and multiple elements are a result of
fuzziness, then this uncertainty can be represented by
entropy. DeLuca and Termini [31] have devised formulas
for uncertainty based on fuzzy measures. Adapting their
result to a fuzzy database, the entropy H

fz
 (d

ij
), for a

domain value d
ij
 � D

j
 would be

H
fz
 (d

ij
) = 

{ , }�

� �
ijx y d

[s
j
 (x, y) log

2
 (s

j
 (x, y)) + (1 – s

j
 (x, y))

log
2
 (1 – s

j
 (x, y))]

Note that H
fz
 (d

ij
) is directly proportional to | d

ij
 | and

inversely proportional to s
j
 (x, y) > 0.5.

This definition cannot be directly extended to tuples,
so a probabilistic entropy measure after Shannon [ 32 ]
is needed for an entire tuple. First recalling the concept
of interpretation of a tuple, for the ith tuple, t

i
, there are

P
i
 possible interpretations, i.e., the cardinality of the cross

product of the domain values, | d
i1
 × d

i2
 ×... × d

im
|. Viewing

all interpretations as a priori equally likely, the entropy
of tuple ti can be defined as
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H
pb

 (t
i
) =

0�

��
iP

k
 (1 / Pi) log

2
 (1 / P

i
 ) = log

2
(P

i
)

For a non-fuzzy database, clearly P
i
 = 1 and Hpb (t

i
) = 0.

If the choice of a tuple in a relation r is independent
of the interpretation of the tuple, the joint probabilistic
entropy Hpb(r, t) of a relation can be expressed as

Hpb (r, t) =
1 1� �

���
iPn

i k
 (n P

i
 )–1 log

2
 [(n P

i
)–1]

where there are n tuples.

Also, a query response measure can be given for a
Boolean query with linguistic modifiers by using the
membership value µ

Q
(t) for each tuple in the relation r

which is the response to a query Q. This membership
value is not static but represents the best matching
interpretation of the tuple t relative to the query. So the
fuzzy entropy of a relation r with n tuples is

Hfz (r | Q) =
1�

��
n

i
 [µ

Q
(t

i
) log

2
 (µ

Q
(t

i
)) + (1 – µ

Q
(t

i
)) log

2
 (1

– µ
Q
(t

i
))]

Note that Hfz (r | Q) = 0 if and only if (µ
Q
 (t

i
) = 0 ) or

(µ
Q
 (t

i
) = 1) for all i. In every other case Hfz (r | Q) > 0

and is maximized when µ
Q
 (t

i
) = 0.5 for all i. This

maximization condition is achieved when a query fails
to distinguish the dominant truth value of any tuple.

Since the domains in a fuzzy database may be both
ordinary and fuzzy sets, some combined information
estimate is desirable. One possible approach would be
an entropy combining Shannon information and fuzzy
information similar to one that has been introduced for
image evaluation [33].

Security Measures

Security in the sense we have discussed for fuzzy
databases means uncertainty about the specific
associations of data items. Information theory has been
used to measure uncertainty in statistical databases [34]
and also as described in the previous section to the
analysis of the fuzzy relational database and queries

Let us now apply the entropy expression Hpb to an
example relation to see its relationship to security.
Consider the two relations in figure 6.

In R1, n = 5, and for the two tuples with set-valued
entries there are two interpretations each. For the second
tuple, these are [b, v] and [c, v], and for the next tuple
the interpretations are, [d, w] and [d, x]. So P

2
 = P

3
 = 2;

the other P
i
 are 1. For R

2
, n = 2 and P

1
 = 6, P

2
 = 12.

Evaluating the entropy for these two we have

Hpb (R1, t) = 2.72

Hpb (R2, t) = 4.08

This is consistent with the intuitive idea of entropy
since R1 contains more “information” than R2; that is,
in R1 we have a more exact idea of how data items are
related. Our concept of security is clearly in
correspondence to these measures. So we have a
quantitative evaluation of the security of any given
relation for a database using this entropy measure that is
related to blurring or distortion approach to data security
(3) A database security monitor could then evaluate a
result relation and assess whether Hpb exceeds a pre-set
threshold before providing the query result to a user.

Rough Set Database Model

Another approach for uncertainty representation is the
rough set database model using the rough set concept of
indiscernibility of values. We first provide the overview
needed of rough set theory and then discuss the rough
set database model for imprecise data.

Rough Set Theory

Rough set theory [35] is a mathematical formalism for
representing uncertainty. An approximation region in
rough sets partitions some universe into equivalence
classes. This partitioning can be adjusted to increase or
decrease its granularity, to group items together that are
considered indiscernible for a given purpose, or to “bin”
ordered domains into range groups.

Figure 6: Example Relations Illustrating Security Entropy

 ATTRIBUTE 1  ATTRIBUTE 2     

     { a, b, c }        { u, v }     

     { d, e, f }     { w, x, y, z } 

R2 

  ATTRIBUTE 1  ATTRIBUTE 2 

a u 

        { b ,c } v 

d         { w, x } 

e y 

f z 

R1 
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U is the universe, which cannot be empty,

R : indiscernibility relation, or equivalence relation,

A = (U,R), an ordered pair, called an approximation
space,

[x]
R
 denotes the equivalence class of R containing x,

for any element x of U,

elementary sets in A - the equivalence classes of R,

definable set in A - any finite union of elementary
sets in A.

Any finite union of these elementary sets is called a
definable set. A rough set X � U, however, is defined in
terms of the definable sets by specifying its lower (RX)

and upper ( )RX  approximation regions:

RX = {x � U | [x]
R
 � X} and RX = {x �U | [x]

R
 � X � �}.

RX is the positive region, �U RX is the negative

region, and �RX RX is the boundary or borderline

region of the rough set X, allowing for the distinction
between certain and possible inclusion in a rough set.
The set approximation regions provide a mechanism for
determining whether something certainly belongs to the
rough set, may belong to the rough set, or certainly does
not belong to the rough set. Given the upper and lower

approximations RX  and RX, of X a subset of U, the R-
positive region of X is POS

R
(X) = RX, the R-negative

region of X is NEG
R
(X) = �U RX , and the boundary or

R-borderline region of X is BN
R
(X) = �RX RX. X is

called R-definable if and only if RX = RX . Otherwise,

RX � RX and X is rough with respect to R. In Figure 7
the universe U is partitioned into equivalence classes
denoted by the rectangles. Those elements in the lower
approximation of X, POS

R
(X), are denoted with the letter

“p” and elements in the R-negative region by the letter
“n”. All other classes belong to the boundary region of
the upper approximation.

As a specific example let U = {medium, small, little,
tiny, big, large, huge, enormous}. Then let the equivalence
relation R be defined as follows:

R = {[medium], [small, little, tiny], [big, large],
[huge, enormous]}.

A given set X = {medium, small, little, tiny, big,
huge}, can be defined in terms of its lower and upper
approximations:

RX = {medium, small, little, tiny}, and RX =
{medium, small, little, tiny, big, large, huge,
enormous}.

The major rough set concepts of interest are the use
of an indiscernibility relation to partition domains into
equivalence classes and the concept of lower and upper
approximation regions to allow the distinction between
certain and possible, or partial, inclusion in a rough set.
The indiscernibility relation allows the grouping of items
based on some definition of ‘equivalence’ as it relates to
the application domain. The results in the lower
approximation region are certain, corresponding to exact
matches. The boundary region of the upper approximation
contains results that are possible, but not certain.

Rough Relational Databases

The rough relational database model [36] has an
imprecise tuple structure similar to that of a typical
imprecise NF2 database. It captures all the essential
features of rough sets theory including indiscernibility
of elements denoted by equivalence classes and lower
and upper approximation regions for defining sets which
are indefinable in terms of the indiscernibility.

Every attribute domain is partitioned by some
equivalence relation designated by the database designer
or user. Within each domain, those values that are
considered indiscernible belong to an equivalence class.
This information is used by the query mechanism to
retrieve information based on equivalence with the class
to which the value belongs rather than equality, resulting
in less critical wording of queries [37].

Recall is also improved in the rough relational
database because rough relations provide possible
matches to the query in addition to the certain matches
which are obtained in the standard relational database.
This is accomplished by using set containment in addition
to equality of attributes in the calculation of lower and
upper approximation regions of the query result.

The rough relational database has common structures
with the fuzzy relational database discussed previously
so rough tuples and their interpretations are similar in
structure. However the nature of rough set data causes a
different view of tuple redundancy.Figure 7: Example of a Rough Set X
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Let [d
xy

] denote the equivalence class to which d
xy

belongs. When d
xy

 is a set of values, the equivalence class
is formed by taking the union of equivalence classes of
members of the set; if d

xy
 = {c

1
, c

2
, ..., c

n
}, then [d

xy
] =

[c
1
] � [c

2
] � ... � [c

n
].

Definition. Tuples t
i
 = (d

i1
, d

i2
, ..., d

im
) and t

k
 =(d

k1
,

d
k2

, ..., d
km

) are redundant if [d
ij
] = [d

kj
] for all j = 1,..., m.

So in the rough relational database, redundant tuples
are removed in the merging process based on this
definition. As described for fuzzy databases, in a rough
relational database, the intersection of tuples in a single
relation cannot produce a security violation. This follows
because redundant tuples are not allowed in a rough
relation, and so there cannot be two tuples having the
same interpretation.

Rough Databases and Security Measures

In the rough relational database information-theoretic
measures for uncertainty were defined for rough schemas
and rough relations [38, 39]:

Definition: The rough schema entropy for a rough
relation schema S is

H
SE

(S) = – �
j
 [� Q

i
 log(P

i
)] for i = 1,... n; j = 1,..., m

where there are n equivalence classes of domain j, and m
attributes in the schema R(A

1
, A

2
, ..., A

m
). The schema

entropy provides a measure of the uncertainty inherent
in the definition of the rough relation schema taking into
account the partitioning of the domains on which the
attributes of the schema are defined

Definition: The rough relation entropy of a particular
extension of a schema is

H
RS

(R) = –�
j
 D�

j
(R) [� DQ

i
 log(DP

i
)] for i = 1,... n;

j = 1,..., m

where D�
j
(R) represents a type of database roughness

for the rough set of values of the domain for attribute j of
the relation, m is the number of attributes in the database
relation, and n is the number of equivalence classes for a
given domain for the database. DQ

i
 is the probability of

a tuple in the database relation having a value from class
i, and DP

i
 is the probability of a value for class i occurring

in the database relation out of all the values which are
given We obtain the D�

j
(R) values by letting the non-

singleton domain values represent elements of the
boundary region, computing the original rough set
accuracy and subtracting it from one to obtain the
roughness The entropy of an actual rough relation
instance H

RS
(R) is an extension of the schema entropy

obtained by multiplying each term in the product by the
roughness of the rough set of values for the domain of
that given attribute.

Consider the example relations in figure 8 where
domains for soil color and size have been defined as

COLOR = {[black, ebony], [brown, tan, sienna],
[white], [gray], [orange]}, and PARTICLE-SIZE = {[big,
large], [huge, enormous], [medium], [small, little, tiny]}

SAMPLE-114

BIN-NO COLOR PARTICLE-SIZE

P21 brown medium

P22 {black, tan} large

P23 gray {medium, small}

T01 black tiny

T04 {gray, brown} large

SAMPLE-115

BIN-NO COLOR PARTICLE-SIZE

M43 {black, tan, white} {big, huge, medium}

M46 {brown, orange, {medium, small}
white, gray}

Figure 8: Rough Relations for Entropy Analysis

The rough relation entropy of the relations SAMPLE-
114 and SAMPLE-115 shown in the tables are calculated
as follows:

H
RS 

(SAMPLE-114) = -(4/7)[ (2/5)log(2/7) + (3/5)log
(3/7) + 0 + (2/5)log(2/7) + 0] - (2/6)[(2/5log(2/6) + 0+
(2/5)log(2/6) + (2/5)log(2/6)] = .56

H
RS

(SAMPLE-115) = -(7/7)[ (1/2)log(1/7) + (2/2)log
(2/7) + (2/2)log(2/7) + (1/2)log(1/7) + (1/2)log(1/7)] –
(5/5)[(1/2)log(1/5) + (1/2)log(1/5) + (2/2)log(2/5) +
(1/2)log(1.5) = 3.7821

From this example it is clear that our concept of
security in the rough relational database corresponds to
uncertainty in this sense, so we can use these measures
of entropy as a quantitative measure for security in a
rough relational database.

CONCLUSIONS

We have described approaches analogous to data security
in statistical databases for security in imprecise databases
using a non-first normal from representation. This was
illustrated specifically for fuzzy and rough set database
models. Information theory measures for these databases
were described and applied to data security control in
such databases.
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