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EFFECT OF MAGNETIC FIELD ON THE PERISTALTIC
PUMPING OF A JEFFREY FLUID IN A CHANNEL

WITH VARIABLE VISCOSITY
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ABSTRACT: In the present paper we studied the peristaltic flow of a Jeffrey fluid in a two-dimensional channel
in the presence of transverse magnetic field. The flow is examined in a wave frame of reference moving with the
velocity of the wave. The problem is formulated using perturbation expansion in terms of viscosity parameter �.
The governing equations are developed upto first order in the viscosity parameter �. The expressions for the
velocity and pressure gradient have been obtained. The effects of Hartmann number M, viscosity parameter �,
material parameter �

1
 and amplitude ratio � on the pumping characteristics and friction force studied through

graphs in detail.
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1. INTRODUCTION

Peristalsis is a series of coordinated, rhythmic muscle contractions. It is an automatic and vital process that
moves food through the digestive tract, urine from the kidneys through the ureters into the bladder, and bile
from the gallbladder into the duodenum. The transport phenomenon created by peristalsis is an interesting
problem because of its application in understanding many physiological transport processes through vessels
under peristaltic motion. Roller and finger pumps using viscous fluids also operate on this principle. Here the
tube is passive but is compressed by rotating rollers, by a series of mechanical fingers or by a nutating plate.

A number of analytical (Burns and Parkes [1], Fung and Yih [2], Jaffrin [3], Ramachandra Rao and Usha [4],
Shapiro et al., [5], Siddiqui and Schwarz [6], Zien and Ostrach [7]) as well as numerical and experimental
(Latham [8], Weinberg et al., [9], Takabatake and Ayukawa [10], Takabatake et al., [11], Tang and Rankin [12])
studies of peristaltic flows of different fluids have been reported. Several review articles have been written
(Jaffrin and Shapiro [13], Rath [14]).

The complex rheology of biological and physiological flows has also motivated a number of studies involving
non-Newtonian fluid. The power-law model was used by Raju and Devanathan [15], Shukla and Gupta [16],
Becker [17] and Subba Reddy et al., [18] to investigate Shear-thinning and Shear-thickening effects. Raju and
Devanathan [19] and Bohme and Friedrich [20] investigated the effects of viscoelasticity. Siddiqui et al., [21]
used the second-order fluid model to study the effects of normal stresses non-Newtonian flows. Abd El Hakeem
et al., [22] have investigated the peristaltic flow of a fluid with variable viscosity under the effect of magnetic
field.

The effect of moving magnetic field on blood flow was studied by Sud et al., [23] and they have observed
that the effect of suitable moving magnetic filed accelerates the speed of blood. Prasad and Ramacharyulu [24]
have observed that by considering the blood as an electrically conducting fluid constitutes a suspension of red
cell in plasma. Also, Agrawal and Anwaruddin [25] studied the effect of magnetic field on the peristaltic flow of
blood using long wavelength approximation method and observed for the flow of blood in arteries with arterial
stenosis or arteriosclerosis, that the influence of magnetic field may be utilized as blood pump in carrying out
cardiac operations. Li et al., [26] have studied an impulsive magnetic filed in the combined therapy of patients
with stone fragments in the upper urinary tract. The peristaltic transport of blood under effect of a magnetic
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field in non uniform channels was studied by Mekheimer [27]. Hayat et al., [28] have analyzed the influence of
an endoscope on the peristaltic flow of a Jeffrey under the effect of magnetic field in a tube. Peristaltic motion
of a Jeffery fluid under the effect of a magnetic field in a tube was discussed by Hayat and Ali [29].

In this paper, we analyze the peristaltic flow of a Jeffrey fluid (non-Newtonian fluid) with variable viscosity
under the effect of a magnetic field in a two-dimensional channel. The flow is examined in a wave frame of
reference moving with the velocity of the wave. The problem is formulated using perturbation expansion in
terms of viscosity parameter �. The governing equations are developed upto first order in the viscosity parameter
�. The expressions for the velocity and pressure gradient have been obtained. The effects of Hartmann number
M, viscosity parameter �, material parameter �1 and amplitude ratio � on the pumping characteristics and
friction force studied in detail.

2. MATHEMATICAL FORMULATION

We consider an incompressible and electrically conducting Jeffrey fluid with variable viscosity in a two-
dimensional channel of width 2a. The walls of the cannel are flexible and non-conducting. The sinusoidal wave
trains propagate on the channel walls with constant speed c and propped the fluid along the walls. In rectangular
coordinate system (X, Y ), the geometry of the wall surface is described by

2
( , ) cos ( )H X t a b X ct

�� �� � �� ��� �
(2.1)

where b is the wave amplitude, � is the wave length, c is the velocity of propagation and x is the direction of
wave propagation. Figure 1 depicts the physical model of the problem.

Figure 1: The Physical Model

A uniform magnetic field of strength B0 is applied in the transverse direction to the flow. The induced
magnetic field is neglected by assuming small magnetic Reynolds number. The electric field is taken zero.
Under the assumptions that the channel length is an integral multiple of the wavelength � and the pressure
difference across the ends of the channel is a constant, the flow becomes steady in the wave frame (x, y) moving
with velocity c away from the fixed (laboratory) frame (X, Y ). The transformation between these two frames is
given by

x = X – ct, y = Y, u = U – c, p (x) = P (X, t). (2.2)

where U and V are velocity components in the laboratory frame and u and v are velocity components in the
wave frame.
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The equations governing the flow in a wave frame are

0
u v

x y

� �
� �

� �
(2.3)

2
0 ( )xyxx Su u Sp

u v B u c
x y x x y

�� � ��� ��� � � � � � � �� �� � � � �� �
(2.4)

xy yyS Sv v p
u v

x y y x y

� �� � �� ��� � � � �� �� � � � �� �
(2.5)

where � is the density, p is the pressure, and � is the electrical conductivity.

The constitutive equation for the extra stress tensor S is

2
1

( )
[ ]

1

y
S

�
� � � � �

� �
� �� (2.6)

where �1 is the ratio of relaxation to retardation times, �2 is the retardation time, � (y) is the viscosity function,
� is the shear rate and dots over the quantities indicate differentiation with respect to time.

Using the following non dimensional quantities

2

0 0

, , , , , , , ,
x y u v a pa ct H aS

x y u v p t h S
a c c c a c

� � � � � � � � � �
� � � � � � �

,

where �0 is the viscosity, in the Equations (2.3)-(2.5), we get (dropping bars)

0
u v

x y

� �
� �

� �
(2.7)

2Re ( 1)xyxx Su u Sp
u v M u

x y x x y

�� � ��� ��� � � � � � � �� �� � � � �� �
(2.8)
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� �� � �� ��� � � � � �� �� � � � �� �
(2.9)

where
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��  is the Reynolds number and 
0

0M aB �
��  is the Hartmann number.
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The corresponding non-dimensional boundary conditions are

0
u

y

�
�

�
at y = 0, (2.10)

u = – 1 at y = h. (2.11)

Using the long wavelength (� �� 1) and low Reynolds number (Re � 0) assumptions, the Equations (2.8)
and (2.9) becomes

2

1

( )
( 1)

1
y up

M u
yx y

� �� � � �
� � �� �� � �� � � �

, (2.12)

0
p

y

�
�

�
, (2.13)

From Eq. (2.13), p � p (y), that is p is a function of x only. So that Eq. (2.12) can be rewritten as

2
1 ( )(1 ) ( 1)

up
y N u

yx y

�� � � ��� � � � �� ��� � � �
, (2.14)

where 1(1 )N M� � � .

The effect of viscosity variation on peristaltic flow can be investigated for any given function � (y). For the
present investigation, we assume the viscosity variation in the dimensionless from as

� (y) = e– �y or � (y) = 1 – �y for � �� 1 (2.15)

The non dimensional volume flow rate q in a wave frame of reference is given by

0

h

q u d y� � . (2.16)

The instantaneous flux Q (X, t) in the laboratory frame is

0
0 0 0

( , ) ( 1)
h h h

h
Q X t Udy u dy udy dy q h� � � � � � �� � � � . (2.17)

The time averaged flux over one period T (= �/c) of the peristaltic wave is

1

0 0

1
( ) 1

T

Q Qdt q h dx q
T

� � � � �� � . (2.18)

3. SOLUTION

The Equation (2.14) is non-linear and its closed form solution is not possible. Hence, we linearize this equation
in terms of �, since � is small for the type of flow under consideration. So we expand u, dp

dx  and q as

2
0 1 ( )u u u O� � � � � , (3.1)

20 ( )
dpdp dp

O
dx dx dx

� � � � � , (3.2)

2
0 1 ( )q q q O� � � � � . (3.3)

Substituting from Equations (3.3) and (3.2) in the Equations (2.14), (2.10) and (2.11), we get
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3.1 System of Order Xero

2
20 0

1 02
(1 ) ( 1)

p u
N u

x y

� �
� � � � �

� �
(3.4)

with the boundary conditions

0 0
u

y

�
�

�
at y = 0 (3.5)

u0 = – 1 at y = h. (3.6)

3.2 System of Order One

22
2 0 01 1

1 12 2 2
(1 )

u uu p
N u y

xy y y

� �� �
� � � � � �

�� � �
(3.7)

with the boundary conditions

1 0
u

y

�
�

�
at y = 0 (3.8)

u1 = 0 at y = h. (3.9)

3.3 Solution of Order Zero

Solving Eq. (3.4) using the boundary conditions (3.5) and (3.6), we get

01
0 2

cosh(1 )
1 1

cosh
Nydp

u
NhdxN

� � � ��� �� �
� �

. (3.10)

The volume flow rate q0 in a wave frame is given by

01
0 0 3

0

sinh cosh(1 )
cosh

h Nh Nh Nhdp
q u dy h

NhdxN

�� � � �
� � �� �

� �
� . (3.11)

3.4 Solution of Order One

Substituting Eq. (3.10) in Eq. (3.7) and solving it using the boundary conditions (3.8) and (3.9), we get

2 201 1
1 2
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cosh 4 cosh
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(3.12)

The volume flow rate q1 in a wave frame is given by

1 1
1 1 3

0

2 201
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Substituting from Equations (3.11) and (3.13) into Eq. (3.3), we get

1
3
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Solving Eq. (3.14) for dp
dx  using 0 1dp dpdp

dx dx dx� � �  and neglecting O (�
2) terms, we obtain

3

1

( ) cosh
1

4 cosh(1 ) [sinh cosh ]
dp q h N Nh

N Nhdx Nh Nh Nh
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, (3.15)

where

2 2 sinh 2 2 cosh (cosh 1)
sinh cosh

N h Nh Nh Nh Nh
Nh Nh Nh
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� �

�
.

The pressure rise �p per one wave length is given by

1

0

dp
p dx

dx
� � � . (3.16)

The friction force on the channel wall is given by

1

0

dp
F h dx

dx
� �� �� �
� �� . (3.17)

4. RESULTS AND DISCUSSIONS

A regular perturbation series in terms of the viscosity parameter (�) is used to obtain solution to the field
equations for peristaltic flow of a Jeffery fluid in an axisymmetric tube. Since the integrals in equations (3.16)
and (3.17) are not integrable in closed form, we have evaluated it numerically using in MATLAB 7.0 package.
The values of various parameters for the transport of mucus in the small intestine, as reported in Shukla et al.,
[30] and Srivastava et al., [31] are c = 2 cm/min, � = 1.25 cm, � = 8.01 cm. The values of viscosity parameter
� as reported in Srivastava et al., [31] are � = 0 and � = 0.1. It may be noted that the theory of long wave length
and zero Reynolds number of the present investigation remains applicable here, since the radius of the small
intestine is very small compared with the wave length.

The variation of pressure rise �p with time averaged flux Q
—

 for different vales of viscosity parameter � with
M = 1, �1 = 0.3 and � = 0.6 is depicted in Fig. 2. It is observed that, in the pumping region (�p > 0) the time
averaged flux Q

—
 is decreases with an increase in viscosity parameter �, whereas in the free pumping region

(�p = 0) as well as in the co-pumping region (�p < 0), Q
—

. Increases with increasing �.

Figure 2: The Variation of Pressure Rise p with Time Averaged Flux Q
—

 for Different Vales of
Viscosity Parameter  with M = 1, 

1
 = 0.3 and  = 0.6
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Figure 3 illustrates the variation of pressure rise �p with time averaged flux Q
—

 for different vales of �1 with
M = 1, � = 0.1 and � = 0.6. It is found that, the Q

—
 decreases with increasing �1 in both the pumping region and

free pumping region. In the co-pumping region, Q
—

 increases as �1 increases for appropriately chosen �p (< 0).
Further, it is observed that, the pumping is more for Newtonian fluid (�1 � 0) than that of Jeffrey fluid (�1 > 0).

Figure 3: The Variation of Pressure Rise p with Time Averaged Flux Q
—

 for
Different Vales of 

1
 with M = 1,  = 0.1 and  = 0.6

The variation of pressure rise �p with time averaged flux Q
—

 for different vales of Hartmann number M with
� = 0.1, �1 = 0.3 and � = 0.6 is shown in Fig. 4. It is noted that, any two pumping curves intersect in the first
quadrant. To the left of this point, the Q

—
 increases and to the right of this point it decreases with increasing

Hartmann number M.

Figure 4: The Variation of Pressure Rise p with Time Averaged Flux Q
—

 for Different Vales of
Hartmann Number M with  = 0.1, 

1
 = 0.3 and  = 0.6

Figure 5 shows the variation of pressure rise �p versus time averaged flux Q
—

 for different vales of amplitude
ratio � with M = 1, �1 = 0.3 and � = 0.1. It is observed that, the Q

—
 increases with increasing � in both the

pumping region and free pumping region. An interesting observation is that in the co-pumping region, as �
increases Q

—
 decreases for appropriately chosen �p (< 0).
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The friction force F versus time averaged flux Q
—

 for different vales of viscosity parameter � with M = 1,
�1 = 0.3 and � = 0.6 is depicted in Fig. 6. It is found that, the friction force F initially increases and then
decreases with an increase in the viscosity parameter �.

Figure 5: The Variation of Pressure Rise p Versus Time Averaged Flux Q
—

 for Different Vales of
Amplitude Ratio  with M = 1, 

1
 = 0.3 and  = 0.1

Figure 6(i): The Friction Force F Versus Time Averaged Flux Q
—

 for Different Values of
Viscosity Parameter  with M = 1, 

1
 = 0.3 and  = 0.6

Figure 6(ii): Enlargement of (i)
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Figure 7 shows the variation of friction force F with time averaged flux Q
—

 for different vales of �1 with
M = 1, � = 0.1 and � = 0.6. It is observed that, the friction force F initially increases and then increases with
increasing �1.

The variation of friction force F with time averaged flux Q
—

 for different vales of amplitude ratio � with
M = 1, �1 = 0.3 and � = 0.1 is shown in Fig. 9. It is observed that, the friction force F first decreases and then
increases with increasing �.

Figure 7: The Variation of Friction Force F with Time Averaged Flux Q
—

 for
Different Vales of 

1
 with M = 1,  = 0.1 and  = 0.6

The variation of friction force F with time averaged flux Q
—

 for different vales of Hartmann number M with
� = 0.1, �1 = 0.3 and � = 0.6 is presented in Fig. 8. It is found that, as the Hartmann number M increases the
magnitude of the friction force F increases.

Figure 8: The Variation of Friction Force F with Time Averaged Flux Q
—

 for Different Vales of
Hartmann Number M with  = 0.1, 

1
 = 0.3 and  = 06
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