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MATHEMATICAL MODELLING OF MUCUS TRANSPORT IN THE
LUNG DUE TO COUGH: EFFECTS IF SEROUS FLUID VISCOSITY

AND SEROUS LAYER THICKNESS

J. B. Shukla, Arti Saxena, A. P. Tyagi & Rajnish Saxena

ABSTRACT: In this paper, a biofluid dynamical model is proposed to study mucus transport by considering that
moist air, mucus and serous fluid (all three are assumed to be Newtonian fluids) flow coaxially in a circular tube
under time dependent pressure gradient simulating cough in an airway with immotile cilia syndrome. It is assumed
that moist air and mucus flow under quasi steady state turbulent conditions while the serous fluid surrounding
mucus flows under unsteady laminar condition (negligible turbulence) caused by resistance on the flow due to
cilia bed.

The analysis of the model shows that as the pressure gradient caused by cough increases, the flow rates of air,
mucus and serous fluid increase. It is also found that mucus transport increases as serous fluid viscosity decreases
or its thickness increases for fixed mucus layer thickness, the coaxial air diameter being constant. These results
are in line with the experimental observations published in literature.

1. INTRODUCTION

The mucociliary system consists of mucus layer, serous layer and cilia embedded in the epithelium. Under
normal condition of the lung, contaminants of the inspired air are removed by cilia beating. However, under
pathological conditions caused by diseases such as chronic bronchitis, cystic fibrosis, bronchial asthama, etc.
excessive mucus is formed in the lung and mucociliary clearance is either impaired or absent. Mucus in that
case is transported mainly by air motion caused by forced expiration or cough [15, 16]. Similar situation also
arises when cilia in airways become immotile due to infection with influenza (cold virus) or various forms of
Ciliary dyskinesia.

Mucus is secreted from goblet cell and is composed of mainly long chain glycoprotein and salts containing
water 95-97%, mucin 2.5-3% and salts 1-2% [11]. Mucus is a viscoelastic fluid but behaves as a Newtonian
fluid in presence of high shear rates during cough [6, 17, 22]. Its viscosity is about 103 poise at low shear rate
(1 sec–1) and 0.01 poise at high shear rate (100 sec–1).

Serous fluid originates through trans-epithelial osmosis and is regulated by ion pumping. It consists of a
watery solution and behaves as a Newtonian fluid [16]. The viscosity of serous fluid has not been measured but
Ross and Corrsin [26] assumed that its viscosity is 0.1 poise and Silberberg [1] assumed it to be 0 .01 poise.
Serous layer fluid plays an important role in the transport of mucus in the lung when cilia become immotile and
in such a case during cough, these form a carpet on the wall of the airway on which serous fluid flows helping
mucus layer to slide on it. This cilia carpet also causes resistance to serous fluid flow during cough and thus
making it to flow under unsteady laminar condition rather than turbulent and letting it remain on the cilia bed.

In recent decades, several experiments related to two phase flow in tubes under externally applied pressure
have been studied to simulate mucus transport in airways due to cough [4, 24, 25, 27]. In particular, Clarke
et al., [27] have shown that the resistance to air flow through a liquid lined tube is markedly increased at all
flow rates in comparison to the case of a dry tube. They have noted that at all flow rates compatible with laminar
flow conditions the pressure flow relationship in liquid lined tube is nonlinear and the resistance to the flow
being greater than that expected from narrowing alone. They have pointed out further that after the onset of
turbulence there is a considerable increase in flow resistance, which occurs simultaneously with wave formation
on the surface of liquid film. These effects are more marked in case of thicker liquid layer and with lower
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viscosity. They have also found that the effect of gravity is negligible on mucus transport. Scherer and Burtz
[24], Scherer [25] have conducted fluid mechanical experiments relevant to cough, using air and liquid blown
out of a straight tube by turbulent air jet. By assuming that the turbulent flow is quasi steady and the turbulent
stress in the air is equal to viscous stress in the liquid flowing under laminar condition, they have shown that the
liquid transport efficiency has positive correlation with the parameter �aUT/� (where �a is the density of air, �
is the viscosity of liquid, U is the air velocity, T is the cough duration) and the liquid transport decreases as this
parameter decreases. They have further pointed out that for fixed values of �a, U, T, transport efficiency decreases
as viscosity � increases. Kim et al., [4] have studied mucus transport in vertical tubes by two phase (gas, liquid)
flow mechanism and noted that the elasticity of mucus does not affect its transport.

Several other experimental investigations in a cough machine (a parallel plate channel) under turbulent
flow condition have also been conducted by simulating mucus transport in the trachea due to cough [10, 13, 18-21].
In particular, King et al., [21] in their experiments found no apparent relationship between elasticity of mucus
and its transport. Zahm et al., [10] in their experimental studies in a cough machine pointed out that mucus
transport increases due to the presence of a sol phase at the bottom surface. Agarwal et al., [13] have studied the
mucus gel transport in a constricted simulated cough machine and found that mucus transport increases in
presence of serous fluid. Agarwal et al., [14] have also studied, experimentally, the transport of mucus gel in a
simulated cough machine where the bottom plate was grooved and, flooded with serous fluid. They found that
mucus transport increases as the cross-sectional area formed by grooves saturated with serous fluid increases,
suggesting the importance of cilia bed submerged in serous fluid. See also [2, 3, 22, 23 and cross references].

It may be noted here that hardly any attempt has been made to study mucus transport in the actual lung due
to cough or to explain above experimental observation by using a mathematical model under turbulent flow
conditions. Therefore, in this paper, we consider that the moist air, mucus and serous fluid flow in a pipe under
time dependent pressure gradient simulating mucus transport in airways during cough under the following
assumptions [9]:

1. The air, mucus and serous fluid flow symmetrically about the central axis.

2. The pressure gradient representing prolonged or normal cough is chosen to be a time dependent
function [5].

3. Since air is saturated with water, it behaves as an incompressible Newtonian fluid in the lung during
cough and flows under quasi steady state turbulent condition.

4. Mucus behaves as an incompressible Newtonian fluid due to high shear rate during cough and flows
under quasi steady state turbulent condition.

5. In pathological condition cilia are considered to be immotile and during cough they form a carpet on
the wall of the airway causing resistance to flow (no slip condition) making serous fluid to flow over
it under unsteady laminar condition (negligible turbulence).

2. MATHEMATICAL MODEL AND SOLUTION

We consider simultaneous and co-axial layers of air, mucus and serous fluid flowing through a tube caused by
time dependent pressure gradient simulating mucus transport in airways due to cough as shown in fig.1. In the
central core air is assumed to flow under quasi-turbulent condition due to instantaneous pressure gradient
caused by cough. The mucus layer surrounding this circular core is also assumed to flow under turbulent
conditions, whereas the serous layer is assumed to flow under unsteady laminar conditions.

Since the velocities in the turbulent layers are very large due to cough, it is assumed that air and mucus flow
under quasisteady state turbulent conditions while serous fluid flows under unsteady laminar condition as
mentioned above. Using Prandtl mixing length theory, the means of quasi steady state equations in the turbulent
layers and the unsteady state equation of serous fluid in the laminar layer, can be written in cylindrical coordinates
as follows [8].
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Region I: Quasi steady turbulent flow of air (0 � r � Ra):
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Region II: Quasi steady turblent flow of mucus (Ra � r � Rm):
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Region III: Unsteady laminar flow of serous fluid on immotile cilia bed at the wall of the airway (Rm � r � R):
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In the model described by (1)-(6), t is the time, z is the coordinate along the axis of the tube in the flow
direction, r is the coordinate in the radial direction and perpendicular to fluid flow, Ra is the thickness up to
air-mucus interface, Rm is the thickness upto the mucus and serous fluid interface, R is the radius of the outer
surface of the serous layer interfacing cilia bed, p is the mean pressure which is constant across three layers,
ua, um, us are the mean velocity components of air, mucus and serous fluid in the z direction respectively, �a is the
mean shear stress in the air, �m is the mean shear stress in the mucus layer and �s is the mean shear stress in the

Figure 1: Mucus Transport in a Circular Tube
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laminar serous layer, �a, �m and �s are the densities of air, mucus and serous fluid respectively; �s is the viscosity
of serous fluid. The mixing lengths la and lm are assumed as follows:

la = l0(r – r), lm = l1(R – r) (7)

where la and lm are constants and which are determined experimentally[8].

The initial condition needed for (5) is

us = 0 at t = 0 (8)

The boundary conditions are

0
u

r

�
�

�
at r = 0 (9)

us = 0 at r = R (10)

The matching conditions are

ua = um; �a = �m at r = Ra (11)

um = us; �m = �s at r = Rm (12)

The conditions (11) and (12) represent the continuity of velocity and the stress components at the two
interface. Due to presence of cilia carpet on the airway wall, no slip condition exists as given by (10).

Since during cough the pressure gradient generated in the lung is time dependent, we assume that

0 ( )
p

P P f t
z

�
� � �
�

(13a)

where P0 is a constant, the magnitude of which depends upon the intensity of cough. The function f (t) representing
cough has been chosen by considering the flow rates of air in various experiments as described by Leith [5].
This function is assumed to be of the following form in the case of normal cough
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where � = 0.37 and 
3

0.027 secT
mT

�
� �  and T is the duration of cough. The graphical representation of f (t) is

shown in Fig. 2. The function f (t) satisfies the following conditions:

I. The pressure gradient function f (t) is zero at t = 0 and Tt
�

�  where � is a constant such that f (Tm)
is continuous.

II. The maximum of pressure gradient function occurs at t = Tm so that f �(Tm) = 0.

III. The pressure gradient function f (t) is such that f �(t) > 0, 0 � t � Tm.

IV. The pressure gradient function f (t) is such that ( ) 0, T
mf t T t

�
� � � � .

V. Where T is the duration of cough and � is the constant to be chosen.
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The equations (1)-(6) have been solved by using (7)-(13) and the flow rates of air, mucus and serous fluid
are determined as follows:
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For detailed calculations see Appendix-A.

Figure 2: Graphical Representation of f
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3. DISCUSSIONS

The flow rates Qa, Qm and Qs given by equations (14), (15) and (16) have been calculated and analysed by using
MatLab. Since our main aim is to study the effect of viscosity of serous fluid and its thickness on mucus
transport for a given pressure gradient, we have varied µs, (R – Rm) for calculating flow rates. In view of this we
have drawn the graphs of Qa, Qm and Qs with respect to time for various values of viscosity and thickness of
serous fluid in Figures (3), (4), (5) and (6).
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Figure 4: Variation of Q
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Figure 5: Variation of ,and with P
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for different µ
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Figure 6: Variation of and with P
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The following set of parameters has been used in calculations [7].

T = 0.03 sec t = 0 – 0.085 sec,

l0 = l1 = 0.40 µs = (1.00 – 10.00) × 10–2 poise.

Ra = 31.45 × 10–2 cm R = 41.45 – 43.45 × 10–2 cm

Rm = 38.45 × 10–2 cm P0 = (1.00 – 100.00) × 105 gm cm–2 sec–2

µm = 1.00 – 10.00 poise �s = 0.90 gm cm–3

�a = 1.00 × 10–3 gm cm–3 �m = 1.00 gm cm–3

Figures (3), (4) illustrates the flow rates of moist air, mucus and serous fluid for P0 = 1.00 × 105 gm cm–2 sec–2

and for various values of µs and (R – Rm). Figures (5) and (6) show the effects of pressure gradient for t = 0.03
and for various values of µs and (R – Rm). From Fig. (3) it can be seen that as µs increases all the flow rates
increase. From Fig. 4 it is noted that for constant air diameter as the serous layer thickness increases the flow
rates of mucus and serous fluid increase but the flow rate of moist air does not change (not shown here). These
results are in line with the experimental observations of Zahm et al., [10], Agarwal [13], [14], where the
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importance of serous fluid (sol phase) has been experimentally shown in a simulated cough machine for increasing
the mucus transport. Also, Scherer [24] has found the same result in a tube. From Fig. (5) and (6) it is clearly
noted that all the flow rates increase as the pressure gradient increases for fixed serous fluid viscosity and its
thickness. This result is again qualitatively similar to the observations of Agarwal et al., [13], [14] found in a
simulated cough machine. Further from Fig. (5) it is seen that as serous fluid viscosity decreases, the flow rates
of serous fluid, mucus and moist air increase for given pressure gradient. The same result related to mucus
transport have also been shown by Agarwal et al., [13], [14] experimentally. In Fig. 6 it is shown as serous layer
thickness increases, flow rates of mucus and serous fluid increase.The result has been proved by Zahm et al.,
[10] who have shown in their experiments in a cough machine that mucus transport increases in a sol phase.

4. CONCLUSIONS

In this paper, we have studied mucus transport in an airway having immotile cilia syndrome due to cough by
representing it as a circular tube. The cough has been simulated by a time dependent pressure gradient. The
simultaneous and coaxial flow of air and mucus in a tube are considered to flow under quasisteady turbulent
conditions while serous fluid surrounding mucus layer coaxially is assumed to flow under unsteady laminar
condition.

It is assumed further that immotile cilia, during cough, form a carpet on the inner side of the wall of airway,
which causes resistance to flow to serous fluid and making it to stick to the wall but it allows mucus to slide on it.

 From the analysis of the model the following conclusions have been drawn in both the cases.

1. The mucus transport rate increases as the serous fluid viscosity decreases.

2. For fixed air and mucus layer thicknesses, mucus and serous fluid flow rates increase as serous layer
thickness increases.

3. The flow rates of air, mucus and serous fluid increase as pressure gradient representing cough increases.

The present study demonstrates the role of serous fluid on mucus transport in normal or pathological
airway during cough. The resistance (no slip condition) provided by the cilia carpet on the serous fluid is
helpful in making it flow under laminar condition, even though air and mucus flow under turbulent conditions.
This shows the importance of cilia that even if they are immotile, the carpet formed by them is helpful in
providing resistance to serous fluid flow useful for cough dependent mucus transport.
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APPENDIX-A

ANALYSIS OF MODEL

Now we solve the system (1)-(6) under the initial condition (8), boundary and matching conditions (9), (10),
(11) and (12). To solve the unsteady equation in laminar sublayer we use the method of averaging, Sestak and
Charles [12]. Thus, by substituting the acceleration term on the left hand side of equation (5) by its mean value
across the film thickness i.e.
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where �s is a function of time only, and P is given by equation (8a). Using this and equations (1)-(12), we get
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To determine �s we differentiate Equation (A8) with respect to t to get
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where ( � ) denotes the derivative with respect to t.
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Using equation (A1) and (A9) we get
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where,
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Since P = 0 and us = 0 at t = 0, from equation (A8) we have �s = 0 at t = 0. From Equation (A10) the
expression for can then be obtained as follows:
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The volumetric flow rates in each layer can be defined as

0
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which after using Equations (A6)-(A8) can be found as given in equations (14), (15) and (16) respectively.


