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EQUIVALENCES IN MAX-MIN DETERMINISTIC
GENERAL FUZZY AUTOMATA OF ORDER n

ABSTRACT: In this paper, we define the notions of max-min deterministic
general fuzzy automata of order n of a max-min general fuzzy automaton,
the overall transition function of a max-min deterministic general fuzzy
automaton of order n, the initialized max-min deterministic general fuzzy
automaton of a max-min general fuzzy automaton of order n and the response
number of an initialized max-min deterministic general fuzzy automaton.
Then by using these notions, three types of equivalence relations are
considered, namely, statewise, compositewise, distributionwise equivalence.
We show that the last two are equivalent. Finally, we define the notions of
the max-min (statewise irreducible, compositewise irreducible,
distributionwise irreducible, effective, statewise minimal, compositewise
minimal) deterministic general fuzzy automaton of order n of a max-min
general fuzzy automaton and find the relationship between them.

Keywords: (General) Fuzzy automata; Equivalence; Irreducibility; Convex
max-min combinations; Set of vertices; Basis

1. INTRODUCTION AND PRELIMINARIES

The theory of fuzzy sets was introduced by Zadeh [9]. Wee [8] introduced the idea
of fuzzy automata. Automata have a long history both in theory and application
[1, 2]. Automata are the prime example of general computational systems over
discrete spaces [4].

A fuzzy finite-state automaton (FFA) is a six-tuple denoted as F� = (Q, �, R, Z, �,
�), where Q is a finite set of states,  � is a finite set of input symbols, R is the start
state of F�, Z is a finite set of output symbols, � : Q ��� � Q � [0, 1] is the fuzzy
transition function which is used to map a state (current state) into another state
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2 M. Horry & M. M. Zahedi

(next state) upon an input symbol, attributing a value in the interval [0, 1] and ��� Q
� Z is the output function. In an FFA, as can be seen, associated with each fuzzy
transition, there is a membership value in [0, 1]. We call this membership value the
weight of the transition. The transition from state qi (current state) to state qj (next
state) upon input ak is denoted as �(qi, ak, qj). We use this notation to refer both to a
transition and its weight. Whenever �(qi, ak, qj) is used as a value, it refers to the
weight of the transition. Otherwise, it specifies the transition itself. Also, the set of
all transitions of F� is denoted as �.

The above definition is generally accepted as a formal definition for FFA [5,6,7].
There is the important problem which should be clarified in the definition of FFA. It
is the assignment of membership values to the next states. There are two issues
within state membership assignment. The first one is how to assign a membership
value to a next state upon the completion of a transition. Secondly, how should we
deal with the cases where a state is forced to take several membership values
simultaneously via overlapping transitions?

In 2004, M. Doostfatemeh and S.C. Kremer extended the notion of fuzzy automata
and gave the notion of general fuzzy automata [3]. Now, we follow [3] and give
some new notions and results as mentioned in the abstract.

Let X be a set. A word of X is the product of a finite sequence of elements in X,
� is empty word and X* is the set of all words on X. In fact, X� is the free monoid on
X. The length �(x) of word x � X* is the number of its letters; so �(�) = 0. For a
nonempty set X, P�(X) denoted the set of all fuzzy sets on X and P(X) denoted the set
of all subsets on X.

Definition 1.1: [3] A general fuzzy automaton (GFA) F� is an eight-tuple machine
denoted as F� = (Q, �, R�, Z, �,���, F1, F2), where

(i) Q is a finite set of states, Q = {q1, q2, … , qn},

(ii) � is a finite set of input symbols, � = {a1, a2, … , am},

(iii) R� is the set of fuzzy start states, R� � P�(Q),

(iv) Z is a finite set of output symbols, Z = {b1, b2, …, bk},

(v) � : Q � Z is the output function,
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Equivalences in Max-Min Deterministic General Fuzzy Automata of Order n 3

(vi) �� : (Q � [0, 1]) ��� � Q � [0, 1] is the augmented transition function,

(vii)F1 : [0, 1]) � [0, 1] � [0, 1] is called membership assignment function.

Function F1(µ, �) as is seen, is motivated by two parameters µ and �, where µ is
the membership value of a predecessor and � is the weight of a transition.

In this definition, the process that takes place upon the transition from state qi to
qj on input ak is represented as:

µt+1(qj) = ��((qi, µ
t(qi)), ak, qj) = F1(µt(qi), �(qi, ak, qj)).

Which means that the membership value (mv) of the state qj at time t + 1 is computed
by function F1 using both the membership value of qi at time t and the weight of the
transition.

There are many options which can be used for the function F1(µ, �), for example
max{µ, �}, min{µ, �} or (µ + �)/2.

(viii) F2 : [0, 1]* � [0, 1] is called multi-membership resolution function.

The multi-membership resolution function resolves the multi-membership active
states and assigns a single membership value to them.

We let Qact(ti) be the set of all active states at time ti,
 �i � 0. We have Qact(t0) =

R�,

Qact(ti) = {(q, µti(q)) : �q� � Qact(ti–1), �a ���, �(q�, a, q) � �}, �i � 1.

Since Qact(ti) is a fuzzy set, to show that a state q belongs to Qact(ti) and T is a subset
of Qact(ti), we should write: q � Domain(Qact(ti)) and T � Domain(Qact(ti)).

Hereafter, we simply denote them as: q � Qact(ti) and T � Qact(ti).

The combination of the operations of functions F1 and F2 on a multi-membership
state qj will lead to the multi-membership resolution algorithm.

Algorithm 1.2: [3] (Multi-membership resolution) If there are several
simultaneous transitions to the active state qj at time t + 1 , the following algorithm
will assign a unified membership value to that:

(1) Each transition weight ��(qi, ak, qj) together with µt(qi), will be processed by
the membership assignment function F1, and will produce a membership value. Call
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this vi,

vi = ��((qi, µ
t(qi)), ak, qj) = F1(µt(qi), � (qi, ak, qj)).

(2) These membership value’s (�i’s) are not necessarily equal. Hence, they will
be processed by another function F2, called the multi-membership resolution function.

(3) The result produced by F2 will be assigned as the instantaneous membership
value of the active state qj ,

1
2 1 2 1 1( ) [ ] [ ( ( ) ( ))]t n n t

j i i i i i k jq F v F F q q a q

Where

• n : is the number of simultaneous transitions to the active state qj at time t + 1.

• �(qi, ak, qj) : is the weight of the transition from qi to qj upon input ak.

• µt(qi) : is the membership value of qi at time t.

• µt+1(qj) : is the final membership value of qj at time t + 1.

Definition 1.3: Let F� = (Q, �, R�, Z, �, ��, F1, F2) be a general fuzzy automaton,
which is defined in Definition 1.1. We define max-min general fuzzy automata of
the form:

*
1 2( , )Q R Z F FF � ���

such that :

��* : Qact � �� � Q � [0, 1]

where Qact = {Qact(t0), Qact(t1), Qact(t2), …} and let for every i, i �  0

��*((q, µti(q)), � , p) = 
1

0 otherwise

q p

and for every i, i � 1

��
�
((q, µti–1(q)), ui, p) = ��((q, µti–1(q)), ui, p),

� 1 1
*

1 1
( )

(( ( )) ) ( (( ( )) ) (( ( )) ))i i i

act i

t t t
i i i i

q Q t

q q u u p q q u q q q u p�� � �

and recursively
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Equivalences in Max-Min Deterministic General Fuzzy Automata of Order n 5

��
�
((q, µt0(q)), u1u2 … un, p) = �{��((q, µt0(q)), u1, p1) � ��((p1, µt1(p1)), u2, p2) � …
� ��((pn–1, µtn–1(pn–1)), un, p)�p1 � Qact(t1), p2 � Qact(t2), … , pn–1 � Qact(tn–1)},

in which ui � �, �1 � i � n and assuming that the entered input at time ti be ui, �1 �
i � n – 1.

Definition 1.4: [5] Let A = [aij ] be an n � p matrix and B = [bij ] be a p � m
matrix of nonnegative real numbers. Let A � B be the n � m matrix [cij ], where

cij = ��{aik � bkj : k = 1, 2, … , p}.

Note: Let A be a matrix. Then �(A) denotes the set of distinct rows of A. In the
rest of this section, X and Y denote collections of sequences of real numbers.

Definition 1.5: [5] (i) Let X = {x1, x2, … , xn}. A max-min combination of X is
an expression of the form

1

( )
n

i i
i

a x�� (1)

where ai is a nonnegative real number, i = 1, 2, … , n. If 0 � ai � 1, for i = 1, 2, … ,
n, then (1) is called a convex max-min combination of X.

(ii) The (convex) max-min span of X is the collection of all (convex) max-min
combinations of finite subsets of X. Let C(X) denote the convex max-min span of X.

(iii) Y is called a convex max-min set if for every y1, y2 � Y , all convex max-min
combinations of {y1, y2} are also in Y.

(iv) Let x � X and Tx be the set of all distinct terms of x. Then x is called admissible
if Tx is finite and Tx can be effectively constructed from x. X is called admissible if
every x in X is admissible.

Theorem 1.6: [5] (i) X � C(X),

(ii) If X1 � X2, then C(X1) � C(X2),

(iii) C(C(X)) = C(X).

Definition 1.7: [5] Let Y be a convex max-min set and X � Y .

(i) X is called a set of generators of Y if Y = C(X),
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6 M. Horry & M. M. Zahedi

(ii) If X does not contain any proper subset which is itself a set of generators of
Y, then X is called a set of vertices of Y.

Theorem 1.8: [5] Let X � Y. Then X is a set of vertices of Y if and only if

(i) Y = C(X) and

(ii) If x � X, then x � C(X\{x}).

Definition 1.9: [5] Let X1, X2 � Y. Then X1 is called a basis of X2 if every x � X2

can be expressed uniquely as a convex max-min combination of a unique finite
subset of X1.

Definition 1.10: [5] Let Y be a convex max-min set. Y is called finitary if it
contains a set of generators that is finite.

Theorem 1.11: [5] Let A be a matrix. Then C(�(A)) is admissible and finitary.

Theorem 1.12: [5] Let Y be a convex max-min set, admissible and finitary and
let X1, X2 be sets of generators of Y. If �X1� > �X2�, then there exists x � X1 such that x
� C(X1\{x}).

2. EQUIVALENCES IN MAX-MIN DETERMINISTIC GENERAL
FUZZY AUTOMATA OF ORDER n

Definition 2.1: A max-min deterministic general fuzzy automaton of F�*of order n is
a nine-tuple F�*n = (Q, �, R�, Z, �, ��

�
, F1, F2, w), where F�* = (Q, �, R�, Z, �, ��

�
, F1, F2)

is a max-min general fuzzy automaton, w = u1u2u3 … un is a fixed element of ��,
�(w) = n and assuming that the entered input at time ti be ui, for every i = 1, 2, … , n.

The overall transition function 
� nFq  of � nF  is a function from Qactn �����into [0, 1]

defined as follows:

� �1 1
1 1

( )

(( ( )) ) (( ( )) )n i i

act n

t tF
i i n i i n

q Q t

q q q u u u q q u u u q�
for every i = 1, 2, … , n, q � Qact(ti–1), where �� = {ui ui+1 … un : i = 1, 2, … , n} and
Qactn = {Qact(t0), Qact(t1), Qact(t2), … , Qact(tn–1)}.

Furthermore, let 
�nFQ  (u1 u2 … un) = [ai]n�1 be the column matrix, where ai the i-

th row is defined by
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ai = 
�

�

�

�
�

�� � ��
*

1

1

1
( )

(( ( )) )n i

act i

tF
i i n

q Q t

q q q u u u , i = 1, 2, … , n.

Example 2.2: Consider the following GFA with several transition overlaps. It is
specified as: F��= (Q, �, R�, Z, �, ��, F1, F2), where Q = {q0, q1, q2, q3, q4} is the set of
states, � = {a, b} is the set of input symbols, R� = {(q0, 1)}, Z = Ø, � is not applicable
and

�(q0, a, q1) = 0.4, �(q0, a, q4) = 0.5, �(q0, b, q3) = 0.3,
�(q1, a, q2) = 0.8, �(q1, a, q4) = 0.35, �(q1, b, q3) = 0.3,
�(q2, a, q1) = 0.75, �(q2, b, q2) = 0.6, �(q2, a, q3) = 0.2,
�(q2, b, q3) = 0.45, �(q3, a, q1) = 0.4, �(q3, b, q4) = 0.9,
�(q4, a, q1) = 0.4, �(q4, b, q2) = 0.1, �(q4, b, q3) = 0.7,

and

1F1(µ, �) = �, F2() = µt+1(qm) = 
1

n

i
�(F1(µt(qi), �(qi, ak, qm))),

�F1(µ, �) = min(µ, �), F2() = µt+1(qm) = 
1

n

i
�(F1(µt(qi), � (qi, ak, qm))),

3F1(µ, �) = min(µ, �), F2() = µt+1(qm) =
1

n

i
�(F1(µt(qi), �(qi, ak, qm))),

4F1(µ, �) = max(µ, �), F2() = µt+1(qm) = 
1

n

i
�(F1(µt(qi), �(qi, ak, qm))),

5F1(µ, �) = max(µ, �), F2() = µt+1(qm) = 
1

n

i
�(F1(µt(qi), �(qi, ak, qm))),

6F1(µ, �) = min(µ, �), F2() = µi+1(qm) = 
1

n

i

F1(µt(qi), �(qi, ak, qm))/n,

7F1(µ, �) = 
2

, F2() = µt+1(qm) = 
1

n

i
�(F1(µt(qi), �(qi, ak, qm))),

where n is the number of simultaneous transitions to the active state qm at time t + 1.

If we choose 1F1(µ, �) = �, F2() = µt+1(qm) = 
1

n

i
�(F1(µt(qi), �(qi, ak, qm))), then we

have :
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8 M. Horry & M. M. Zahedi

µt0(q0) = 1, µt1(q1) = F1(µt0(q0), �(q0, a, q1)) = F1(1, 0.4) = 0.4,
µt1(q4) = F1(µt0(q0), �(q0, a, q4)) = F1(1, 0.5) = 0.5,
µt2(q1) = F1(µt1(q4), �(q4, a, q1)) = F1(0.5, 0.4) = 0.4,
µt2(q2) = F1(µt1(q1), �(q1, a, q2)) = F1(0.4, 0.8) = 0.8,
µt2(q4) = F1(µt1(q1), �(q1, a, q4)) = F1(0.4, 0.35) = 0.35,
µt3(q2) = F1(µt2(q4), �(q4, b, q2)) � F1(µt2(q2), �(q2, b, q2))

= F1(0.4, 0.1) � F1(0.8, 0.6) = 0.1 � 0.6 = 0.1,
µt3(q3) = F1(µt2(q1), ��(q1, b, q3)) � F1(µt2(q2), �(q2, b, q3)) � F1(µt2(q4), �(q4, b, q3))

= F1(0.4, 0.3) � F1(0.8, 0.45) � F1(0.35, 0.7) = 0.3 � 0.45 � 0.7 = 0.3,

which there are two simultaneous transitions to the active state q2 at time t3 and
there are three simultaneous transitions to the active state q3 at time t3. So, we can
draw the following table:

Table 1

Active States and Their Membership Values (mv) at Different Times in Example 2.2

time t0 t1 t2 t3 t4

input � a a b b

Qact(ti) q0 q1 q4 q1 q2 q4 q2 q3 q2 q3 q4

mv1 1.0 0.4 0.5 0.4 0.8 0.35 0.1 0.3 0.6 0.45 0.9

mv2 1.0 0.4 0.5 0.4 0.4 0.35 0.1 0.3 0.1 0.1 0.3

mv3 1.0 0.4 0.5 0.4 0.4 0.35 0.4 0.4 0.4 0.4 0.4

mv4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

mv5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

mv6 1.0 0.4 0.5 0.4 0.4 0.35 0.25 0.35 0.25 0.25 0.35

mv7 1.0 0.7 0.75 0.575 0.75 0.525 0.763 0.613 0.682 0.607 0.756

The operation of this fuzzy automaton upon input string a2b2 is shown in Table 1
for different membership assignment functions and multi-membership resolution
strategies. In this table, we have considered different cases for combining functions
F1 and F2.

Now, we consider the max-min deterministic general fuzzy automaton
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F�2
* = (Q, �, R�, Z, �, ���, F1, F2, aa)

of F� * of order 2, where 1F1(µ, �) = �, F2() = µt+1(qm) = 
1

n

i
�(F1(µt(qi), �(qi, ak, qm))).

Then we have 
�

2 1

2

( )F
a

Q aa
a

 such that

a1 =
� �0 02 2

0

0 0
( )

(( ( )) ) (( ( )) )
act

t tF F

q Q t

q q q aa q q q aa�

= 0

2

0 0
( )

(( ( )) )
act

t

q Q t

q q aa q� �

= ���((q0, µt0(q0)), aa, q1) � ���((q0, µt0(q0)), aa, q2) � ���((q0, µt0(q0)), aa, q4)

= ([�� ((q0, µt0(q0)), a, q1) � ��((q1, µt1(q1)), a, q1)] � [�� ((q0, µt0(q0)), a, q4)

���� ((q4, µt1(q4)), a, q1)]) � ([�� ((q0, µt0(q0)), a, q1) � �� ((q1, µt1(q1)), a, q2)]

��[�� ((q0, µt0(q0)), a, q4) � �� ((q4, µt1(q4)), a, q2)]) � ([�� ((q0, µt0(q0)), a, q1)

���� ((q1, µt1(q1)), a, q4)] � [�� ((q0, µt0(q0)), a, q4) � �� ((q4, µt1(q4)), a, q4)])

= ([F1(µt0(q0), �(q0, a, q1)) � F1(µt1(q1), �(q1, a, q1))] � [F1(µt0(q0), �(q0, a, q4))

��F1(µt1(q4), �(q4, a, q1))]) � ([F1(µt0(q0), �(q0, a, q1)) � F1(µt1(q1), �(q1, a, q2))]

��[F1(µt0(q0), �(q0, a, q4)) � F1(µt1(q4), �(q4, a, q2))]) � ([F1(µt0(q0), �(q0, a, q1))

��F1(µt1(q1), �(q1, a, q4))] � [F1(µt0(q0), �(q0, a, q4)) � F1(µt1(q4), �(q4, a, q4))])

= [(0.4 � 0) � (0.5 � 0.4)] � [(0.4 � 0.8) � (0.5 � 0)] � [(0.4 � 0.35) � (0.5 � 0)]

= 0.4 � 0.4 � 0.35 = 0.4,

a2 =
�

2

1( )act

F

q Q t

q�  ((q, µt1(q)), a) = 
�2Fq  ((q1, µt1(q1)), a) � 

�2Fq ((q4, µt1(q4)), a)

= [ �
2( )actq Q t
� ((q1, µt1(q1)), a, q�)] � [ �

2( )actq Q t
� ((q4, µt1(q4)), a, q�)]

= [��((q1, µt1(q1)), a, q1) � ��((q1, µt1(q1)), a, q2) � ��((q1, µt1(q1)), a, q4)]

�[��((q4, µt1(q4)), a, q1) � ��((q4, µt1(q4)), a, q2) � ��((q4, µt1(q4)), a, q4)]
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10 M. Horry & M. M. Zahedi

= (0 � 0.8 � 0.35) � (0.4 � 0 � 0) = 0.8.

So we have

�
2

0 4
( )

0 8
FQ aa

Definition 2.3: Let F� *n = (Q, �, R�, Z, �, ��*, F1, F2, w) be a max-min deterministic
general fuzzy automaton of F��

�
 of order  and�qi = {q� : q� � Qact(ti)}, i = 0, 1, … ,

n – 1. An active state distribution of is F� *n a function � from�Q = {�q0,�q1, … ,�qn–1}
into [0, 1]. � is said to be concentrated at�qi ��Q if �(�qi) = 1 and � (�qj) = 0, ��qj

��Q\{qi}.

Definition 2.4: An initialized max-min deterministic general fuzzy automaton
of F�

�
 of order n is an ordered pair (F� *

n, �), where F� *
n is a max-min deterministic

general fuzzy automaton of F� * of order n and � is an active state distribution of F�*n.
If � is concentrated at�qi ��Q, we write (F� *n,�qi ) for (F� *

n, �).

Definition 2.5: Let I = (F� *
n, �) be an initialized max-min deterministic general

fuzzy automaton of F� * of order n. Then the response number rI(w) of I is defined by

rI(w) = rI(u1u2 … un) = 1
1

{ ( ) }
n

i i
i

q a��

where ai is the i-th row of 
�nFQ  (u1u2 … un).

Definition 2.6: Let �1 be an active state distribution of � 1nF  and �2 be an active

state distribution of � 2nF , where � inF  = (Q, �, R�, Z, �, ���, F1, F2, wi) is a max-min

deterministic general fuzzy automaton of F� � of order n, for i = 1, 2, w1 = u1 u2 u3 …

un, w2 = u�1 u�2 u�3 … u�n, I1 = ( � 1nF , �1) and I2 = ( � 2nF , �2). Then I1 and I2 are called

equivalent, denoted by I1 � I2, if rI1(w1) = rI2(w2).

Definition 2.7: Let �1 and �2 be two active state distributions of F� *
n. Then �1 and

�2 are called equivalent, denoted by �1 � �2, if (F� *
n, �1) � (F� *

n, �2).

If �1 is concentrated at –qi � 
–
Q, then we write –qi ~ �2 for �1~ �2.

Example 2.8: In F� �2 introduced in Example 2.2, we have –q0 = {q0},  –q1= {q1, q4},
–
Q = {–q0,  –q1}. Let �1(–q0) = 0.5, �1(–q1) = 0.9, �2(–q0) = 0.6, �2(–q1) = 1, I1 = (F� �2, �1) and
I2 = (F� �2, �2). Then we have
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rI1(aa) = (�1(–q0) � a1) � (�1(–q1) � a2) = (0.5 � 0.4) � (0.9 � 0.8) = 0.8,
rI2(aa) = (�2(–q0) � a1) � (�2(–q1) � a2) = (0.6 � 0.4) � (1 � 0.8) = 0.8.

So we get that �1 � �2.

Theorem 2.9: Let I1 = (F�*n1, �1) and I2 = (F�*n2, �2), where �i is an active state
distribution of F�*ni, F

�*
ni = (Q, �, R�, Z, �, ��

�
, F1, F2, wi) is a max-min deterministic

general fuzzy automaton of F�* of order n,�Qi = {( q̄0)i, (q1)i, … , (�qn–1)i}, for i = 1, 2,
w1 = u1u2u3 … un, w2 = u�1u�2u�3 … u�n. Then I1 ~ I2 if and only if

1
1 0 1 1 1 1 1 1 1 1 2[ (( ) ) (( ) ) (( ) )] ( )nF

n nq q q Q u u u
�

= 2
2 0 2 2 1 2 2 1 2 1 2[ (( ) ) (( ) ) (( ) )] ( )nF

n nq q q Q u u u
�

Proof: Let I1 � I2. Then rI1(w1) = rI2(w2). So we have

1 1 1 2 1 2
1 1

{ (( ) ) } { (( ) ) }
n n

i i i i
i i

q a q a� �� �

where ai is the i-th row of 
�

1nFQ (u1u2 … un) and a�i  is the i-th row of 2nFQ
�

(u�1u�2 …

u�n). By Definition 1.4, we get that

[�1((�q0)1) … �1((�q0)1) … �1((�qn–1)1)] � 
�

1nFQ (u1u2 … un)

= [�2((�q0)2) … �2((�q1)2) … �2((�qn–1)2)] �� 2nFQ
�

(u�1u�2 … u�n).

The converse of proof is similarly.

Theorem 2.10: Let F�*n = (Q, �, R�, Z, �, ��*, F1, F2,w) be a max-min deterministic
general fuzzy automaton of F�* of order n, w = u1u2u3 … un, �Q = {�q0,�q1, … , qn–1},

�qi =�qj , for some i � j and i < j. Also let �� *((q, µti(q)), ui+1ui+2 … un, q�) =  �� *((q, µtj

(q)), uj+1uj + 2 … un, q�), �q ��qi =�qj , �q� � Qact(tn). Then �qi ~�qj .

Proof: Let 
�*

nFQ  (u1u2 … un) = [ai]n�1. Then we have

ai+1 =  
� n

i

F

q q

q� ((q, µti(q)), ui+1ui+2 … un)
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=
( )i act nq q q Q t

� � ��*((q, µti(q)), ui+1ui+2 … un, q�),

aj+1 = 
� n

i

F

q q

q� ((q, µtj (q)), uj+1uj+2 … un)

=
( )j act nq q q Q t

� � ��*((q, µtj (q)), uj+1uj+2 … un, q�).

By hypothesis, we get that ai+1 = aj+1. Let �1 be concentrated at�qi and �2 be
concentrated at�qj . Now, since ai+1 = aj+1, then we have

[�1(�q0) �1(�q1) … �1(�qn–1)] � 
�*

nFQ (u1u2 … un)

= [�2(�q0)  �2(�q1) … �2(�qj) … �2(�qn–1)] ��
�*

nFQ (u1u2 … un).

By Theorem 2.9, we have �1 ~ �2. Therefore�qi ��qj .

Definition 2.11: Let F� *
n1 = (Q, �, R�, Z, �, ��*, F1, F2, wi) be a max-min deterministic

general fuzzy automaton of F� * of order n, for i = 1, 2,�Q1 = {(�q0)1, ��q1)1, … ,
��qn–1)1} and �Q2 = {(�q0)2, (�q1)2, … , (�qn–1)2}, where w1 = u1u2u3 … un, w2 = u�1u�2u�3
… u�n. Then

(i) F� *
n1 and F� *

n2 are called statewise equivalent, denoted by F� *
n1� F� *

n2, if for
every (�qi)1 ��Q1, there exists (�qj)2 ��Q2 such that (F� *

n1, (�qi)1) � (  F� *
n2 ,

(�qj)2) and vice versa.

(ii)  F� *
n1 and  F� *

n2 are called compositewise equivalent, denoted by  F� *
n1  �  F� *

n2,
if for every (�qi)1 ��Q1, there exists an active state distribution � of  F� *

n2

such that (F� *
n1, (�qi)1) � (F� *

n2, �) and vice versa.

(iii) F� *
n1 and F� *

n2 are called distributionwise equivalent, denoted by F� *
n1 � F� *

n2 if
for every active state distribution �1 of F� *

n1, there exists an active state
distribution �2 of F� *

n2 such that ( F� *
n1, �1) � ( F� *

n2, �2) and vice versa.

Theorem 2.12: Let F� *
ni = (Q, �, R�, Z, �, ��*, F1, F2,wi) be a max-min deterministic

general fuzzy automaton of  F� * of order n, for i = 1, 2, where w1 = u1u2u3 … un and
w2 = u�1u�2u�3 … u�n.
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(i) F� *
n1 � F
� *

n2 if and only if �(
�*

1nFQ (u1u2 … un)) = �(
�*

2nFQ (u�1u�2 … u�n)),

(ii) F� *
n1 � F� *

n2  if and only if �(
�*

1nFQ (u1u2 … un)) � C(�(
�*

2nFQ (u�1u�2 … u�n))) and

�(
�*

2nFQ  (u�1u�2 … u�n)) � C(�(
�*

1nFQ (u1u2 … un))),

(iii) F� *
n1 � F� *

n2 if and only if C(�(
�*

1nFQ (u1u2 … un))) = C(�(
�*

2nFQ (u�1u�2 … u�n))).

Proof: We prove the part (i), the other parts are proved similarly.

�) Let F� *
n1 � F
� *

n2, (�q0)1 ��Q1, 
�*

1nFQ (u1u2 … un) = [ai]n�1 and 
�*

2nFQ (u�1u�2 … u�n)

=[a�i]n�1. Then there exists (�qj)2 ��Q2 such that ( F� *
n1 , (�q0)1) � (F� *

n2, (�qj)2). Thus by
Theorem 2.9, we have

[1 0 0 … 0] ��
�*

1nFQ (u1u2 … un) = [0 … 0 1 0 … 0] � 
�*

2nFQ (u�1u�2 … u�n).

So a1 = a�j+1. By replacing (�q0)1 with (�q1)1, … , (�qn–1)1, we have

�(
�*

1nFQ (u1u2 … un)) ���(
�*

2nFQ (u�1u�2 … u�n)).

Similarly, we get that

�(
�*

2nFQ (u�1u�2 … u�n)) � �(
�*

1nFQ (u1u2 … un)).

�) The proof is easy.

Corollary 2.13: Let F� *
ni  = (Q, �, R� , Z, �, �� *, F1, F2, wi) be a max-min deterministic

general fuzzy automaton of F�* of order n, for i = 1, 2, where w1 = u1u2u3 … un and
w2 = u�1u�2u�3 … u�n. If F� *

n1 � F
� *

n2 , then F� *
n1 � F� *

n2.

Proof: Let F� *
n1 � F
� *

n2  . Then �(
�*

1nFQ (u1u2 … un)) = �(
�*

2nFQ (u�1u�2 … u�n)). By

Theorem 1.6 (i), �(
�*

1nFQ (u1u2 … un)) � C(�(
�*

1nFQ (u1u2 … un))). Thus we have

�(
�*

1nFQ (u1u2 … un)) � C(�(
�*

2nFQ (u�1u�2 … u�n))).

Similarly, we have
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�(
�*

2nFQ (u�1u�2 … u�n)) � C(�(
�*

1nFQ (u1u2 … un))).

Therefore F� *
n1 � F� *

n2.

Corollary 2.14: Let F� *
ni = (Q, �, R�, Z, �, ��*, F1, F2, wi) be a max-min deterministic

general fuzzy automaton of F� * of order n, for i = 1, 2, where w1 = u1u2u3 … un and
w2 = u�1u�2u�3 … u�n. Then  F� *

n1 � F� *
n2 if and only if F� *

n1 � F� *
n2.

Proof: Let F� *
n1 � F� *

n2 . Then �(
�*

1nFQ (u1u2 … un)) � C(�(
�*

2nFQ (u�1u�2 … u�n))) and

�(
�*

2nFQ (u�1u�2 … u�n)) � C(�(
�*

1nFQ (u1u2 … un))). By Theorem 1.6 (ii), we get that

C(�(
�*

1nFQ (u1u2 … un))) ��C(C(�(
�*

2nFQ (u�1u�2 … u�n)))),

C(�(
�*

2nFQ (u�1u�2 … u�n)))  � C(C(�(
�*

1nFQ (u1u2 … un)))).

By Theorem 1.6 (iii), we have

C(�(
�*

1nFQ (u1u2 … un))) � C(�(
�*

2nFQ (u�1u�2 … u�n))),

C(�(
�*

2nFQ (u�1u�2 … u�n))) ��C(�(
�*

1nFQ (u1u2 … un))).

So  F� *
n1 � F� *

n2. The converse of this corollary is obvious.

Definition 2.15: Let F� *
n = (Q, �, R�, Z, �, ��*, F1, F2, w) be a max-min deterministic

general fuzzy automaton of F�� of order n. Then

(i) F� *
n is called statewise irreducible if for every�qi,�qj ��Q, �qi ��qj  implies

�qi =�qj,

(ii) F� *
n is called compositewise irreducible if for every�qi ��Q and active state

distribution � of F� *
n ,�qi � � implies �(�qi) > 0,

(iii) F� *
n  is called distributionwise irreducible if for every active state distributions

�1 and �2 of F� *
n , �1 � �2 implies �1 = �2.

Theorem 2.16: Let F� *
n  = (Q, �, R� , Z, �, ��*, F1, F2, w) be a max-min deterministic

general fuzzy automaton of F�* of order n and ��Q� = n. Then F� *
n is statewise irreducible

if and only if no two rows of QF� *
n (u1u2 … un) are identical.
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Proof: Let F� *
n be statewise irreducible and two rows of 

�*
nFQ  (u1u2 … un) be

identical. Without loss of generality, assume that the first row and the second row be
identical. Then we have

[1 0 0 … 0] � 
�*

nFQ  (u1u2 … un) = [0 1 0 … 0] � 
�*

nFQ  (u1u2 … un).

By Theorem 2.9,�q0 ��q1. Since ��Q � = n, then�q0 � �q1, which is a contradiction

to the fact that F� *
n is statewise irreducible. Conversely, let no two rows of 

�*
nFQ  (u1u2

… un) be identical and F� *
n does not be statewise irreducible. Then there exist�qi,�qj

��Q  such that�qi ��qj and�qi ��qj. Thus we can conclude that the (i + 1)-th row and

the (j + 1)-th row of 
�*

nFQ  (u1u2 … un) are identical, which is a contradiction.

Definition 2.17: Let F� *
n = (Q, �, R�, Z, �, ��*, F1, F2, w) be a max-min deterministic

general fuzzy automaton of F�*of order n, w = u1u2u3 … un and�Q = {�q0,�q1,…,�qn–1}.
Then F� *

n is called effective if �qi ��qj , for some i � j, then�qi ��qj.

Example 2.18: In F� *
2 introduced in Example 2.2, we have�q0 = {q0},�q1 = {q1,

q4}, and

2
0 4

( )
0 8

FQ aa�

By Theorem 2.9, since 0.4 � 0.8, then�q0 is not equivalent with�q1, and since�q0

��q1, so  F� *
2  is effective.

Definition 2.19: Let F� *
n = (Q, �, R�, Z, �, ��

�
, F1, F2, w) be a max-min deterministic

general fuzzy automaton of F� * of order n and�Q = {�q0,�q1, …,�qn–1}. Then F� *
n  is

called statewise minimal if there is not an �*
nF
�  such that F� *

n� = (Q, �, R�, Z, �, ��
�
, F1,

F2, w�) be a max-min effective deterministic general fuzzy automaton of F� *  of order

n, F� *
n be statewise equivalent to �*

nF
�  and ��Q1� < ��Q �, where Q1

 = {(�q0)�, (�q1)�, …,

(�qn–1)�}.

Theorem 2.20: Let F� *
n = (Q, �, R�, Z, �, ��

�
, F1, F2, w) be a max-min deterministic

general fuzzy automaton of F�* of order n,�Q  = {�q0,�q1, … ,�qn–1}, ��Q � = n and
w = u1u2u3 … un. If F� *

n is statewise irreducible, then it is statewise minimal.
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Proof: Suppose that F� *
n is not statewise minimal. Then there exists an F� *

n� such
that F� *

n� = (Q, �, R�, Z, �, ���, F1, F2, w�) is a max-min effective deterministic general
fuzzy automaton of F�* of order n,  F� *

n is statewise equivalent to  F� *
n� and ��Q1� < n,

where w� = u�1u�2u�3 … u�n and�Q1 = {(�q0)�, (�q1)�, … , (�qn-1)�}. By Theorem 2.12, since
F� *

n �  F� *
n� , then

�( nFQ �  (u1u2 … un)) = �(  nFQ � (u�1u�2 … u�n)).

On the other hand, since ��Q1� < n, then there exist (�qi)�, (�qj)� ��Q1 such that  (�qi)� =

(�qj)�. Since F� *
n� is effective, then  (�qi)� �(�qj)�. So two rows of  nFQ � (u�1u�2 … u�n) are

identical. Since

�( nFQ �  (u1u2 … un)) = �(  nFQ � (u�1u�2 … u�n)),

then two rows of nFQ �  (u1u2 … un) are identical. So by Theorem 2.16, F� *
n is not

statewise irreducible.

Theorem 2.21: Let F� *
n = (Q, �, R�, Z, �, ���, F1, F2, w)  be a max-min deterministic

general fuzzy automaton of F� * of order n and�Q = {�q0,�q1, … ,�qn-1}. Then F� *
n is

compositewise irreducible if and only if �( nFQ �  (u1u2 … un)) is a set of vertices of

C(�( nFQ � (u1u2 … un))).

Proof: Let F� *
n be compositewise irreducible and �( nFQ �  (u1u2 … un)) does not be

a set of vertices of C(�( nFQ � (u1u2 … un))). Then one row of nFQ �  (u1u2 … un) is a

convex max-min combination of the other rows of nFQ �  (u1u2 … un). Suppose that,

this row be the first row. Thus a1 =
2

( )
n

i i
i

c a�� , where 0 � ci � 1 and nFQ � (u1u2 … un)

= [ai]n�1. So we have

[1 0 0 … 0] � nFQ �  (u1u2 … un) = [0 c2 c3 … cn] � nFQ �  (u1u2 … un).

Now, we define the active state distribution � of F� *
n  by �(�qi) = ci+1 for every i = 0,

1, … , n – 1, where c1 = 0. By Theorem 2.9,�q0 � �. Since �(�q0) = 0, we get a
contradiction to the fact that F� *

n is compositewise irreducible.

            116
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Conversely, let �( nFQ � (u1u2 … un)) be a set of vertices of C(�( nFQ � (u1u2 … un)))

and F� *
n does not be compositewise irreducible. Then there exist�qi ��Q and an active

state distribution � of F� *
n such that�qi � � and �(�qi) = 0. By Theorem 2.9, we have

[0 … 0 1 0 … 0] � nFQ �  (u1u2 … un)

= [�(�q0) �(�q1) … �(�qi) … 1( )]nq  � nFQ �  (u1u2 … un),

where 1 is the (i + 1)-th column of the matrix [0 … 0 1 0 … 0].

Then ai+1 � C(�( nFQ � (u1u2 … un))\{ai+1}), which is a contradiction to

Theorem 1.8.

Definition 2.22: Let F� *
n  = (Q, �, R�, Z, �, ���, F1, F2, w) be a max-min deterministic

general fuzzy automaton of F� * of order n and�Q = {�q0,�q1, … ,�qn-1}. Then F� *
n  is

called compositewise minimal if there is not an F� *
n� such that F� *

n� = (Q, �, R�, Z, �, ���,
F1, F2, w�) be a max-min effective deterministic general fuzzy automaton of F� * of
order n, F� *

n be compositewise equivalent to F� *
n� and ��Q1� < ��Q�, where�Q1 = {(�q0)�,

(�q1)�, … , (�qn-1)�}.

Theorem 2.23: Let F� *
n = (Q, �, R�, Z, �, ���, F1, F2, w) be a max-min deterministic

general fuzzy automaton of F� * of order n,�Q = {�q0,�q1, … ,�qn-1}, ��Q� = n, ��( nFQ �

(u1u2 … un))� = n and w = u1u2u3 … un. If F� *
n is compositewise irreducible, then it is

compositewise minimal.

Proof: Suppose that F� *
n is not compositewise minimal. Then there exists an F� *

n�
such that F� *

n� = (Q, �, R�, Z, �, ���, F1, F2, w�) is a max-min effective deterministic
general fuzzy automaton of F� * of order n, F� *

n  is compositewise equivalent to F� *
n�

and ��Q1� < n, where w� = u�1u�2u�3 … u�n and 
1Q � {(�q0)�, (�q1)�, … , (�qn-1)�}. By Corollary

2.14, since F� *
n � F� *

n� , then F� *
n �  F� *

n�. By Theorem 2.12 (iii), since  F� *
n �  F� *

n�, then

C(�( nFQ � (u1u2 … un))) = C(�( nFQ � �(u�1u�2 … u�n))).

On the other hand, since ��Q1� < n, then there exist (�qi)�, (�qj)����Q1 such that  (�qi)�=

(�qj)�. Since F� *
n� is effective, then (�qi)�� (�qj)�. So two rows of nFQ � � (u�1u�2 … u�n) are

identical. Thus we get that

��(( nFQ � �(u�1u�2 … u�n))� < n = ��( nFQ � (u1u2 … un))�.
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By Theorems 1.11 and 1.12, there exists x � �( nFQ � (u1u2 … un)) such that

x � C(�( nFQ � (u1u2 … un)).\{x}).

Therefore, by Theorem 1.8, �( nFQ � (u1u2 … un)) is not a set of vertices of

C(�( nFQ � (u1u2 … un))).

Consequently, by Theorem 2.21, F� *
n is not compositewise irreducible.

Theorem 2.24: Let F� *
n = (Q, �, R�, Z, �, ���, F1, F2, w)  be a max-min deterministic

general fuzzy automaton of  F� * of order n and�Q = {�q0,�q1, … ,�qn-1}. Then F� *
n  is

distributionwise irreducible if and only if �( nFQ � (u1u2 … un)) is a basis of C(�( nFQ �

(u1u2 … un))).

Proof: Let F� *
n  be distributionwise irreducible and �( nFQ � (u1u2 … un)) does not

be a basis of C(�( nFQ � (u1u2 … un))). Then there exists x � C(�( nFQ � (u1u2 … un)))

such that x = 
1 1

( ) ( )
n n

i i i i
i i

c a d a� �� � , where ai � �( nFQ �  (u1u2 … un)), 0 � ci �1, 0

� di �1 and for some i, ci � di. Thus we have

[c1 c2 c3 … cn]� nFQ �  (u1u2 … un) = [d1 d2 d3 … dn] � nFQ �  (u1u2 … un).

Now, we define two active state distributions �1 and �2 of F� *
n by �1(�qi) = ci+1, �2(�qi)

= di+1 for every i = 0, 1, … , n – 1. By Theorem 2.9, �1 ���2. Since �1 � �2, we get a
contradiction to the fact that F� *

n  is distributionwise irreducible.

Conversely, let �( nFQ �  (u1u2 … un)) be a basis of C(�( nFQ �  (u1u2 … un))) and F� *
n

does not be distributionwise irreducible. Then there exist two active state distributions
�1 and �2 of F� *

n such that �1 � �2, � �2. By Theorem 2.9, we have

[�1(�q0) �1(�q1) … �1(�qn–1)] � nFQ �  (u1u2 … un)

= [�2(�q0) �2(�q1) … �2(�qn–1)] � nFQ �  (u1u2 … un).

Then x = 
1

n

i
�(�1(�qi–1) � ai) = 2 1

1

( ( ) )
n

i i
i

q a�� , where ai � �( nFQ �  (u1u2 … un)).

Thus x � C(�( nFQ �  (u1u2 … un))), which is a contradiction to Definition 1.9.
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