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ABSTRACT: In this paper, we introduce notions of (L,M)-topological spaces
and (2,M)-fuzzifying topological spaces. We prove that the category (L,M)-
TOP of (L,M)-topological spaces is a topological category over Set. We
investigate the relation between (L,M)-topological spaces and (2,M)-
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1. INTRODUCTION AND PRELIMINARIES

Since Chang [1] introduced a fuzzy topology, many authors have discussed various
aspects of fuzzy topology. However, in a completly different direction, Höhle [2]
created the notion of a topology being viewed as an L-subset of a powerset. Kubiak
[6] and Sostak [11] independently exteneded Höhle’s notion to L-subsets of LX.
Kotzé [5] introduced an (L,M)-topological space as a general approach where L and
M are frames with 0 and 1.

In this paper, we introduce notions of (L, M)-topological spaces as an extension
of that of Kotzé [5]. Here, L is a completely distributive lattice with with 0 and 1 and
M is a strictly two-sided, commutative quantale as an extension of a frame. We
investigate the relation between (L, M)-topological spaces and (2,M)-fuzzifying
topological spaces. We show the existence of initial (L, M)-topological structures.
From this fact, the category (L, M)-TOP is a topological category over Set.

In this paper, let X be a nonempty set and L = (L, �, � , � ��� ) a completely
distributive lattice with the least element 0 and the greatest element 1 in L with an
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order reversing involution �. The family LX denotes the set of all fuzzy subsets of a
given set X. For each � � L, let �  denote the constant fuzzy sets of X. We denote the
characteristic function of a subset A of X by 1

A
.

Definition 1.1: [5] Let L and M be frames. A map � : LX � M is called an
(L, M)-topology on X if it satisfies the following conditions:

(1) � ( 0 ) = � ( 1 ) = T,

(2) � (µ
1
 �  µ

2
) � � (µ

1
) �  � (µ

2
), for all µ

1
, µ

2
 � LX,

(3) � (�i�� µ
i
) � �i�� � (µ

i
), for any {µ

i
}

i�� � LX.

The pair (X, � ) is called an (L, M)-topological space.

Let M = (M, �, �, �, �, T) be a completely distributive lattice with the least
element � and the greatest element T in M.

Definition 1.2: [10] A triple (M, �,��) is called a strictly two-sided, commutative
quantale (stsc-quantale, for short) iff it satisfies the following properties:

(M1) (M,�) is a commutative semigroup,

(M2) a = a � T, for each a � M,

(M3) � is distributive over arbitrary joins, i.e.,

( )i i
i i

a b a b
�� ��

� �
�� �

� �
� �� � .

Remark 1.3: [10](1) Each frame is a stsc-quantale. In particular, the unit interval
([0, 1], �, �, 0, 1) is a stsc-quantale.

(2) Every left continuous t-norm t on ([0, 1], �, t) with � = t is a stsc-quantale.

(3) Every GL-monoid is a stsc-quantale.

Lemma 1.4: [10] Let (M, �,��) be a stsc-quantale. For each x, y, z � M, {y
i
 � i �

�} � M, we have the following properties.

(1) If y � z,then (x � y) � (x � z) .
(2) x � y � x � y.
(3) (x� y) � (z � w) � (x � z) � (y � w).
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2. (L, M)-TOPOLOGICAL SPACES

Definition 2.1: A map T : LX � M is called an (L, M)-topology on X if it satisfies
the following conditions:

(LO1) � ( 0 ) = � ( 1 ) = T,

(LO2) � (µ
1
 �  µ

2
) � � (µ

1
) � � (µ

2
), for all µ

1
, µ

2
 � LX,

(LO3) � (�
i�� µ

i
) � �

i�� � (µ
i
), for any {µ

i
}

i�� � LX.

The pair (X, � ) is called an (L, M)-topological space.

Let �
1
 and �

2
 be (L, M)-topologies on X. We say that �

1
 is finer than �

2
 (�

2
 is

coarser than �
1
), denoted by �

2
 � �

1
, if �

2
(�) � �

1
(�) for all � � LX.

Let (X, �
1
) and (Y, �

2
) be (L, M)-topological spaces. A map � : (X, �

1
) � (Y, �

2
)

is called LF-continuous i� �
2
(�) � �

1
(��(�)), for all � � LY. The category of (L, M)-

topological spaces and LF-continuous maps is denoted by (L,M)-TOP.

Remark 2.2: Let L = {0, 1} be given and 2X � P(X) in a sense 1
A
 � 2X iff A �

P(X). A map � : P(X) � M is called a (2, M)-fuzzifying topology on X if it satisfies
the following conditions:

(O1) � (X) = � (Ø) = T,
(O2) � (A � B) ��� (A) � � (B), for all A, B � P(X),

(O3) � (�
i�� A

i
) � �

i�� � (A
i
), for any {A

i
}

i�� � P(X).

The pair (X, � ) is called a (2, M)-fuzzifying topological space.

Let (X, �
1
) and (Y, �

2
) be (2, M)-fuzzifying topological spaces. A function f : (X,

�
1
) � (Y, �

2
) is called fuzzifying continuous iff

�
2
(A) � �

1
( f –1(A)), �A � P(Y).

(2, M)-TOP denotes the category of (2, M)-fuzzifying topological spaces and
fuzzifying continuous functions.

Remark 2.3: (1) If (L = [0, 1], �) and M = {0, 1}, (L, M)-topological space is
the concept of Chang [1].

(2) If (L = M = [0, 1],�� = �), (L, M)-topological space is the concept of Kubiak
[6] and Ŝostak [11].
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(3) If L = {0, 1} and (M = [0, 1],�� = �), (L, M)-topological space is the concept
of Ying [12,13].

(4) If L and M are frames with 0 and 1, (L, M)-topological space is the concept of
Kotzé [5] in Definition 1.1.

Theorem 2.4: Let (X, � ) be a (2, M)-fuzzifying topological space. We define a
function �� : L

X � M as follows:

�
�

� � �� ( ) ( )r
r L
�

where �
r
 = {x � X : �(x) > r}: Then �� is an (L, M)-topology.

Proof: (LO1) Clear.

(LO2) For each �, µ � LX, we have

�� (� �  µ) = � �( ) ( )r r r
r L r L� �

� � � � � � ���� �

� � �( ) ( ( )r r r r
r L r L r L� � �

� � � � � � � � �� �� �� � �

= T� (�) � T� (µ).

(LO3) Since (�
j�J

 µ
j
)

r
 = �

j�J
 (µ

j
)

r
, we have

T� (
j J�
� µ

j
) = ( ) (( ) )j r j r

r L r L j Jj J� � ��

� �
� � � � �� �� �
� �
�� � �

(( ) ) ( ).j r j
j J r L j J

�
� � �

� � � ��� � �

Lemma 2.5: Let A � P(X) and � � L – {0}. Then T� (�1
A
) = � (A).

Theorem 2.6: Let (X, �
1
) and (Y, �

2
) be (2, M)-fuzzifying topological spaces. A

mapping f : (X, �
1
) � (Y, �

2
) is fuzzifying continuous iff f : (X, ��1

 ) � (Y, ��2
 ) is LF-

continuous.
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Proof: For each µ � LY , we have

��1
 ( f �(µ)) = 1 2 2(( ( )) ) ( ) ( ).r r

r L r L

f � �
� �

� � � � � � ��� �

Conversely, suppose there exists A � P(X) such that �
1
( f –1(A)) ��  �

2
(A). It implies

��1
(1

f –1(A)
) = �

1
( f –1(A)) ��  �

2
(A) = ��2

(1
A
).

Example 2.7: Let X = {x, y, z} be a set. Define a binary operation � on M = [0,
1] by x ��y = max{0, x + y–1}. Then (M = [0, 1], �,�) is a stsc-quantale. Define a
(2, M)-fuzzifying topology � : P(X) � [0, 1] as follows:

1, if { , }

0.8, if { , }

( ) 0.6, if { }

0.7, if { , }

0, otherwise

A X

A x y

A A y

B y z

��
� ���� � ��
� ��
��

ø

For �, µ � [0, 1]X with

�(x) = 0.3, �(y) = 0.7, �(z) = 0.5, µ(x) = 0.7, µ(y) = 0.2, µ(z) = 0.5,
we have

(�)
r
 � {{y}, {y, z}, Ø, X}, (µ)r � {{x}, {x, z}, Ø, X}.

Hence �� (�) = 0.6 and �� (µ) = 0.

3. PRODUCTS AND SUBSPACES OF (L, M)-TOPOLOGICAL SPACES

Definition 3.1: A map � : LX � M is called an (L, M)-fuzzy base on X if it
satisfies the following conditions:

(LB1) �( 1 ) = �( 0 ) = T.
(LB2) �(µ

1
 �  µ

2
) � �(µ

1
) � �(µ

2
), for all µ

1
, µ

2
 � LX.

Remark 3.2: By the sense of Remark 2.2, a map � : P(X) � M is called a (2, M)-
fuzzifying base on X if it satisfies the following conditions:

(B1) �(X) = �(Ø) = T
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(B2) �(A � B) ���(A) � �(B), for all A, B � P(X).

An (L, M)-fuzzy base � always generates an (L, M)-topology �
�
 on X in the

following sense.

Theorem 3.3: Let � be an (L, M)-fuzzy base on X. Define a map �
�
 : LX � M as

follows:

�
�
(µ) = ( ) .j j

j j

u
�� ��

� �� �� � �� �
� �� �
�� � �

Then �
�
 is the coarsest (L, M)-topology on X such that �

�
(�) � �(�), for all � � LX.

Proof: (LO1) It is trivial from the definition of �
�
.

(LO2) For two families {�
j
�� = �j�� �

j
} and {µ

k
�µ =�k�� µ

k
}, since L is a

completely distributive lattice, there exists a family {�j �µ
k
} such that

� �  µ = 
,

( ) ) ( ).j j k
j k j k�� �� �� ��

� � � ��� �� � �

It implies

�
�
(� �  µ) �

,

( )j k
j k�� ��

� �� ��

�
,

( ( ( ))j k
j k�� ��

� �� ���  (by Definition 3.1 (LB2))

�
�� ��

� ��� �( ( )) ( ( )).j k
j k
� �  (by Lemma 1.4(1))

For all families {�
j
 � � = �

j�� �
j
} and {µ

k
 �µ = �

k�� µk
}, by Definition 1.2 (M3), �

�
(�

�  µ) � �
�
(�) � �

�
(µ).

(LO3) Let �
i
 be the collection of all index sets K

i
 such that {�ik

 � LX � �
i
 = �k�Ki

�ik
} with � = �

i�� �i
 = �

i�� �k�Ki
 �ik

. For each i ��� and each ����
i����i 

with �(i) =
K

i
, we have
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�
�
(�) � ( ( )).

k

i

i
i k K�� �

��� � (I)

Put a
i,�(i)

 = �k�K
i
 �(�ik

). From (I),

�
�
(�) � ( )( )

i i

i i
i��

�
��� ��

�
�
� �

(Since L is a completely distributive lattice,)

= ( ) ( ( ( )))
i m

i i i i i

iM i
i M i M m M

a
�� � �� � �

� �
� �

�� � � � �

= ( )i
i��

���� .

Thus �
�
 is an (L, M)-topology on X.

If � � �, for every � = �j�� �
j
 ,

T (�) � ( ) ( )j j
j j�� ��

� � �� �� �

Thus � � �
�
.

From Theorem 3.3, we easily prove the following lemma.

Lemma 3.4: Let T be an (L, M)-topology on X and � be an (L, M)-fuzzy base on
Y. Then a map � : (X, � ) � (Y, �

�
) is LF-continuous iff � (��(�)) � �(�), for each

�� LY.

Corollary 3.5: Let � be a (2, M)-fuzzifying base on X. Define a map ��
 : P(X)

�M as follows:

�� (A) = { ( ) }.j j
j j

A A A
�� ��

�� �� �

Then:

(1) �� is the coarsest (2, M)-fuzzifying topology on X such that �� (A) � �(A), for
all A � P(X).
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(2) a map f : (Y, �*) � (X, ��) is fuzzifying continuous iff �* (f –1(A)) � �(A), for
each A � P(Y).

Theorem 3.6: Let {(X
i
, T

i
)}

i�� be a family of (L, M)-topological spaces, X a set
and for each i � �, �

i
 : X � X

i
 a map. Define a map � : LX � M on X by

�(µ) = 1 1{ ( ) ( )}
j j j j

n n
j k k j k k

�
� �� � � � ��� ��

where �  is taken over all finite subsets K = {k
1
, …, k

n
}���.

Then:

(1) � is an (L, M)-fuzzy base on X.

(2) The (L, M)-topology �
�
 generated by � is the coarsest (L, M)-topology on X

for which all f
i
,i ���, are LF-continuous maps.

(3) A map � : (Y, ��) � (X, �
�
) is LF-continuous iff for each i ���, �

i
 o � : (Y, � �)

� (X
i
, T

i
) is LF-continuous map.

Proof: (1) Since � = � �
i
 (�) for each � � {0, 1}, �(1) = �(0) = T.

(B2) For all finite subsets K = {k
1
, …, k

p
} and J = {j

1
, …, j

q
} of � such that

� = 1 1), ( ),
i i i i

p q
i k k i j j

� �
� �� � � � � �� � �

we have

� �  µ = � �
� �� � � �1 1( )) ( ( )).

i i i i

p q
i k k i j j� � � �

Furthermore, we have for each k � K � J,

) ( ) ( ).k k k k k k k
� � �� � � � � � � �� � �

Put ( )
i i im K J m m

�
�� � � � ��� �  where

if ( )

if ( )

if .

i

i i

i i

m i

m m i

m m i

m K K J

m J K J

m K J

�� � �
��� � � � ��
�� � ���

�

�

��
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Since �
mi

 (�
mi

 �  µ
mi

) � �
mi

 (�
mi

 ) � �
mi

 (µ
mi

) for m
i
 � K � J, we have

�(� �  µ) � �
j
�

KI ��J
�

j
(�

j
)

� (�
i
p
=1
�ki

(�ki
))�

i
q
=1
�ji

(µji
).

By Definition 1.2 (M3), �(� �  µ) � �(�) � �(µ).

(2) For each �
i
 � LXi , one family { i

�� (�
i
)} and i � �, we have

�
�

( ( )) ( ( )) ( ).i i i i i i
� �� � � � � � �� �

Thus, for each i ��, �
i
 : (X, �

�
) � (X

i
, �

i
) is LF-continuous.

Let �
i
 : (X, � 0) � (X

i
, �

i
) be LF-continuous, that is, for each i ���  and �

i
 � LXi,

� 0( i
��  (�

i
)) � �

i
(�

i
). For all finite subsets K = {k

1
, …, k

p
} of � such that � =

1 ( )p
i ki ki

�
� � �� , we have

0 0
1( ) ( ( ))

i

p
i k ki

�
�� � � �� ��

 1 ( )
ii

p
i kk�� ���� .

It implies � 0(�) � �(�) for each � � LX. By Theorem 3.3, � 0 � �
�
.

(3)(�) Let � : (Y, T �) � (X, �
�
) be LF-continuous. For each i � � and �

i
 � LXi,

we have

� �((�
i
 o �)�(�

i
)) = � �(��(��

i
 (�

i
))) � �

�
(��

i
 (�

i
)) � �

i
(�

i
).

Hence �
i
 o � : (Y, � �) � (X

i
, �

i
) is LF-continuous.

(�) For all finite subsets K = {k
1
, …, k

p
} of � such that � = �p

i =1
��

ki 
(�ki

), since �ki
o �

: (Y, � �) � (X
ki
, �

ki
) is LF-continuous,

� �� �� (��
ki
 (�

ki
 ))) � �

ki
 (�

ki
 ). (II)

Hence we have

� �(��(�)) = � �(��
1 1( ( ))) ( ( ( )))

k i

p p
i ki i k k ii

� � �
� ��� � � � � ��� �

� 1 1( ( ( ))) ( ).
k i

p p
i ki i k kii

� �
� �� � � � � ��� �� �  (by (II))

It implies � �(��(�)) � �(�) for all � � LX. By Lemma 3.4, � : (Y, � �) � (X, �
�
) is

LF-continuous.
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Theorem 3.7: The forgetful functor V : (L, M)-TOP � Set defined by V (X, � )
= X and V (�) = � is topological.

Proof: By Theorem 3.6, every V-structured source (�
i
 : X � (X

i
, �

i
))

i�� has a
unique V-initial lift (�

i
 : (X, �

�
) � (X

i
, �

i
))

i�� such that V (X, �
�
) = X and V (�

i
) = �

i
.

From Theorem 3.6, we can define a product (L, M)-topology and a subspace of
(L, M)-topology.

Definition 3.8: Let {(X
i
, �

i
)}

i�� be a family of (L, M)-topological spaces,
X = �

i��Xi
 a product set and for each i ���, �

i
 : X � X

i
 a projection map. The product

(L, M)-topology is the coarsest (L, M)-topology on X for which all �
i
,i � �, are LF-

continuous maps. Let (X, � ) be an (L, M)-topological space, A a subset and i : A �
X an inclusion map. Define a map �

A
 : LA � M on A by

�
A
(µ) = { ( ) ( )}.i�� � � ���

Then (A, �
A
) is called a subspace of (X, � ).

Theorem 3.9: Let � : (X, � ) � (Y, �
1
) and � : (X, � ) � (Z, �

2
) be LF-continuous.

Define a function h : X � Y × Z by

h(x) = (�(x), �(x)).
Then h : (X, � ) � (Y × Z, �

1
 � �

2
) is LF-continuous where �

1
 � �

2
 is a product

(L, M)-topology of (Y, �
1
) and (Z, �

2
).

Proof: Suppose there exists � � LY×Z such that

� (h�(�)) ��  �
1
 � �

2
(�).

Let � be an (L, M)-fuzzy base for �
1
 ��

2
. By the definition of �

1
 � �

2
, there exists a

family {�
i
 � � = ii��

�� } such that

( ( )) ( )i
i

h�

��
� � ��� ��

By the definition of �, for each i ���, there exist �
i
 � LY and µ

i
 � LZ with �

i
 = �–1

1
 (�

i
)

�  �–1
2
 (µ

i
) such that

1
1 2( ( )) ( )( ) ( ))i i

i

h�

��
� � � ��� � ��� (III)

On the other hand, (�
1
 o h)�(�

i
)(x) = �

i
(�

1
(h(x))) = �

i
(�(x)) = ��(�

i
)(x) for all x � X,

similarly, (�
2
 o h)�(µ

i
) = ��(µ

i
). Thus, we have
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h�(�
i
) = h�(��

1
 (�

i
) �  ��

2
 (µ

i
)) = h�(��

1
 (�

i
)) �  h�(��

2
 (µ

i
))

= (�
1
 o h)�(�

i
) �  (�

2
 o h)�(µ

i
) = ��(�

i
) �  ��(µ

i
).

It follows

� (h�(�)) = ( ( )) ( ( ))i i
i i

h h� �

�� ��

� � �� �� �

= ( ( ) ( ))) ( ( ( )) ( ( )))i i i i
i i

T� � � �

�� ��
� � � � � � � � �� � ��� �

( Since � and � are LF- continuous,)

� 1 1 2( ( ) ( )).i
i��

� �� �� �

It is a contradiction for the equation (III).

From Theorems 3.6 and 3.7, we can obtain the following corollaries.

Corollary 3.10: Let {(X
i
, �

i
)}

i�� be a family of (2, M)-fuzzifying topological
spaces, X a set and for each i � �, f

i
 : X � X

i
 a map. Define a map � : P(X) � M on

X by

�(A) = 1
1 1{ ( ) ( )}.

j j j j

n n
j k k j k k

i

B A f B�
� �

��
� �� � �

where W is taken over all finite subsets K ={k
1
, …, k

n
}���.

Then:

(1) � is a (2, M)-fuzzifying base on X.

(2) (2, M)-fuzzifying topology �� generated by � is the coarsest (2,M)-fuzzifying
topology on X for which all f

i
,i � �, are fuzzifying continuous.

(3) A map f : (Y, ��) � (X, ��) is fuzzifying continuous iff for each i � �, f
i
 � f :

(Y, ��) � (X
i
, �

i
) is fuzzifying continuous.

Corollary 3.11: The forgetful functor W : (2, M)-TOP � Set defined by
W(X, �) = X and W( f ) = f is topological.

Theorem 3.12: Let (X, � ) be an (L, M)-topological space. We define a function
�� : P(X) � M as follows:
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�
�
 (A) = 1 1{ ( { ( ) , }) }.m X m

i r i i i
r

L A B� �
��

� �� � � � ��� ��� �

Then:

(1) b
�
  is a (2, M)-fuzzifying base on X.

(2) .
��

�
�

� �

Proof: (1) (B1) It is trivial.

(B2) Suppose there exist A,B � P(X) such that

�
�
 (A � B) ��  �

�
 (A) � �

�
 (B).

By definition of �
�
 and (M3), there exist two finite families {A

i
�A = �m

i=1
A

i
} and

{B
j
 � B = �n

j=1 
B

j
} such that

�
�
 (A � B) �� 1( { ( ) ,( ) })m X

i i i r i
r

L A�
��

� �
� �� � �� �

� �
����

1( { ( ) ,( ) })n X
j j j s j

s L

L B�
�

� �
� �� � �� �

� �
���� �

Also, there exist r, s � L such that

�
�
 (A � B) �� 1( { ( ) ,( ) })m X

i i i r i
r

L A�
��

� �
� �� � �� �

� �
���

1( { ( ) ,( ) })n X
j j j s jL B�

� �
� �� � �� �

� �
��� �

On the other hand, since A � B = (�m
i=1

A
i
) � (�n

j=1
B

j
) = �m

j=1
 �n

j=1
 (A

i
 � B

j
), we have

�
�
 (A � B) = ,{ ( { ( ) ( ) })}i j i j i j r i j

r

A B
��

� � � � �� � �� ��� �
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� ,{ ( { ( ) ( ) })}i j i j i j r i j
r L

A B
�

� � � � �� � ���� �

� ,{ ( { ( ) ( ) ( ) })}i j i j i j r i j
r L

A B
�

� � � � �� �� ���� � �

� 1{ ( { ( ) ,( ) })}m X
i i i i r i

r L

L A�
�

� � � � �����

1( { ( ) ,( ) })n X
j j j r j

r L

L B�
�

� �
� �� � �� �

� �
���� �

� 1( { ( ) ,( ) })m X
i i i r iL A�

� �
� �� � �� �

� �
���

1( { ( ) ,( ) })n X
j j j s jL B�

� �
� �� � �� �

� �
��� �

It is a contradiction. Thus, the condition (B2) holds.

(2) Since ( ) r L�� � �� � �
��

� � ((�)
r
) for all � � LX, by the definition of �

�
 ((�)

r
),

there exists a family {�
r
 � �

r
 � P(X)} such that �

�
 ((�)

r
) � � (�). Hence 

�� �
� � � .

Theorem 3.13: Let � be a (2, M)-fuzzifying topological space. Then 
�� �
� = � .

Proof: For each A � P(X), there exists 1
A
 � LX such that �

r
�

L
� ((1

A
)

r
) = � (A). It

implies 
��� � (A) � � (A).

Conversely, suppose there exist B � P(X) such that

��� � (B) �� � (B).

By definition of 
��� �  and (M3), there exists a family {B

i
 � B = �

i�� Bi} such that

� (B) 
�

��
� �� � ( )� i

i

B .

Since M is a completely distributive lattice, for each i � �, by definition of 
�

��  (Bi)

and (M 3), there exists a f inite family { Bij
 � B

i
 = �m

j=1
Bij

} such that
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�(B) � �
�� ��

� �
� � � � � �� � �

� �
� �1( { ( ) ,( ) })�   j j j j

m X
i i i i r i

i r

L B

Also, there exists r � L such that

�(B) � �� �
��

� � � � � �� � �1{ ( ) , ( ) })� j j j j

m X
i i i i r i

i

L B

= �
�� �

� �
� � � � � �� �

� �
� 1{ (( ) , ( ) })� � j j j j

m X
i i s i i r i

i s L

L B

Since � � � � � � � �(( ) (( ) ( ),� j j ji s i r is L
B  we have

�(B) � ��
��

� �� � 1 ( )� j

m
i i

i

B .

On the other hand, since B = �
i��(�

m
j=1

Bij
), we have

� �1( ) ( ) .
j

m
i i

i

B B�
��

� � �� �

It is a contradiction. Hence .
��� � �
�

Theorem 3.14: Let (X, �
1
) and (Y, �

2
) be (L, M)-topological spaces.

If � : (X, �
1
) � (Y, �

2
) is LF-continuous, then � : (X, 

1
�� � ) � (Y, 

2
�� � ) is fuzzifying

continuous.

Proof: For each A � P(X), we have

2
( )A�� = 1 2 1{ ( { ( ) ,( ) }) }m X m

i i i i r i i i
r L

L B A B� �
�

� � � � � ��� ��� �

� 1 1 1{ ( { ( ( )) ( ( )) ( )}) ( ) ( )}m m
i i i r i i i

r L

B A B� � � � �
� �

�
� � � � � � � � ��� ��� �

� ( ( )).A�� �
��

32



(L, M)-Topologies and (2, M)-Fuzzifying Topologies 143

It implies 
2 1
( ) ( ( )).A A�

� �� � � �
� �

From Theorems 2.4 and 2.6, a functor G : (2, M)-TOP � (L, M)-TOP is defined
by G(X, � ) = (X, ��) and G( f ) = f. From Theorems 3.12 and 3.14, a functor H : (L, M)-

TOP � (2, M)-TOP is defined by H(X, � ) = (X, �� � ) and H(� ) = �.

Theorem 3.15: A functor H : (L, M)-TOP � (2, M)-TOP is a left adjoint of the
functor G.

Proof: For each (X, � ) � (L, M)-TOP, since G � H(� ) = 
��
�

�
� �  from Theorem

3.12(2), then 1
X
 : (X, � ) � (X,G � H(� )) is LF-continuous. In fact, 1

X
 is the universal

map for (X, � ). Let � : (X, � ) � G(Y, � ) be a morphism in (L, M)-TOP. Then � =
H(�) : (X, ��

�
) � (Y, � ) = H � G(Y, � ) is fuzzifying continuous. Hence the result

follows.

We may consider (2, M)-TOP as a bireflective subcategory of (L, M)-TOP.
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