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1. INTRODUCTION AND PRELIMINARIES

Since Chang [1] introduced a fuzzy topology, many authors have discussed various
aspects of fuzzy topology. However, in a completly different direction, Hohle [2]
created the notion of a topology being viewed as an L-subset of a powerset. Kubiak
[6] and Sostak [11] independently exteneded Hohle’s notion to L-subsets of LX.
Kotz¢é [5] introduced an (L,M)-topological space as a general approach where L and
M are frames with 0 and 1.

In this paper, we introduce notions of (L, M)-topological spaces as an extension
of that of Kotzé [5]. Here, L is a completely distributive lattice with with 0 and 1 and
M is a strictly two-sided, commutative quantale as an extension of a frame. We
investigate the relation between (L, M)-topological spaces and (2,M)-fuzzifying
topological spaces. We show the existence of initial (L, M)-topological structures.
From this fact, the category (L, M)-TOP is a topological category over Set.

In this paper, let X be a nonempty set and L = (L, <, V, A, ' ) a completely
distributive lattice with the least element O and the greatest element 1 in L with an
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order reversing involution '. The family L* denotes the set of all fuzzy subsets of a
given set X. Foreach a € L, let & denote the constant fuzzy sets of X. We denote the
characteristic function of a subset A of X by 1,.

Definition 1.1: [5] Let L and M be frames. A map 7 : L*¥ — M is called an
(L, M)-topology on X if it satisfies the following conditions:

(1) T(0)=7T(1)=T,

2) T A pw)2TW) A T(w,), forallp,p, L

3) T(V_, m)=A,_, T(u),forany {u} _, < L¥
The pair (X, 7) is called an (L, M)-topological space.

Let M =M, <, V, A, L, T) be a completely distributive lattice with the least
element L and the greatest element T in M.

Definition 1.2: [10] A triple (M, <, ©) is called a strictly two-sided, commutative
quantale (stsc-quantale, for short) iff it satisfies the following properties:

M1) (M,0®) is a commutative semigroup,
M2) a=aOT,foreacha e M,

(M3) O isdistributive over arbitrary joins, i.e.,

[\/a,}@b= \/(a; ©Ob).

iel’ iel

Remark 1.3: [10](1) Each frame is a stsc-quantale. In particular, the unit interval
([0, 1], £, A, 0, 1) is a stsc-quantale.

(2) Every left continuous t-norm ¢ on ([0, 1], <, ) with © =t is a stsc-quantale.
(3) Every GL-monoid is a stsc-quantale.

Lemma 1.4: [10] Let (M, <, ©) be a stsc-quantale. For eachx,y,z e M, {y.|i €
I'} « M, we have the following properties.

(DIfy<zthen(xQy)<(xO2).
2)xOy<x Ay.
B)EVY)OGVW) <XV VHOw).
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2. (L, M)-TOPOLOGICAL SPACES

Definition 2.1: A map 7' : L*¥ — M is called an (L, M)-topology on X if it satisfies
the following conditions:

(LO1) T(0)=T(1)=T,

(LO2) T(u, A u)=TW)OT(y,), forallp, p, € L¥,

(LO3) T(Vv,_, w)=A_, T(u), forany {u},_, < L¥
The pair (X, 7) is called an (L, M)-topological space.

Let 7, and 7, be (L, M)-topologies on X. We say that 7, is finer than 7, (7, is
coarser than 7)), denoted by 7, <7, if Z(A) <7 () for all A € L*.

Let (X, 7)) and (Y, 7)) be (L, M)-topological spaces. A map ¢ : (X, 7)) = (¥, 7))
is called LF-continuous io. T,(A) <7 (¢$<(1)), forall A € L". The category of (L, M)-
topological spaces and LF-continuous maps is denoted by (L,M)-TOP.

Remark 2.2: Let L = {0, 1} be given and 2¥= P(X) in asense 1, € 2*iff A
P(X). Amap 7: P(X) = M s called a (2, M)-fuzzifying topology on X if it satisfies
the following conditions:

ODHTX)=7(0)=T,

(02)t(ANB)>1(A) ©1(B), forall A, B € P(X),

03)tU_,A)> A _, t(A), forany {A} < P(X).

ieA

The pair (X, 7) is called a (2, M)-fuzzifying topological space.

Let (X, 7,) and (¥, 7,) be (2, M)-fuzzifying topological spaces. A function f: (X,
t,) = (Y, 1) is called fuzzifying continuous iff

T,(4) <7 (f(A)), VA € P(Y),

(2, M)-TOP denotes the category of (2, M)-fuzzifying topological spaces and
fuzzifying continuous functions.

Remark 2.3: (1) If (L =10, 1], A) and M = {0, 1}, (L, M)-topological space is
the concept of Chang [1].

2) f(L=M=][0, 1], ©= A), (L, M)-topological space is the concept of Kubiak
[6] and Sostak [11].
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B)IfL={0,1}and (M =10, 1], ©= A), (L, M)-topological space is the concept
of Ying [12,13].

(4) If L and M are frames with O and 1, (L, M)-topological space is the concept of
Kotzé [5] in Definition 1.1.

Theorem 2.4: Let (X, t ) be a (2, M)-fuzzifying topological space. We define a
function T_: LX — M as follows:

T.W \R,)

relL
where A = {x € X : Mx) > r}: Then T_is an (L, M)-topology.
Proof: (LO1) Clear.
(LO2) For each A, u € L*, we have
(AW = At(AAw),)= AT, Np,)

reL relL

> A (1) 0t(k)) 2 AT, O ATR,)

reL reL relL

=T MOT. (.
(LO3) Since (V,_, 1), =U,

e (pj.)r, we have

T.(\/w = /\{U(u,-),}z AWARCHS

jeJ rel \ jeJ reL jeJ

YANWAN T((Hj)r) = /\,TT(M])

jeJ relL jeJ

Lemma 2.5: Let A € P(X) and oo € L— {0}. Then T _(al,) =1 (A).

Theorem 2.6: Let (X, t,) and (Y, 1,) be (2, M)-fuzzifying topological spaces. A
mapping f: (X, 1) = (Y, 1,) is fuzzifying continuous iff f: (X, T ) — (Y, T, ) is LF-
continuous.
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Proof: For each p € L', we have

T, (<) = Au(f“W)) 2 AnM,) =T, W.

reL relL
Conversely, suppose there exists A € P(X) such that z,(f~'(A)) % 1,(A). Itimplies

T.(1,,)=7,(f(A) 2 t,A) =T (1.
Example 2.7: Let X = {x, y, z} be a set. Define a binary operation ® on M = [0,
1] by x ® y = max{0, x + y—1}. Then (M = [0, 1], £,®) is a stsc-quantale. Define a
(2, M)-fuzzitying topology t : P(X) — [0, 1] as follows:

1, if Ae{o, X}
0.8, if A={x,y}
©(A)=410.6, if A={y}

0.7, if B={y,z}

0, otherwise

For A, u € [0, 1] with
A(x)=0.3,A(y)=0.7,M(2) = 0.5, u(x) = 0.7, w(y) = 0.2, u(z) = 0.5,

we have

M), € {{y}s {2} 0, X3, (Wr e {{x}, {x, 2}, 0, X}.
Hence 7_(X) =0.6 and 7_(p) = 0.

3. PRODUCTS AND SUBSPACES OF (L, M)-TOPOLOGICAL SPACES

Definition 3.1: A map B : L* — M is called an (L, M)-fuzzy base on X if it
satisfies the following conditions:

(LB1) B(1)=B(0)=T.
(LB2) B(u, A p,) = B(u) © B(w,), forall u, p, € L.

Remark 3.2: By the sense of Remark 2.2, amap 3 : P(X) > M is called a (2, M)-
fuzzifying base on X if it satisfies the following conditions:

BHBX)=pO) =T
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(B2) B(A N B) = B(A) O B(B), for all A, B € P(X).

An (L, M)-fuzzy base B always generates an (L, M)-topology 7, on X in the
following sense.

Theorem 3.3: Let B be an (L, M)-fuzzy base on X. Define a map T, : L* — M as
follows:

I = \/{/\ B = vu]}-

JjeA jeA
Then 1 is the coarsest (L, M)-topology on X such that T (L) = B(A), for all ). € L*.
Proof: (LO1) It is trivial from the definition of '];3.

(LO2) For two families {A[A = \/jEA A} and {p|n :\/kEr u,
completely distributive lattice, there exists a family {Aj /\ u, } such that

}, since L is a

AAp=(VADAND = A

JjeA keA jeN kel
It implies
TAAW 2 A BO;AW)
JjeA kel
>

A (B, ©B(,)) (by Definition 3.1 (LB2))

jeN kel

v

(ABODOCABED: by L emma 1.4(1))
JjeA keA
For all families {kj | A= Vi 7»/.} and {p, |u=V
AW 2T ) O T(W.

(LO3) Let J, be the collection of all index sets K such that {A; € L¥| A = Viex,
Ay withA=V._ A =V__ Vi A, Foreachi e I' and each ye I1._ J with y(i) =
K, we have

}, by Definition 1.2 (M3), 7,(A

kel l'lk
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T,00 = ACABO,)).

iel' keK;

Puta, = VAN keK B(\;). From (I),

(i

TN 2/ (N%iya)

yellerJ; iel
(Since L is a completely distributive lattice,)

= ACV aw)=A\C\/ CA BR, )

iel' M;eJ; iel' M;eJ; meM;
iel’
Thus 7, is an (L, M)-topology on X.
If 7> B, forevery A= V_, A

jeN "7

T2 AT )2 ABQ)

JjeA JjeA
Thus 7>7,.

From Theorem 3.3, we easily prove the following lemma.

@

Lemma 3.4: Let T be an (L, M)-topology on X and 5 be an (L, M)-fuzzy base on
Y. Then amap ¢ : (X, 7) — (¥, 7,) is LF-continuous iff 7(¢p~(A)) > B(}), for each

re LY.

Corollary 3.5: Let B be a (2, M)-fuzzifying base on X. Define amap t, : P(X)

— M as follows:

T, (A) = \IAB(A)|A=] 4)).

jeA jeA

Then:

(1) 7, is the coarsest (2, M)-fuzzifying topology on X such that 7, (A) B(A), for

all A € P(X).
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(2)amapf: (Y, 1) > (X, T,) is fuzzifying continuous iff z* (f~'(A4)) > B(A), for
each A € P(Y).

Theorem 3.6: Let {(X, T)}, . be a family of (L, M)-topological spaces, X a set
and for each i € T, ¢,: X — X a map. Define a map B : L* — M on X by

B(w = \A{0' Tk_,- (Vi )|“ = /\?:14); (Vi )}

where V is taken over all finite subsets K = {k, ..., k }c .
Then:
(1) Bis an (L, M)-fuzzy base on X.

(2) The (L, M)-topology 1, generated by B is the coarsest (L, M)-topology on X
forwhichall f,i € T, are LF-continuous maps.

3 Amap ¢: (Y, T) - (X, T, is LF-continuous iff for eachi € T', .0 ¢ : (Y, T")
— (X, T) is LF-continuous map.

Proof: (1) Since A = ¢ (1) for each A € {0, 1}, B(1) = B(0) =T.
(B2) For all finite subsets K = {k , ..., kp} andJ={j, ...,jq} of I' such that

A= ALde (v )n=VEL 0% (1)),

we have

AN U= (N (I)Z (7\“/@ N AN (I);?(Hji ).
Furthermore, we have for each k € K J,
d)(k_o\'k)/\d)k(_(uk) = ¢k(_(7\‘k A Hg)-

Put AAp=A,, kys 0y, (P, ) Where

- ifm e K—(KNJ)

P =1 b itm eJ—(KNJ)
M AW, ifm; e K.
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Since T . (A

mi mi

Ap )T (A )OT (u )form e K[)J, wehave
Bh A w) 20e,,,Z(p)
2 (O, T DO, T, (W)
By Definition 1.2 (M3), B(A A p) = B(L) O B(p).

(2) For each A, € L*, one family { o5 (A)}andi e T, we have

T,(br (M) = B(o (h) > T;(A).
Thus, for each i €T, ¢, : (X, 7,) = (X,, 7)) is LF-continuous.

Let¢.: (X, 7°) = (X, T) be LF-continuous, that is, for each i € I' and A, € L¥,
To(di (X)) = T(A). For all finite subsets K = {k, ..., kp} of I' such that A =

AL 0% (ht,), we have
TO0)= 0L, T (05 (0
2 Olz?:l Tki (}\ki) .

It implies 7°(A) > B() for each A € L*. By Theorem 3.3, 7°> 7.
3)=)Let¢: (¥, T") — (X, 7, be LF-continuous. For each i € I'and A, € L,

we have
T'((9,0 )X ) =T" (6 (AN = T (¢ (R)) =2 T(X).
Hence ¢.0 ¢ : (Y, 7") = (X, 7)) is LF-continuous.
(<) For all finite subsets K = {k , ..., kp} of I" such that A = A?_ ¢_ (A, ), since ¢,0 ¢
:(Y,T") > (X, 7,) is LF-continuous,

7o (05, AN 2T, (A,). dn
Hence we have

T'(0(W) =T ALdg A ) =T (AL 6" @ ()
> OL T'(07 (95 (A, 2 OL Ty (hy,)- (by (ID)

Itimplies 7"(¢<—(1)) = B(A) forall A € L*. By Lemma 3.4, ¢ : (Y, 7") — (X, 7)) is
LF-continuous.
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Theorem 3.7: The forgetful functor V : (L, M)-TOP — Set defined by V (X, T)
=X and V () = ¢ is topological.

Proof: By Theorem 3.6, every V-structured source (¢, : X — (X, 7)))._. has a
unique V-initial lift (¢, : (X, 7,) — (X, 7))),_ such that V (X, 7,) = X and V (¢, = ¢..

From Theorem 3.6, we can define a product (L, M)-topology and a subspace of
(L, M)-topology.

Definition 3.8: Let {(X, 7)} . be a family of (L, M)-topological spaces,
X=TI__ X aproduct setand for eachi e I', &, : X — X a projection map. The product
(L, M)-topology is the coarsest (L, M)-topology on X for which all i € T', are LF-
continuous maps. Let (X, 7) be an (L, M)-topological space, A a subsetand i : A —
X an inclusion map. Define a map 7, : L* — M on A by

T,W=\ {TWlp=i"(v)}.
Then (A, 7)) is called a subspace of (X, 7).

Theorem 3.9: Let ¢ : (X, T) — (Y, 7)) and y : (X, T) — (Z, T,) be LF-continuous.
Define a function h : X - Y X Z by

h(x) = (§(x), y(x)).

Then h : (X, T) — (Y x Z, T, ® T)) is LF-continuous where I, ® T is a product
(L, M)-topology of (Y, T)) and (Z, T).

Proof: Suppose there exists p € L™ such that
T(h(p) £ T, ®T(p).
Let Bbe an (L, M)-fuzzy base for 7, ®7. By the definition of 7, ® 7, there exists a
family {p, | p =/, p:} such that
T(h(p)2\/ Bp;)
iel’

By the definition of B, for each i € T, there exist A, € L" and p, € L* with p. =1} (L)
A 1) (u) such that

T ()2 AT OTH (1)) (IID)

On the other hand, (wt, 0 h)“(?ul.)(x)ii A (r,(h(x))) = A ($(x)) = ¢ (X)(x) forall x € X,
similarly, (7, 0 7)“(u) =V~ (u). Thus, we have
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h(p) =h(n(A) A T (W) =h(t; X)) A k(s (0))
=(m o) “(A) A (T, 0 ) (1) =0"(A) A y ().
It follows

T(he(p) = TH(O\/p) 2z NT (R (p)

iel’ iel’

AT OTAIAYT @) 2 AT O A OT (W (1))

iel’ iel’
( Since ¢ and y are LF- continuous,)

> AT O T, (1)),

iel’
It is a contradiction for the equation (I1I).

From Theorems 3.6 and 3.7, we can obtain the following corollaries.

Corollary 3.10: Let {(X, z)},__be a family of (2, M)-fuzzifying topological
spaces, X a set and foreach i € T', f, : X — X, amap. Define amap 3 : P(X) - M on
X by

B(A) = \/{O]amy, By )| A=Vt £ (B}
A A . .

where W is taken over all finite subsets K ={k , ..., k }c I.

Then:

(1) B is a (2, M)-fuzzifying base on X.

(2) (2, M)-fuzzifying topology T generated by f is the coarsest (2,M)-fuzzifying
topology on X for which all f,i € T', are fuzzifying continuous.

B)Amapf: (Y, 1) - (X, TB) is fuzzifying continuous iff foreachi € I, f o f
(Y, t') > (X, 1) is fuzzifying continuous.

Corollary 3.11: The forgetful functor W : (2, M)-TOP — Set defined by
W(X, 1) = X and W( f) =fis topological.

Theorem 3.12: Let (X, T) be an (L, M)-topological space. We define a function
Bt : P(X) > M as follows:
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B, (A) = \J{OIL (\/\AT M e X n, =B A= B}

rel’

Then:
(1) b, is a (2, M)-fuzzifying base on X.

2) TEBT >T.
Proof: (1) (B1) Itis trivial.
(B2) Suppose there exist A,B € P(X) such that

B,(ANB) £ B, (A) OB, (B).
By definition of B, and (M3), there exist two finite families {A |A = ﬂ;’ilAi} and

{B,|B= ﬂ;?zl B } such that

B,(ANB) 2 [@’in:l(\/\/{7—(7%)‘7L € LX’(}\'i)r = Ai})j

rell

QEQZLI(\/\/{T(MJ')P\' € LX,(Hj)s = Bj})j

seL

Also, there exist r, s € L such that

rel’

B,(ANB) % [O’in:l(\/{lf(ki) Le LX’(}\'i)r =Ai})]

OEQZLI(\/{T(HJ')‘}L € LX,(Hj)s = Bj})j
On the other hand, since A (1B = (1", A) (ﬂ;?lej) =, M, AN B), we have

=1 Yi=1

BLANB) = \AO,, (\V\AT (s Awp|(hy Awy), = A NB D)

rel’
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> {0, ;O\ \AT A Ay, = A NB)

reL

> {@ivj(\/\/{T(k,-)QT(uj)‘(K,- ARy, =ANBH)

reL

> (O (VAT Oy € L5, = AD)

relL

(D[@r;ﬂ(\/\/{T(Mj)‘)L € LX’(uj)r = Bj})j

relL

= [@’itl(\/{?—(}‘i)‘7L € LX,Ow)r = Ai})j

OEQZLI(\/{T(HJ')‘}L € LX’(uj)s = Bj})j

It is a contradiction. Thus, the condition (B2) holds.

(2) Since TEBT M) =Ner T3, ((0)) for all A € L*, by the definition of _((A)),
there exists a family {A | A € P(X)} such that $_(()) =7 (). Hence Tfﬁf >T.

Theorem 3.13: Let t be a (2, M)-fuzzifying topological space. Then Tfﬁf =T.

Proof: For each A € P(X), there exists 1, € L*such that A €,T((1,))=1(A). It
implies T, (A)=1(A).

Conversely, suppose there exist B € P(X) such that

T, (B) £1(B).
By definition of T, and (M3), there exists a family {B.| B = Ul,Er Bi} such that
T(B) £ /\ B’TT(Bi)-
iel’

Since M is a completely distributive lattice, for each i € I', by definition of Bz (Bi)
and (M 3), there exists a finite family {Bl.j | B, = ﬂ’”jleij} such that
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uB)2z /\(O’iﬁl(\/ \VAUE (7%‘_,-) 7‘:‘_]- € LX’(}\'ij)r =B; })j

iel’ rell

Also, there exists r € L such that

wB) 2 \(OLT0:)

iel’

ki_z‘ < LX’OL".;')’ - Bi.f }))

- A [e';; (AU i, € L. (1), = By })j

iel seL

Since /\ ., ®((A; ) < (X)), =U(B; ), we have

w(B) * /\(@S’ilr(Bij)).

iel’

iel’N =11

On the other hand, since B=U. (" B.j), we have

(B)> /\(Q?ilr(Bij)).

iel’
It is a contradiction. Hence T3, <.
T

Theorem 3.14: Let (X, 7)) and (Y, T)) be (L, M)-topological spaces.

Ifé: (X, 7)— (Y, 1) is LF-continuous, then ¢ : (X, Tp,, )— (Y, T, ) is fuzzifying

continuous.

Proof: For each A € P(X), we have

Br, (A) = IO O\ VAT Py € 1,04, = B )| A= B)

relL

VIO O VAT @ 0|0 (), =67 (BID[6 () =M 6 (B)

relL

IA

IA

Br (0 (A)).

32



(L, M)-Topologies and (2, M)-Fuzzifying Topologies

It implies T, (A)< Tg, 0 (A)).

From Theorems 2.4 and 2.6, a functor G : (2, M)-TOP — (L, M)-TOP is defined
by G(X,t)=(X, 7) and G( f) =f. From Theorems 3.12 and 3.14, a functor H : (L, M)-
TOP — (2, M)-TOP is defined by H(X, 7) = (X, ‘EBT) and H(¢ ) = ¢.

Theorem 3.15: A functor H : (L, M)-TOP — (2, M)-TOP is a left adjoint of the

functor G.

Proof: Foreach (X, 7) € (L, M)-TOP, since Go H(T) = TTM >7 from Theorem
3.12(2),then 1, : (X, 7) — (X,G 0 H(T)) is LF-continuous. In fact, 1, is the universal
map for (X, 7). Let ¢ : (X, 7) > G(Y, T ) be amorphism in (L, M)-TOP. Then ¢ =
H(9) : (X, TBT) — (Y, 1)=H o G(Y, t) is fuzzifying continuous. Hence the result
follows.

We may consider (2, M)-TOP as a bireflective subcategory of (L, M)-TOP.
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