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Abstract: In this study, thermal performance of a convective porous fin with variable cross section
has been investigated using a simulation method called Optimal Homotopy Asymptotic Method
(OHAM). The concept of OHAM is briefly introduced, and then employed it to derive solutions of
governing nonlinear equation. The obtained results from this method are compared with those from
the numerical solution to verify the accuracy of the proposed method. It is found that the OHAM can
achieve suitable results in predicting the solution of such problems. Also the effects of some physical
applicable parameters in this problem on temperature distribution and fin efficiency have been analyzed.
The results show that increasing porous parameter, convective parameter or fin profile parameter
lead to decreasing both the temperature variation and fin efficiency which indicated significantly of
these parameters.

Keywords: Porous fin, Thermal performance, Variable cross section, Optimal homotopy asymptotic
method (OHAM).

Enhancement the rate of heat transfer has been concerned in many thermal engineering
applications especially in cooling systems for electronic equipment, chemical processes, energy
systems equipment and high performance heat exchangers. Extended surfaces or fins are practical
and efficient means of enhancing heat transfer between a primary surface and its environment
where increasing the heat transfer coefficient is not an option. Fins are frequently used in
engineering to enhance the rate of heat transfer on a solid surface. For the cases of constant
heat transfer coefficient or constant cross section, the analytical solutions of temperature
distribution as well as heat transfer rate can be easily obtained. However, in some situations
such as fins in with variable cross section the heat transfer coefficient is no longer uniform and
varies with the temperature difference between the surface and the adjacent fluid in a nonlinear
manner. Consequently, the equation for temperature becomes highly nonlinear and is difficult
to obtain an analytical solution. Also these extended surfaces are widely applied in various
industrial applications. Due to this fact, fins have been the topic of many studies and extensive

59

Received:  11th  April 2018,  Accepted:  27th  June2018



researches have been done in this area and many references are available (see e.g., Refs. [1-7]).
In the present paper, the governing nonlinear differential equation is solved by Optimal
Homotopy Asymptotic Method (OHAM) to assess thermal performance of a convective porous
fin. The influence of various parameters namely, porous parameter (S

h
), Convective parameter

(m) and fin profile parameter ( ) upon temperature variations as well as fin efficiency are
investigated.

Most scientific problems demonstrate themselves in the mathematical relations that are
modeled principally by ordinary or partial differential equations but there are few phenomena
in different fields of science occurring linearly. Most of problems and scientific phenomenon
such as heat transfer ones function nonlinearly.

Analytical solution would not able to solve these equations generally because they are
innately of nonlinearity; therefore, special techniques should be applied to solve them. In most
cases, the solution can be obtained either by numerical techniques [8-9] or by method of
perturbation [10-11]. In the case of numerical methods, stability and convergency should be
considered due to avoid inappropriate results. On the other hand, in perturbation method, the
small parameter should be exerted on the equation. Thus, finding the small parameter is
deficiency of this method. For this reason, some different techniques have recently introduced
to eliminate the small parameter including Homotopy Perturbation Method [12-14], Differential
Transformation Method [15-17], Homotopy Analysis Method [18-21] and so forth.
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One of the semi-exact methods which does not require the small parameter is OHAM
which is powerful method for solving nonlinear problems. This method has already been applied
successfully to solve many engineering problems by some authors [22-24].

In this research, thermal performance of a convective porous fin with variable cross section
has been investigated using a simulation method called Optimal Homotopy Asymptotic Method
(OHAM). Numerous studies have devoted to the analysis of fin performance of this type of
problems due to its important application in engineering and heat transfer applications. Mueller
and Abu-Mulaweh [25] studied the efficiency of horizontal single pin fin subjected to free
convection and radiation heat transfer. Mokheimer [26] investigated locally variable heat transfer
coefficient on the performance of extended surfaces subject to natural convection. Kang and
Look [27] presented optimum designs of a thermally asymmetric convecting and radiating
rectangular annular fin. Razelos and Kakatsios [28] determined the optimum dimensions of
convecting–radiating heat transfer fins. Yu and Chen [29] performed a study on optimization of
circular fins with variable thermal parameters.

The objective of this study is to apply the Optimal Homotopy Asymptotic Method to
investigate a convective porous fin with variable cross section based on the OHAM solution;
while in previous studies [30-31], the simplest case, rectangular fin profile has been investigated.
Moreover, we have made a comparison with the numerical solution via well-known fourth
order Runge–Kutta method to check the validity of this method. The results showed that the
method has many merits including fast convergence and high accuracy.

We consider a longitudinal porous fin of exponential function profile as shown in Fig. 1, which
extends into a fluid of temperature T  and the base is maintained at constant temperature T

b
.

Let the fin length be L, width W and its thicknesses at the base b. This fin is porous to allow the
flow of infiltrate through it. With the assumption of one-dimensional heat conduction along the
fin, steady-state operation and also considering the fact that the porous medium is isotropic and
saturated with single-phase fluid; an energy balance applied to a differential element according
to Fig. 2 yields:

Figure 1: Schematic Diagram of Porous Fin Under
Investigation

Figure 2: Control Volume for Thermal Analysis
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convection ( )x x dx pQ Q Q mC T T��� � � �� � � � . (1)

Where, m
.
  accounts for mass flow rate of the fluid passing through the porous material can

be written as,

wm WV dx� �� . (2)

From the Darcy’s model we have,

( )w
g K

V T T�
�

� �
�

. (3)

With the use of standard expressions for conduction, convection the energy balance which
can be written as,

2( ) ( ) 0
x

p
L

eff

g K C Wd dT hW T T T Tk W bedx dx

��
� �

� �� �
� � � � �� � �� �

. (4)

By introducing x
L

X � , 
b

T T
T T

�

�

�
�� �  and some manipulating we have,

2
2 2

2
( ) 0X

h
d d

e S m
dxdx

�� �
� � � � � � � . (5)

Where, 2( )a

r

D xRa L
h bk

S �  is porous parameter and 
2 1/ 2( )

eff

hL
k b

m �  is convective parameter of
the fin. Note that the temperature at the base of the fin is uniform T

b
 and also there is no heat

transfer from the tip of the fin; boundary conditions for Eq. (5) can be written as:

0
1

X �
� � (6)

and

1

0
X

d

dX �

�
� . (7)

The efficiency of the fin  defined as the ratio of actual heat transfer to the other side while
whole fin surface is at the same temperature which can be expressed as:

1
actual 0

ideal 0

( )

( )

L

b

hW T T dx
Q

dX
Q hWL T T

�

�

�

� � � � �
�

�
� . (8)

We apply the OHAM to the following differential equation:

( ( )) ( ) ( ( )) 0L u g N u� � � � � � , ( ) 0B u � . (9)
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Where L is a linear operator,  denotes independent variable, u
 
( ) is an unknown function,

g
 
( ) is a known function, N

 
(u

 
( )) is a nonlinear operator and B is a boundary operator. Through

OHAM one first constructs a family of equation:

(1 ) [ ( ( , )) ( )] ( ) [ ( ( , )) ( ) ( ( , ))]p L p g H p L p g N p� � � � � � � � � � � � � ( ( , )) 0B p� � � . (10)

Where p  [0,1] is an embedding parameter, H
 
(p) is a nonzero auxiliary function for p  0

and H
 
(0) = 0, 

 
( , p) is an unknown function, respectively. Clearly, when p = 0 and p = 1, it

holds that:

 
( , 0) = u

0
( ),

 
( , 1) = u

 
( ). (11)

Hence, when p increases from 0 to 1, the solution 
 
( , p) varies from u

0
( ) to the solution

u
 
( ), where u

0
( ) is obtained from Eq. (10) for p = 0:

L
 
(u

0
( )) + g

 
( ) = 0, B

 
(u

0
) = 0. (12)

We choose the auxiliary function H
 
(p) in the form

H
 
(p) = pC

1
 + p2C

2
 + ... (13)

Where C
1
, C

2
, … are constants which can be determined later. Expanding 

 
( , p) in a series

with respect to p, one has

0
1

( , , ) ( ) ( , ) , 1, 2, ...k
i k i

k

p C u u C p i
�

� � � � � � �� (14)

Substituting Eq. (14) into Eq. (10), collecting the same powers of p, and equating each
coefficient of p to zero, we obtain set of differential equation with boundary conditions. Solving
differential equations by boundary conditions, u

0
( ), u

1
( , C

1
), and u

2
( , C

2
), … are obtained.

Generally, the solution of Eq. (9) can be determined approximately in the form:

( )
0

1

( ) ( , )
m

m
k i

k

u u u C
�

� � � ��� . (15)

Considering that the last coefficient C
m
 can be function of . Substituting Eq. (15) into

Eq. (9), there results the following residual:

( ) ( )( , ) ( ( , )) ( ) ( (( , ))m m
i i iR C L u C g N u C� � � � � � �� � . (16)

If R
 
( , C

i
) = 0 then u~ (m) ( , C

i
) would be the exact solution. As a whole, such a case will not

arise for nonlinear problems, but we can minimize the functional:

2
1 2 1 2( , , ..., ) ( , , , ..., )

b

n m
a

J C C C R C C C d� � �� . (17)

Where a and b are two values, depending on the given problem. The unknown constants
C

i 
(i = 1, 2, …, m) can be identified from the conditions

1 2

... 0
J J

C C

� �
� � �

� �
. (18)

With these constants, the approximate solution (of order m) (Eq. (15)) is well obtained.
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In this section, OHAM is applied to nonlinear ordinary differential Eq. (5). According to the
OHAM, applying Eq. (10) to Eq. (5):

2 2(1 ) ( ) ( ( )) 0X
hp H p e S m��� �� �� � � � � �� � � � � � (19)

where primes denote differentiation with respect to X.

We consider H
 
(p) as,

H
 
(p) = C

1 
p + C

2 
p2. (20)

Substitution Eq. (20) into Eq. (19) and some simplification and rearranging based on powers
of p-terms, we have:

0
0

0 0

: 0,

(0) 1, (1) 0.

p ��� �
�� � � �

(21)

1 2 2
1 0 1 0 0 1 0 1 1 0

1 1

: 0,

(0) 0, (1) 0.

X X
hp C C S e C m e C� �� �� �� ���� � � � � � � � � � � �

�� � � �
 (22)

2 2
2 0 2 1 1 2 0 2 0 1 0 1 1

2 2
1 1 2 0 1 1

2 2

: 2

0,

(0) 0, (1) 0.

X X
h

X X
h

p C C C m e C C S e

C m e C S e C

� �

� �

�� �� � � ��� � � � � �� � � � �� � � � � �

��� � � � � � �
�� � � �

(23)

Since then, final expression for 
 
(X ) is:

0 1 2( ) ( ) ( ) ( ) ...X X X X� � � � � � � � (24)

From Eq. (16) by substituting 
 
(X ) into Eq. (5), R

1
(X, C

1
, C

2
) and R

2
(X, C

1
, C

2
) are obtained

and J
1
 and J

2
 can be attainable as follows:

1 2
1 1 2 1 1 20

1 2
2 1 2 2 1 20

( , ) ( , , ) ,

( , ) ( , , ) .

J C C R X C C dX

J C C R X C C dX

�

�

�

�
(25)

In the case of S
h
 = 1,  = 1 and m = 0.5, the constants C

1
 and C

2
 are obtained from Eq. (18) as:

1 20.2630553214 0.03804816506C , C� � � � (26)

By substituting Eq. (26) into Eq. (24), an expression for 
 
(X ) is obtained.

For various values of porous parameter (S
h
), Convective parameter (m) and fin profile parameter

( ) results of the present analysis are compared with numerical solutions obtained by fourth-order
Runge–Kutta in Fig. 3 and Table. 1. In these cases, a very good agreement between results is
observed, which confirms the validity of the OHAM. This investigation is completed by depicting
the effects of some important parameters to evaluate how these parameters influence the
temperature variations along axial distance and fin efficiency as well.
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Figure 3: Comparison Between the Solutions via OHAM and Numerical Solution for 
 
(X) when

(a) S
h
 = 0,  = 1, m = 0.3 (b) S

h
 = 0.1,  = 0.5, m = 0 (c) S

h
 = 0.1,  = 1, m = 0.5
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Fig. 4 shows the variation of dimensionless temperature along the fin while porous parameter
(S

h
) varies from 0.01 to 10. Note that we have chosen m = 0.5 and  = 1 here. As seen, when the

value of S
h
 increases, there is rapid decrease in the fin temperature at a given axial location.

Therefore, as the values of S
h
 increases, the fin cools down faster and tends to reach the

surrounding temperature accordingly.

Figure 4: Temperature Distribution Along the Porous
Fin with Variable Porous Parameter (S

h
)

when m = 0.5 and  = 1

Figure 5: Temperature Distribution Along the Porous
Fin with Variable Convective Parameter

(m) when S
h
 = 1 and  = 1

Fig. 5 indicates the effect of convective parameter (m) on temperature distribution along
the fin. It should be noted that values of S

h
 and  are constant here as S

h
 = 1 and  = 1. As shown

in Fig. 5, increase of m from 0.1 to 1 leads to decrease temperature along the fin. The influence
of different value of  on temperature distribution is illustrated in Fig. 6. Here we set S

h
 = 1 and

m = 0.5. It is observed that temperature is decreasing when  varies from 0.5 to 2.5; so this
matter brings about the fin cools down faster. In addition, it is seen that these profiles satisfy
the boundary condition at insulated tip where 

 
(1) = 0 asymptotically, which support the obtained

results by means of OHAM anyway.

Figure 6: Variation of the Fin Efficiency with the
Porous Parameter (S

h
) for Different Values

of the Convective Parameter (m) when  = 1

Figure 7: Variation of the Fin Efficiency with the
Porous Parameter (S

h
) for Different Values

of the Fin Profile Parameter ( ) when m = 0.5
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Figs. 6-7 represent the variation of the fin efficiency with S
h
 for different magnitudes of m

and . From both figs, one may realize that increasing the value of S
h
 leads to deterioration fin

efficiency. Furthermore, it is found that as the value of m decreases from 1 to 0.1, the fin
efficiency improves at a given value of S

h
. Similarly, the fin efficiency would increase with

decreasing the value of .

In this paper, thermal performance of a convective porous fin with variable cross section has
been investigated. A second order non-linear ordinary differential equation has been derived as
the governing equation, and then solved using the OHAM. To check the validity of OHAM
results, numerical solutions via fourth grade order Runge–Kutta was employed and a very
excellent agreement between the solutions obtained from OHAM was observed.

The effects of different parameters namely, porous parameter S
h
, convective parameter m

and fin profile parameter ë on temperature variation and fin efficiency were investigated. It
was found that increasing S

h
 by increasing either m or  decreases dimensionless temperature

profile as well as fin efficiency. Furthermore, it could be concluded that OHAM has a great
reliability inasmuch as it is effective tool in solving nonlinear differential equation arising in
convective porous fin with variable cross section.
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