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Abstract: We solve for temperature distribution of annular fins with time-dependent thermal
conductivity. To this end, Homotopy Perturbation Method (HPM) and Variational Iteration Method
(VIM) are employed to determine temperature distribution of the annular fin when thermal conductivity
varies in time. The results of HPM and VIM are compared with numerical results obtained by using
direct integration Runge-Kutta method.

Since thermal conductivity plays an important role on fin efficiency, we tried to solve heat transfer
equation with thermal conductivity as a function of temperature. In this research, some new analytical
methods called Homotopy perturbation method (HPM), Variational iteration method (VIM) are
introduced to be applied to evaluate the temperature distribution of annular fin with temperature-
dependent thermal conductivity and to determine the temperature distribution within the fin and also
the comparison of the applied methods (together) are shown graphically. The validity of the solutions
were veriûed by comparison with numerical results obtained using a Runge–Kutta method.

Keywords: Heat transfer, Annular fin, Homotopy perturbation method (HPM), Variational iteration
method (VIM)

Advanced technological applications require highly efficient cooling systems which improves
cooling rates while the cost and weight of the corresponding mechanical system is kept at a
reasonable level. As a result, developing new heat transfer technologies has played a key role
in advancing engineering components whose performance is directly associated with heat transfer
and cooling rate. The early method of increasing external surfaces of industrial components is
widely used in various applications. The reader is referred to the extensive review by Kern and
Kraus on the extended surface method for further details.

As technology improves, it was realized that devices have to be cooled in a more effective
ways and require high-performance heat transfer components with progressively smaller weights,
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volumes, and costs. So, one of the most significant importance is the optimization of the design
of fins for high performance, light weight, and compact heat transfer components. Kern and
Kraus [1] have presented an extensive review on this topic.

Except for a limited number of nonlinear scientific problems and heat transfer, finding
their exact analytical solutions is difficult. Perturbation method is one of the well-known methods
to solve the nonlinear equations which were studied by a large number of researchers such as
Bellman [2], Cole [3] and O’Malley [4]. The common perturbation methods are restricted, and
also because the basis of the common perturbation method was upon the existence of a small
parameter, developing the method for different applications is exceedingly difficult. Yu and
Chen [5] investigated the optimal ûn length of a convective–radiative straight ûn with rectangular
proûle under convective boundary conditions and variable thermal conductivity. Yu and Chen
[6] assumed that the linear variation of the thermal conductivity and exponential function with
the distance of the heat transfer coefficient and then, solved the nonlinear conducting-convecting-
radiating heat transfer equation by the differential transformation method. Bouaziz et al., [7]
presented the efficiency of longitudinal ûns with temperature-dependent thermo-physical
properties [8, 9].

Hence, among approximate analytical solutions, variational iteration method (VIM) [10-14]
and homotopy–perturbation method (HPM) [15-23] are the most effective and convenient ones
for both weakly and strongly nonlinear equations. For more information one may follow Refs.
[24, 25] to see a concise comparison between VIM, HPM and HAM which strongly reveal that
He’s method are far effective and accurate.

Therefore, we present an analytical solution of nonlinear problem of heat transfer in annular
fins with time-dependent thermal conductivity and examine the results of HPM and VIM methods
in contrast with numerical results computed using Runge-Kutta integration scheme. The aim of
this paper is to give the analytic solution of the nonlinear equation of the annular fins with
time-dependent thermal conductivity and compare the HPM and VIM results with numerical
results given [27].

A
s

Fin surface area (m2)

A
c

Cross-sectional area of the fin ( m2)

h Coefficient of natural convection (W/m2K)

r Radius (m)

B
i

Biot number (
�

ihr
k

)

t Thickness of the annular fin (m)

r
i

Inner radius of the annular fin (m)

r
0

Outer radius of the annular fin (m)

K
 
(T) Thermal conductivity (W/mK)

k
a

Thermal conductivity in T = T
a

(W/mK)
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L Fin length (m)

T Temperature (K)

T
a

Environment temperature (K)

T
b

Temperature at the base (K)

Dimensionless parameter describing variation of the thermal conductivity

The radius ratio, (r
o 
/
 
r

i
)

R Dimensionless radial coordinate

Dimensionless temperature

Parameter describing the variation of the thermal conductivity

Dimensionless thickness of the fin, t
 
/
 
ri

a Ambient

s Surface

b Base

n Number of iteration

In this section, we will apply HPM and VIM to the nonlinear equation of annular fins with
temperature-dependent thermal conductivity. The example to be studied is the one-dimensional
heat transfer in a cylindrical fin with the length of L, thickness of t, radius of the fin r, interior
radius of the fin r

i
 and the cross section area of A

s
 and the perimeter of A

c
 (see Fig. 1). The fin

surface transfers heat through convection. Suppose the temperature of the surrounding air is T
a
.

We assume that base temperature of the fin, T
b
,
 
and convection heat transfer coefficient, h, are

constant while conduction coefficient, k, can be variable.

Figure 1: Geometry of a Cylindrical Fin
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The energy equation and the boundary conditions for the fin are as follows:

2 ( )so it's temperature dependent
d dT

t hr T Tr
dr dr

�
� � � �� �� �

(1)

T-inf = Ta

T = T
b

at r = r
i

(2)

0
dT

dr
� at r = r

o
(3)

Assuming k as a linear function of temperature, we have:

k
 
(T) = k

a 
[1 + 

 
(T – T

a
)] (4)

where  represents the rate of effectiveness of temperature variation on thermal conductivity
coefficient, k

 
(T).

And:

A
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 = 2 rt, (5)
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 And substituting Eqs. (4-12) in Eq. (1) we have:

2 2

2 2

1 2
0, 0 1

(1 ) (1 )

d d d d Bid
R

R dR R dRdRdR dR

� � � � ��� �� � � �� � � � � � � � � � �� � � � �� �
(13)
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 = 1 at R = 0, (14)

0
d

dR

�
� at R =  – 1. (15)

To illustrate the basic concepts of the methods, we consider the following differential equation:

( )
( )

Lu Nu Au
Lu Nu f r

Au f r

� �� �
� � �� ��� �

(16)

where L is a linear differential operator, N is a nonlinear analytic operator, and f
 
(r) an

inhomogeneous term.

Now we will apply HPM to the nonlinear equation (16) as follows:

u = u
0
 + p1u

1
 + p2u

2
 + ..., (17)

1
lim
p

u
�

� � , (18)

H
 
(u, p) = (1 – p) [L

 
(u) – L

 
(

0
)] + p

 
[A

 
(u) – f

 
(R)] = 0 (19)

where L
 
(u) is the linear part of the equation and L

 
(

0
) is the initial approximation.

Substituting Eq. (18) into Eq. (19), we have:

222

22

2

2
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( ) ( ) ( ) 0( ) ( )( )

(1 ) 1

dd Bi dH p u p p u Ru R u R u R
dRdRdR
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R RdR dRdR

�� � � �� � � ��� �� � � �� � �� � �
�� � � �� � � ��� � � � ��� � � � � �� � �� � � � �� � �

. (20)

Substituting (17) in (20) and collecting like powers of p, we obtain the following sequence
of expressions for coefficients of the parameter p:
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Now we start with an arbitrary initial approximation that satisfies the initial condition:

The solutions of Eqs. (21, 24) are:

2 ( 1) 2 2 ( 1) 2

0 2 ( 1) 2 ( 1) 2 ( 1) 2 ( 1)
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(27)

1
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2
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And finally:

 = u
0
 + u

1
, (29)
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�� �
� �

. (30)

 According to the VIM, we can construct a correction functional as follows:

0 nn
u

�
�

� �� (31)
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1 0
( ) ( ) [ ( ) ( ) ( )]

R

n n n nu R u R Lu Nu f dt� � � � � � � � �� � (32)

where  is a general Lagrange multiplier, which can be identify optimally via the variational
theory, the subscript n denotes the nth-order approximation, u~

n
 is considered as a restricted

variation, i.e., u~
n
.

And also according to the VIM, we can construct the correction functional of (14) as follows:

22 2

1 1 20 2
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�

(33)

Its stationary conditions can be obtained as follows:

2
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d
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(34)

1 0( )
d

d
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(R) = 0. (36)

The Lagrangian multiplier can therefore be identified as:

2 2 2 21 1 1 2
4 4

Bi Bi t Bi Bi t

e eBi

� �
� � �

� � � �
� �� �
� �� � �� ��� �� �� �� �

. (37)

As a result, we obtain the following iteration formula:
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Now we start with an arbitrary initial approximation that satisfies the initial condition:

2 ( 1) 2 2 ( 1) 2

0 2 ( 1) 2 ( 1) 2 ( 1) 2 ( 1)
( )

Bi Bi R Bi Bi R

Bi Bi Bi Bi

e e e e
u R

e e e e
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� �
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(39)

Using the above variational formula (39), we have:
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�

(40)

Substituting Eq. (39) into Eq. (40) and after some simplifications, we have:

u
1
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2 2 2 2 ( 1 )
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1 1
2

44 1

x Bi R Bi R Bi R

e e Bi eR
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2 2 2
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Bi e Bi e Bi e
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� �
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Bi R Bi R

Bi e Bi e
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� �

� �� � � �

2 (2 2 )

2
Bi R

dR
Bi e
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�

����
���� �� � ��� �

. (41)

And so on. In the same way the rest of the components of the iteration formula can be
obtained.
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Finally, we obtain following formula:

 = u
0
 + u

1
, (42)
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Bi e Bi e
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� �
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2 (2 2 )

2
Bi R

dR
Bi e

� � �
�

����
���� �� � ��� �

. (43)

The analytical solution is verified using direct inegration Runge-Kutta method. To this end,
the second order differential equation is expressed in terms of a set of first order differential
equation as follows. The next method to be used is the Runge–Kutta method. Second-order
differential equations can usually be changed into first-order equations and then it is solved
through Runge–Kutta method.

Assuming that u  = w, we have:

0

0

( , , )

( , , ) ( , , )

( )

( )

w f X w

w F X w g X w

w X

w X

�� � � ��
� �� � � � ��
� � ��
� � ��

(44)

Then, the system of first order ordinary differential equations are solved by using
Runge-Kutta numerical integration scheme. Therefore, the system of equations can be solved
through the Runge–Kutta method.

In this section we will compare the two applied methods. The results show that, the shape of
temperature contour changes with the variation of . If  < 0 then the concavity of temperature
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contour will be upturned, while  is reaching (going to be) zero, the concavity will change to
zero too, and at last for  > 0 the concavity will be down turned, (See Fig. 2,3).

Figures 4 to 5 show 
 
(R) that is obtained by using Homotopy perturbation method (HPM)

and Variational iteration method (VIM) for various values of Bi and  when  = 2 and  = –
 
0.3.

Finally, as shown in Table 1, it has been attempted to show the accuracy, capabilities, and
wide-range applications of the HPM and VIM in comparison with the numerical solution of
nonlinear temperature distribution of annular fin with temperature-dependent thermal
conductivity.

Table 1
The Comparison Between HAM and ADM with Numerical

Method for 
 
(R) for  = 2,  = 0.15, and Bi = 1.5

 
(R)

 = 0.3  = –
 
0.3

R HPM VIM NM [26] R HPM VIM NM [26]

0 1 1 1 0 1 1 1

0.1 0.9479 0.9473 0.9477 0.1 0.9150 0.9152 0.9157
0.2 0.9038 0.9032 0.9036 0.2 0.8479 0.8481 0.8483
0.3 0.8664 0.8661 0.8668 0.3 0.7940 0.7942 0.7943
0.4 0.8369 0.8364 0.8365 0.4 0.7508 0.7510 0.7512
0.5 0.8118 0.8115 0.8119 0.5 0.7178 0.7175 0.7172
0.6 0.7922 0.7920 0.7927 0.6 0.6903 0.6909 0.6911
0.7 0.7780 0.7779 0.7782 0.7 0.6711 0.6717 0.6719
0.8 0.7685 0.7681 0.7682 0.8 0.6580 0.6583 0.6587
0.9 0.7629 0.7622 0.7624 0.9 0.6502 0.6515 0.6511
1 0.7603 0.7601 0.7607 1 0.6483 0.6490 0.6487

Figure 2: The Comparison of the Three Methods for
Temperature Distribution, at  = 2,

Bi = 1.5,  = 0.15,  = – 0.3

Figure 3: The Comparison of the Three Methods for
Temperature Distribution, at  = 2,

Bi = 1.5,  = 0.15,  = 0.3
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In this survey, the authors have studied a nonlinear equation through Variational iteration method
(VIM) and Homotopy perturbation method (HPM). We have solved the nonlinear heat transfer
equation of annular fins by using HPM and VIM methods. We have verified the results of
analytical approximation methods with direct numerical solution of the governing differential
equation obtained by employing Runge-Kutta method.

The results show that these two methods are capable of solving a large class of nonlinear
equations with rapid convergent successive approximations without any restrictive assumptions
or transformations that may change the physical behavior of the problem and also adding up
the number of iterations cause one to attain the exact solution of the problem if it exists. Also
the methods can be applied to the nonlinear equations with boundary or initial conditions defined
in different points just with developing the correction functional using the extra parameters, as
used in this Letter.
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