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Abstract: In this paper, two methods are applied to determine solutions for a nonlinear oscillator
arising in the micro-beam based microelectromechanical system (MEMS). One method applies Modified
Homotopy Perturbation Method (MHPM) and other one is max-min approach. The first Method is
Modified case of Homotopy Perturbation Method (HPM) and presents an effective tool for nonlinear
equations. In the second method (which is called MMA), an approximate solution of the nonlinear
equation can be easily deduced by finding Maximal and minimal solution thresholds of this nonlinear
problem. What we understood is that both methods, works properly and scales down the deal of the
work. Compare conclusions with the results from fourth-order Runge-Kutta method and energy balance
method (EBM) shows that obtained results are of high accuracy and convenient.

Keywords: Modified homotopy perturbation method (MHPM); Max-min approach (MMA);
Microelectromechanical system.

Almost every natural event can be modeled with nonlinear equations; this is due to nature of
the phenomena in the world. Although it is easy to find solution of some problems by means of
computers, it is still difficult to solve nonlinear equations either numerically or analytically.
Nonlinearity can be found in oscillators, and also nonlinear oscillation is one of the most
important subjects for many researches. One of those devices in which nonlinear oscillators are
used is microelecteromechanical systems [1-5].

Microelectromechanical systems (MEMS) are electrically actuated systems and require
few mechanical components and small voltage levels for actuation and also have been developed
during last decade. MEMS devices have gained a great deal of interest over the years because
of their small size, low power consumption, ability to be batch fabricated, and also ability to be
integrated with on-chip electronics; Capacitive sensors, switches and accelerometers.
Electrostatic actuation, large deflections and damping are the most effective parameters which
can cause nonlinearity in MEMS and also make difficulties in computations. According to
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these difficulties, some analytic techniques are available for nonlinear problems of MEMS
such as perturbation techniques.

The perturbation method is one of the most well-known methods for solving nonlinear
equations. But, since using the common perturbation method is based on the existence of a
small parameter, Therefore many different new methods have recently presented some ways to
eliminate the small parameter, such as Adomian decomposition [6-8], homotopy perturbation
[9-11] and it’s modified case [12-15], variational iteration [16-18], max-min approach [19-21],
amplitude frequency formulation [22-24], and energy balance method [25-27].

Modified homotopy perturbation method (MHPM) and Max-Min approach (MMA),
suggested by J. H. He are simple and effective methods to solve nonlinear oscillatory equations.
Answers of solutions obtained by these methods are valid for not only weakly nonlinear
equations, but also strong ones. In this paper, MHPM and MMA are used to study a nonlinear
oscillator arising in the micro-beam based MEMS where the mid plane stretching effect and
distributed electrostatic force are both considered.

As it is illustrated in Fig. 1 and Fig. 2, two electrodes are connected to the voltage source.
Changing voltage of electrodes and inducing this fluctuated voltage to the microbeam which is
connected to the ground, the oscillation arises in the system. This type of oscillator can be
considered as a double-sided driven clamped-clamped microbeam-based electromechanical
resonator:

Figure 1: Schematics of a 3-D Fixed Microbeam-Based Electromechanical Resonator

Figure 2: Schematics of a 2-D Fixed Microbeam-Based Electromechanical Resonator
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This kind of oscillator arising in MEMS has been analyzed before [28-29]. They also
normalized the equation of motion that governs the transverse to the following form:

4 2 3 5 7
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And

2 216. .(1 )� � � � � . (2.3)

Here, an overdot ( ) represents differentiation with respect to the time variable, while a
prime ( ) demonstrates the partial differentiation with respect to the coordinate variable .

To indicate the basic ideas of this method, the following equation is considered:

1. ( , , , )� � ��� � ��u u u N u u u t . (3.1)

Therefore, the following homotopy can be obtained:

1. [ ( , , , )], [0,1]� � � ��� � ��u u p u N u u u t p . (3.2)

Due to change of homotopy parameter p from zero to unity, when p = 0, Eq. (3.2) turns out
to be the linearized equation 2

0 0� � ���u u , and when it is equal to one, Eq. (3.2) turns into the
primary one (Eq. (3.1)).

 By applying MHPM solution, the answer  will be expanded, and by choosing 1 as a
coefficient of u, the series of p will be introduced as follows:
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Combining Eqs. (3.3) and (3.4) with Eq. (3.2) and counting the terms with the equal powers
of p, and considering 0 0 0( , , , )� � ��u u u t  as a function with nonlinear term in Eq. (3.6), series of
linear equations can be obtained:

0 2
0 0: . 0� � ���p u u (3.5)

1 2
1 1 1 0 0 0 0: (1 ) ( , , , )� � � � � � ��� � ��p u u u u u u t (3.6)

where the answer of Eq. (3.5) is u
0
 = A

 
cos

 
( t). By replacing u

0
 into Eq. (3.6), following

equation can be written:
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And the secular term can be achieved by using Fourier expansion series as follows:
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Substituting Eq. (3.8) into Eq. (3.7), following equation can be obtained:

1 2
1 1 1 1: (1 ) cos� � � � � � ���p u u b A t . (3.9)

For avoiding secular term the following equation can be written:

1 1(1 ) 0� � � �b . (3.10)

If p = 1 in Eq. (3.4), then the following equation is obtained:

2
11� � � � . (3.11)

Substituting Eq. (3.11) into Eq. (3.10), the first-order frequency of motion which is Eq. (3.6),
can be achieved as follows:

1� �H H P M b . (3.12)

In this section, MMA is applied to discuss the problem. To illustrate the basic idea of MMA
method, the following nonlinear oscillator is considered:

( , , , ) 0 (0) , (0) 0� � � ��� �� � �u N u u u t u A u . (4.1)

 In order to the fact that small parameters or linear terms are not the requirements of MMA,
Eq. (4.1) can be approximately solved by using the MMA. Considering a, b, c and d as the real
numbers:
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4



Then:

�
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. (4.3)

Where m and n are weighting factors and x is a rough approximation of:

�
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. (4.4)

Eq. (4.1) can be rewritten in the following form:

. ( , , , ) 0� ��� �� �u u f u u u t . (4.5)

And the frequency can be identified as follows:
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Then:
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Here  can be obtained by substitution of A
 
cos

 
( t) as initial assumption into Eq. (4.8)

In this section, the MHPM is applied to the nonlinear sector which is a problem of micro-beam.

Eq. (2.1) can be rewritten as follows:
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Using the homotopy parameter p in Eq. (3.2), Following homotopy can be established as
follows:
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By Substituting Eq. (3.3) and Eq. (3.4) into Eq. (5.2) and expanding it, first two linear
equations can be written in the following form:

0 2
0 0: . 0� � ���p u u . (5.3)
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Here u
0
 = A

 
cos

 
( t) can be obtained by solving Eq. (5.3). Substituting u

0
 into Eq. (5.4)

yields:

2
1 1 ( )� � � � ���u u t . (5.5)
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For avoiding secular term the following equation can be set:

1 0� � .

Substituting p = 1 into Eq. (3.4) gives:

2
11� � � � . (5.9)

So the first approximation to the angular frequency is:
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In this section, the MMA is applied to solve nonlinear sector. Eq. (2.1) can be rewritten in the
following form:

3 2 4 65 6 71 2 4
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In addition, boundary conditions are considered. Here, If u
 
(t) = A

 
cos

 
( t) be chosen as a

trial function, then:
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Here the frequency value can be identified as follows:
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Where m and n are weighting factors, and �� n
m n

k . So the frequency can be approximated
as follows:

4 2 2 2 2 4 6
1 2 5 6 7 4

3 3

( )� � � � � � �
� � �

k a A a A a A a A a A a

a a
. (6.4)

Then Eq. (4.7) can be rewritten as follows:
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In order to avoid secular term, the following equation can be set:

1 0� � . (6.9)

Then the following equation can be obtained:
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Substituting Eq. (6.10) into Eq. (6.4), yields:
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4 2
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The results of modified homotopy perturbation method and max-min approach are plotted
in Fig. 3 and Fig. 4. The results of energy balance [29] and numerical fourth-order Runge-
Kutta method are plotted in these figures in order to have a better comparison. Herein the
values of parameters are taken as N = 15,  = 10. Comparison of errors is available via Table 1.
and Table 2.

Table 1
Comparison Between the Results of MHPM , MMA and EBM with the

Numerical Solution for A = 0.2, V = 10

t 0.4 0.8 1.2 1.6 2

MMA –
 
0.1942 0.1772 –

 
0.1499 0.114 –

 
0.0715

MHPM –
 
0.1942 0.1771 –

 
0.1498 0.1138 –

 
0.0712

EBM –
 
0.1971 0.1886 –

 
0.1746 0.1556 –

 
0.1321

Runge-Kutta –
 
0.1942 0.1772 –

 
0.1498 0.1138 –

 
0.0712

ErrorPercentage (MMA) 0.004 0.022 0.0597 0.137 0.326

ErrorPercentage (MHPM) 0.002 0.007 0.015 0.025 0.043

ErrorPercentage (EBM) 1.5 6.439 16.511 36.661 85.423

Table 2
Comparison Between the Results of MHPM , MMA and EBM with the

Numerical Solution for A = 0.4, V = 10

t 0.4 0.8 1.2 1.6 2

MMA –
 
0.3974 0.3895 –

 
0.3765 0.3585 –

 
0.3358

MHPM –
 
0.3967 0.3868 –

 
0.3706 0.3483 –

 
0.3202

EBM –
 
0.3951 0.3805 –

 
0.3565 0.3239 –

 
0.2832

Runge-Kutta –
 
0.3970 0.3880 –

 
0.3731 0.3526 –

 
0.3266

ErrorPercentage (MMA) 0.09 0.39 0.89 1.68 2.82

ErrorPercentage (MHPM) 0.074 0.29 0.68 1.23 1.98

ErrorPercentage (EBM) 0.48 1.94 4.45 8.15 13.29
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In this paper, the main purpose was to illustrate the application of modified homotopy
perturbation method (MHPM) and max-min approach (MMA) in solving nonlinear oscillator
arising in the microbeam based MEMS. Also, the capabilities and facile applications of these
methods have been demonstrated in comparison with the numerical solution and energy balance
method. By intensifying the value of Voltage and Initial Condition A, it has been considered
that the disagreement between the answers obtained by MHPM, MMA and Runge-Kutta is
very insignificant which indicates that these methods provide highly precise answers for
nonlinear equations.
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