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Abstract: In this paper, heat transfer of non-Newtonian fluid flow in an axisymmetric channel with
porous wall, is analyzed. Porous wall channels are used in turbines for cooling purposes. Homotopy
Perturbation Method (HPM) is employed to get complete analytic solution for velocity and temperature
profiles. Results show an acceptable agreement between this method and numerical solutions. Also
the effects on different parameters are discussed through graphs.
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Behavior of Non-Newtonian fluid flow has become a noteworthy problem recently, because it
has miscellaneous applications in different engineering fields. Especially the heat transfer
problem in non-Newtonian fluid flow is interested significantly. Extrusion of plastics, hot rolling,
flow in journal bearings, mud flow in oil drilling and shock absorbers are some scant instances
of this fluid flow application. Flow of non-Newtonian fluid in a channel and the related heat
transfer has been the focus of considerable researches and mathematical modeling with the
purpose of finding the temperature distribution and the consequent behavior of fluid flow has
taken into consideration [1-8].

A large number of engineering problems are nonlinear, especially ones with heat transfer
equations, thereupon some of them are solved by using numerical solution and some by different
analytic methods, such as perturbation method, variational iteration method and homotopy
perturbation method that is introduced by He[9]. Many different methods have recently
introduced some ways to eliminate the small parameter. One of the semi-exact methods which
does not need small parameters is the Homotopy Perturbation Method. This method proposed
by He for the first time in 1998 and was further developed and improved by him [10]. In the
most cases, This method yields a very rapid convergence of the solution series and acceptable
answers. The HPM proved its ability to solve a vast class of nonlinear problems efficiently,
accurately and easily with rapid convergence to solution. Commonly, a few iterations lead to
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It is supposed that the flow field is assumed to be stagnation point flow with injection. For
steady, two-dimensional non-Newtonian fluid flow that is axisymmetric, equations which govern
the flow and heat transfer are proposed by Kurtcebe and Erim, as follow [8]:
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Eqations. (2.1) and (2.2) are solved by Kurtcebe and Erim [8] for K
2
 = 0 with the boundary

conditions (2.3) and (2.4). In this study, these equations are considered as:
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and solved by Homotopy perturbation Method.

high accuracy solution. This method is employed for many researches in engineering sciences
recently [11-15].

In this study, simultaneous development of flow and heat transfer of non-Newtonian viscoelastic
fluid flow is investigated, that is applicable on the turbine disc for cooling purposes. The problem
is shown schematically in Fig. 1. The y-axis is normal to surface of externally heated disk and
the x-axis is parallel to it. The perforated disc of the channel is located at y = + L. Non-Newtonian
fluid is injected from the other porous wall uniformly in order to cool the heated wall that
coincides with the x-axis.

Figure 1: Schematic Diagram of the Physical System



In order to describe the basic ideas of this method, consider the following equation:
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where A is a general differential operator, B a boundary operator, f
 
(r) a known analytical function

and  is the boundary of the domain .

A can be divided into two parts which are L and N, where L is linear and N is nonlinear.
Eq. (3.1) can therefore be rewritten as follows:

( ) ( ) ( ) 0,L u N u f r r� � � �� . (3.3)

Homotopy perturbation formula is introduced as below:
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In Eq. (3.5), p  [0, 1] is an embedding parameter and u
0
 is the first approximation that

satisfies the boundary condition. We can assume that the solution of Eq. (25) can be written as
a power series in p, as following:
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and the best approximation for solution is:
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According to the homotopy-perturbation method (HPM), homotopy suppose is constructed
and the solution of Eq. (3.1) has the form:
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With substituting f, q
n
 from Eq. (4.2) into Eq. (4.1) and doing some simplification and

rearranging based on powers of p-terms, it can be obtained
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Eqs. (4.3) and (4.4) are solved with relevant boundary conditions:
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When i  2, the terms f
i 
( ) and q

ni 
( ) are too large that are illustrated graphically. Finally,

when p  1, the following expressions for f
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In this paper, HPM method has successfully employed in order to determine the exact solutions
of heat transfer problem of non-Newtonian fluid flow in a channel with one porous wall for
turbine cooling application. This problem also has solved by a Numerical Method (fourth-
order Runge-Kutta) and the consequent results of the two different methods, Namely, HPM
and NM are compared in Table1 and Table 2 and Figs. 2, 3 and 4. These results show that this
analytical method is a very powerful and efficient technique for solving different kinds of
problems arising in various fields of science and engineering and gives a rapid convergence for
the solutions.



Table 1
Comparison Between Numerical Results and HPM Solution at: Re = 0.5, K

1
 = 0.01, Pr = 1, n = 0

f q
n

NM HPM %Error NM HPM %Error

0 0 0 1 1 0
0.05 0.00769 0.007669 0.280991 0.942347 0.942174 0.019501
0.1 0.029627 0.029561 0.221484 0.88472 0.884444 0.035265
0.15 0.06411 0.064002 0.168202 0.827181 0.826856 0.047538
0.2 0.109442 0.109309 0.121141 0.769829 0.769494 0.056593
0.25 0.163932 0.1638 0.080264 0.712792 0.712474 0.062724
0.3 0.225897 0.225794 0.045492 0.656223 0.655937 0.066242
0.35 0.293668 0.293619 0.016698 0.600289 0.600046 0.067466
0.4 0.365597 0.36562 0.006305 0.545172 0.544974 0.066718
0.45 0.440058 0.440163 0.023762 0.491054 0.490898 0.064317
0.5 0.515454 0.51564 0.035987 0.438113 0.437996 0.060572
0.55 0.590225 0.590481 0.043362 0.386518 0.386435 0.055774
0.6 0.662849 0.663156 0.046347 0.336423 0.336366 0.050193
0.65 0.731849 0.732182 0.045477 0.28796 0.287923 0.044072
0.7 0.795795 0.796124 0.041379 0.241237 0.241215 0.037627
0.75 0.853309 0.853606 0.034776 0.196334 0.196322 0.031038
0.8 0.903067 0.903307 0.026508 0.153305 0.1533 0.024454
0.85 0.943801 0.943967 0.017565 0.112175 0.112172 0.017991
0.9 0.974297 0.974386 0.00913 0.072938 0.072937 0.011731
0.95 0.993397 0.993424 0.002658 0.035564 0.035564 0.005726
1 1 1 0 0 0 0

Table 2
Comparison Between Numerical Results and HPM Solution at: Re = 0.5, K

1
 = 0.1, Pr = 1, n = 2

f q
n

NM HPM %Error NM HPM %Error

0 0 0 0 1 1 0
0.05 0.007694 0.007694 0.000225 0.929831338 0.929659 0.019964
0.1 0.029642 0.029642 0.00069 0.860381004 0.860117 0.035611
0.15 0.06414 0.06414 0.001145 0.792249157 0.791952 0.04731
0.2 0.10949 0.10949 0.001417 0.725916781 0.725624 0.055478
0.25 0.163997 0.163997 0.001409 0.661756105 0.661491 0.060555
0.3 0.225979 0.225978 0.001092 0.600040916 0.599814 0.062987
0.35 0.293765 0.293764 0.000493 0.540956929 0.540772 0.063209
0.4 0.365704 0.365704 0.000314 0.484612278 0.484468 0.061631
0.45 0.440171 0.440169 0.001227 0.431048078 0.430939 0.058632
0.5 0.515569 0.515563 0.00213 0.38024899 0.38017 0.054553
0.55 0.590337 0.590327 0.002907 0.332153638 0.332099 0.049689
0.6 0.662954 0.662938 0.00346 0.286664715 0.286628 0.044297
0.65 0.731942 0.731922 0.003717 0.243658621 0.243636 0.038588
0.7 0.795873 0.79585 0.003645 0.202994454 0.202981 0.032734
0.75 0.853371 0.853348 0.003253 0.164522228 0.164515 0.026869
0.8 0.903113 0.903091 0.002597 0.128090214 0.128087 0.021095
0.85 0.94383 0.943814 0.001779 0.093551336 0.09355 0.015484
0.9 0.974311 0.974302 0.000943 0.060768598 0.060768 0.010084
0.95 0.993401 0.993398 0.000277 0.029619573 0.02962 0.00492
1 1 1 0 0 0 0



Figure 2: Velocity Component Profile ( f ) for Variable Re at K
1
 = 0.01

Figure 3: Velocity Component Profile ( f ) for Variable Re at K
1
 = 0.01

Figure 4: Temperature Profile (q
n
) for Variable Active Parameter
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Also it has illustrated that a coefficient namely Nusselt number '(θ (0)) changes effectively
with some parameters. Nu is enhanced by increasing the non-Newtonian fluid power coefficient,
n, and Prandtl number in special value of Re, as shown in Figs. 5 and 6.

Figure 6: Nusselt Number for Variable Re at K
1
 = 0.01, n = 0



[5] P. S. Gupta, and A. S. Gupta, Heat and Mass Transfer on a Stretching Sheet with Suction and Blowing, Can. J.
Chem. Eng., (1977), 55.

[6] Sakiadis B. C., Boundary Layer Behavior on Continuous Solid Flat Surfaces, Aiche. J., 7, (1961), 26-8.

[7] Erickson L. E., Fan L. T., and Eox V. G., Ind Eng Chem., 5, (1966), 19-25.

[8] C. Kurtcebe, and M. Z. Erim, Heat Transfer of a Non-Newtonian Viscoinelastic Fluid in an Axisymmetric
Channel with a Porous Wall for Turbine Cooling Application, Int Comm Heat Mass Transfer, 29(7), (2002),
971-982.

[9] J. H. He, Appl. Math. Comput., 151, (2004), 287.

[10] J. H. He, Appl. Math. Comput., 156, (2004), 527.

[11] S. Ghafoori, M. Motevalli, M. G. Nejad, F. Shakeri1, D. D. Ganji, and M. Jalaal, Efficiency of Differential
Transformation Method for Nonlinear Oscillation: Comparison with HPM and VIM, Current Applied Physics,
(2011), doi: 10.1016/j.cap.2010.12.018.

[12] M. Jalaal, D. D. Ganji , and G. Ahmadi, Analytical Investigation on Acceleration Motion of a Vertically Falling
Spherical Particle in Incompressible Newtonian Media, Advanced Powder Technology, 21, (2010), 298-304.

[13] S. S. Ganji , A. Barari , M. G. Sfahani, G. Domairry, and P. Teimourzadeh Baboli, Consideration of Transient
Stream/Aquifer Interaction with the Nonlinear Boussinesq Equation Using HPM, Journal of King Saud
University (Science), (2010), (In Press).

[14] D. D. Ganji, Houman B., Rokni M. G., Sfahani, and S. S. Ganji, Approximate Traveling Wave Solutions for
Coupled Shallow Water, Advances in Engineering Software, 41, (2010), 956-961.

[15] Ahmet Yýldýrým , Syed Tauseef Mohyud-Din , and Selin Sarýaydýn, Numerical Comparison for the Solutions
of Anharmonic Vibration of Fractionally Damped Nano-Sized Oscillator, Journal of King Saud University
(Science), (2010), (In Press).\]


