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Abstract: An analysis has been carried out to study the steady MHD flow and heat transfer in a visco-
elastic fluid flow over a semi-infinite, impermeable, non-isothermal stretching sheet with internal
heat generation/absorption by the presence of radiation. Thermal conductivity is assumed to vary
linearly with temperature. The governing partial differential equations are converted into ordinary
differential equations by a similarity transformation. These equations are solved by homotopy analysis
method. The effects of different parameters on temperature and velocity profiles are studied. The
temperature profiles are shown graphically for different physical parameters.

Keywords: Homotopy analysis method, Stretching sheet, Visco-elastic fluid, Heat transfer,
Magnetohydrodynamics, Walters liquid B.

The study of two-dimensional boundary layer flow over a stretching sheet has gained much
interest in recent times because of its numerous industrial applications viz in the polymer processing
of a chemical engineering plant and in metallurgy for the metal processing. Crane [1] was first to
formulate this problem to study a steady two-dimensional boundary layer flow caused by stretching
of a sheet that moves in its plane with a velocity which varies linearly with the distance from a
fixed point on the sheet. Many investigators have extended the work of Crane [1] to study heat
and mass transfer under different physical situations (e.g., Gupta and Gupta [2], Chen and Char
[3], Datta et al., [4], McLeod and Rajagopal [5], Chaim [6, 7]) by including quadratic and higher
order stretching velocity. All these works are restricted to Newtonian fluid flows which have
received much attention in the last three decades due to their occurrence in nature and their
increasing importance in industry. Different types of non-Newtonian fluids are visco-elastic fluid,
couple stress fluid, micro polar fluid and power-law fluid. Rajagopal et al., [8] and Siddappa and
Abel [9] studied the flow of a visco-elastic fluid flow over a stretching sheet. Troy et al., [10],
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Wen-Dong [11], Sam Lawrence and Rao [12], McLeod and Rajagopal [5] have discussed the
problem of uniqueness/non-uniqueness of the flow of a non-Newtonian visco-elastic fluid over a
stretching sheet. Abel and Veena [13] studied the heat transfer of a visco-elastic fluid over a
stretching sheet. Bujurke et al., [14] have investigated the heat transfer phenomena in a second
order fluid flow over a stretching sheet with internal heat generation and viscous dissipation.
Prasad et al., [15] analyzed the problem of a visco-elastic fluid flow and heat transfer in a porous
medium over a non-isothermal stretching sheet with variable thermal conductivity. Prasad et al.,
[16] have investigated on the diffusion of a chemically reactive species of a non-Newtonian fluid
immersed in a porous medium over a stretching sheet.

In recent years, the study of MHD flow and heat transfer problems has gained considerable
interest because of its extensive engineering applications and may find its applications in polymer
technology related to the stretching of plastic sheets. Also, many metallurgical processes involve
the cooling of continuous strips or filaments by drawing them through a quiescent fluid and
while drawing these strips are sometimes stretched. The rate of cooling can be controlled by
drawing such strips in an electrically conducting fluid subjected to a magnetic field in order to
get the final products of desired characteristics as the final product greatly depend on the rate
of cooling. In view of this, the study of MHD flow of Newtonian/non-Newtonian flow over a
stretching sheet was carried out by many researchers (Sarpakaya [17], Pavlov [18], Chakrabarti
and Gupta [19], Char [20], Andersson [21], Datti et al., [22], Liao [34-37]).

In the present paper, we study the effect of variable thermal conductivity on the heat transfer
of a non-Newtonian visco-elastic fluid of the type Walters Liquid B, where thermal conductivity
is a function of temperature, subjected to a magnetic field, over a non-isothermal stretching
sheet with internal heat generation /absorption. We have assumed that the thermal conductivity
is a linear function of the temperature. Further, we consider two cases of non-isothermal boundary
conditions namely,

• Surface with prescribed surface temperature (PST Case) and

• Surface with prescribed wall heat flux (PHF Case).

The momentum and energy equations are highly non-linear, and coupled form of partial
differential equations (PDEs). These PDEs are then converted to couple non-linear ordinary
differential equations (ODEs) by using the similarity variables along with the appropriate boundary
conditions. In this paper, we propose to solve these ordinary differential equations analytically by
homotopy analysis method [34-37]. Computations are carried out for temperature profiles, Nusselt
number when the walls are maintained with prescribed surface temperature and prescribed wall
heat flux. Emphasis is given to the effect of thermal radiation on the other physical characteristics.

Let us assume the following nonlinear differential equation in form of:

N
 
[u

 
( ) = 0, (2.1)

where N is a nonlinear operator,  is an independent variable and u
 
( ) is the solution of equation.

We define the function, 
 
( , p) as follows:

0
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where, p  [0, 1] and u
0
( ) is the initial guess which satisfies the initial or boundary conditions

and

1
lim ( , ) ( )
p

p u
�

� � � � , (2.3)

and by using the generalized homotopy method, Liao’s so-called zero-order deformation
equation (1) will be:

0(1 ) [ ( , ) ( )] ( ) [ ( , )]p L p u p H N p� � � � � � � � �� , (2.4)

where �  is the auxiliary parameter which helps us increase the results’ convergence, H
 
( ) is

the auxiliary function and L is the linear operator. It should be noted that there is a great freedom
to choose the auxiliary parameter � , the auxiliary function H

 
( ), the initial guess u

0
( ) and the

auxiliary linear operator L. This freedom plays an important role in establishing the keystone
of validity and flexibility of HAM as shown in this paper. Thus, when p increases from 0 to 1
the solution 

 
( , p) changes between the initial guess u

0
( ) and the solution u

 
( ). The Taylor

series expansion of 
 
( , p) with respect to p is:

0
1

( , ) ( ) ( ) m
m

m

p u u p
��

�
� � � � � �� (2.5)

and

[ ]
0

0

( , )
( )

m
m

m
p

p
u

p �

� � �
� �

�
, (2.6)

where u
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[m]( ) for brevity is called the mth order of deformation derivation which reads:
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It’s clear that if the auxiliary parameter
 
�

 
= –

 
1 and auxiliary function H

 
( ) = 1, then

Eq. (1) will become:

0(1 ) [ ( , ) ( )] ( ) [ ( , )] 0p L p u p N p� � � � � � � � � � . (2.8)

This statement is commonly used in HPM procedure. Indeed, in HPM we solve the nonlinear
differential equation by separating any Taylor expansion term. Now we define the vector of:

1 2 3{ , , , ..., }m nu u u u u�
� � � � �

. (2.9)

According to the definition in Eq. (2.7), the governing equation and the corresponding initial
conditions of u

m
( ) can be deduced from zero-order deformation equation (2.1). Differentiating

Eq. (2.1) m times with respect to the embedding parameter p and setting p = 0 and finally dividing
by m!, we will have the so-called mth-order deformation equation in the form:
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and
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(2.12)

So by applying inverse linear operator to both sides of the linear equation, Eq. (2.1), we
can easily solve the equation and compute the generation constant by applying the initial or
boundary condition.

Consider a steady, laminar flow of an incompressible and electrically conducting visco-elastic
fluid over a semi-infinite, impermeable stretching sheet (Fig. 1). Two equal and opposite forces
are introduced along the x-axis so that the sheet is stretched with a speed proportional to the
distance from the origin. The resulting motion of the otherwise quiescent fluid is thus caused
solely by the moving surface. A uniform magnetic field of strength B

0
 is imposed along y-axis.

This flow satisfies the rheological equation of state derived by Beard and Walters [23]. The
steady two dimensional boundary layer equations for this flow in usual notation are

0
u v

x y

� �
� �

� �
, (3.1)
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. (3.2)

In deriving these equations it is assumed, in addition to the usual boundary layer
approximations that the contribution due to the normal stress is of the same order of magnitude
as the shear stress. Here, it is assumed that the magnetic field is applied in the transverse
direction of the sheet and the induced magnetic field is negligible. The boundary conditions
applicable to the flow problem are

Figure 1: Physical Model for Hydromagnetic Stretching Sheet Flow
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with b > 0. Here x and y are, respectively, the directions along and perpendicular to the sheet, u
and v are the velocity components along x and y directions. , , B

0
,  and k

0
 are, respectively,

the density, kinematic viscosity, applied magnetic field, induced magnetic field and coefficient
of visco-elasticity. The flow is caused solely by the stretching of the sheet, the free stream
velocity being zero. Eqs. (3.1) and (3.2) admit a self-similar solution of the form

( ), ( ),
b

u bx f v b f y�� � � � � � � �
�

, (3.4)

where subscript  denotes the differentiation with respect to . Clearly u and v satisfy Eq. (3.1)
identically. Substituting these new variables in Eq. (3.2), we have
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1{2 } 0iv

nf f f f M f k f f f f f� �� ��� � � ��� ��� � � � � � � , (3.5)

where 
2
0B

n b
M

�
��  is the magnetic parameter, 0

1
k b

k ��  is the visco-elastic parameter, , and prime
denotes derivatives with respect to . Using Eq. (3.4), the boundary conditions become

f
 
( ) = 0 at  = 0, (3.6a)

f ( ) = 0 at  = 0, (3.6b)

f ( )  0 at   . (3.6c)

It is interesting to note that the Eq. (3.5) has exact analytical solution of the form:

, 0f e���� � � � . (3.7)

Satisfying the boundary conditions (3.6), Integration of Eq. (3.7) and using (3.6) gives:
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Therefore the velocity components are:
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. (3.9)

The energy equation for a fluid with variable thermal conductivity in the presence of internal
heat generation/absorption for the two-dimensional flow is given by (Chiam [24]):
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where C
p
 is the specific heat at constant pressure, T is the temperature of the fluid, T  is the

constant temperature of the fluid far away from the sheet, k
 
(T) is the temperature-dependent

thermal conductivity and q
.
 is the volumetric rate of heat generation. We consider the temperature-

thermal conductivity relationship of the following form (Chiam [24]):
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, (3.11)

where T = Tw – T , T
w
 is the sheet temperature, wk k

k
�

�

�� � �  is a small parameter and k  is the
conductivity of the fluid far away from the sheet. By using Rosseland approximation [25] the
radiative heat flux is given by
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where * and k* are, respectively, the Stephan–Boltzmann constant and the mean absorption
coefficient. We assume that the differences within the flow are such that T 4 can be expressed as
a linear function of temperature. This is accomplished by expanding T 4 in a Taylor series about
T  and neglecting higher order terms, thus
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Substituting Eq. (3.13) and Eq. (3.11) in Eq. (3.10), we get
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The thermal boundary conditions depend on the type of heating process under consideration.
Here, we consider two different heating processes, namely, (I) prescribed surface temperature
and (II) prescribed wall heat flux, varying with the distance. The boundary conditions assumed
for solving Eq. (3.14) are

( Case)

at 0 and ,
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as ,T T y�� �� (3.16)

where A is a constant and depends on the thermal properties of the liquid, r is the wall temperature

parameter, q
w
 is the heat flux on the wall surface , bl

��  is chosen as characteristic length and
D is a constant. It is obvious now that
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We now use a dimensionless scaled -dependent temperature of the form

( )
T T

T
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�

. (3.18)

The imminent advantage of using Eq. (3.15) is that the temperature-dependent thermal
conductivity turns out to be x-independent. Eq. (3.14) reduces to the non-linear differential
equation using Eqs. (3.4), (3.17) and (3.18):

2(1 ) Pr ( ( ) ) 0Nr f rf�� � � �� �� � � � � � � � � � �� � , (3.19)
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� , is the Prandtl number, 
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is the heat source/sink parameter.

Eqs. (3.15) and (3.16), using Eqs. (3.17) and (3.18) can be written as:

(0) 1 ( Case)
, ( ) 0

(0) 1 ( Case)

PST

PHF

� � �
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. (3.20)

In general, it is quite difficult to solve highly nonlinear partial differential equations analytically.
The much celebrated perturbation technique can be used for this purpose but only for weakly
nonlinear problems. In 1992, Liao [26, 27] developed a new analytical technique called the
homotopy analysis method (HAM) to tackle such nonlinear problems [28-31]. Being different
from perturbation technique, HAM does not need any small parameter. As a matter of fact, the
homotopy analysis method can be regarded as a unification of previous non-perturbation
techniques such as Adomian method. By its very nature, HAM provides a family of series
solutions whose convergence region can be adjusted and controlled by an auxiliary parameter.
It is worth mentioning that the homotopy analysis method has successfully been applied to
many nonlinear problems in solid and fluid mechanics [32-39]. Having said this, it should be
conceded that the number of unsteady nonlinear problems solved using this method is rather
limited [35-39].

The first step in the HAM is to find a set of base functions to express the sought solution of
the problem under investigation. As mentioned by Liao [31], a solution may be expressed with
different base functions, among which some converge to the exact solution of the problem
faster than others. Noting that, from the boundary conditions (3.6) and (3.20) and according to
rule of solution expression, it is straightforward to choose the initial guesses for f

 
( ) and 
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in the following forms:

0 ( ) 1 exp ( )f � � � � � , (4.1)



0 ( ) exp ( ), for CasePST� � � � � , (4.2a)

0 ( ) exp ( ), for CasePHF� � � � � . (4.2b)

Furthermore, we choose

1[ ] ,L f f f��� �� � (4.3)

2[ ] ,L �� �� � � � � (4.4)

as our auxiliary linear operators, which have the following properties

1 3 2 1( exp ( ) ) 0,L c c c� � � � � � (4.5)
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where c
i 
(i = 1 – 5) are integral constants. Then we construct the so-called Zeroth-order

deformation equations:
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where p  [0, 1] denotes the embedding parameter,
 
�

1
 and

 
�

2
 indicates non-zero auxiliary

parameters. Obviously, for p = 0 and p = 1, we have
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By Taylor’s power series and using equations (4.15) and (4.16), f
 
( ; p) and 
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expanded in a power series of p as follows:
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Note that the convergence regions of the series (4.15) and (4.16) are dependent upon the
auxiliary parameters

 
�

1
 and

 
�

2
. If these auxiliary parameters are properly chosen so that series

(4.15) and (4.16) are convergent at p = 1, therefore using equations (4.13) and (4.14), we have:
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Differentiating the Eqs. (4.7)-(4.8) m times with respect to p and then setting p = 0 and
finally dividing them by m! we obtain the so-called mth-order deformation equations for f

m
( )

and 
m
( ) (for details, please refer to Liao [43])
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As proved by Liao [31], as long as the series solutions (Eq. (4.28) and Eq. (4.29)) are convergent,
they should converge to one of the solutions of Eq. (3.5) and Eq. (3.19). Note that the Eqs. (4.28)
and (4.29) contain auxiliary parameters �

1
 and �

2
 which are not yet defined. These parameters

play an important role in the framework of HAM. In fact, these parameters control the rate of
convergence and the convergence region of the series. Proper values for these auxiliary
parameters can be found by plotting the so-called �-curves. When the valid region of

 
�  is a

horizontal line segment then the solution is converged. Figure 2 shows the �
1
-curve and Figs. 3

and 4 show typical
 
�

2
-curves for both PST and PHF cases for a given set of parameters, k

1
 = 0.2,

Mn = 1, Pr = 1,  = 0,  = 0, r = 2, Nr = 0. A wide valid zone is evident in these figures ensuring
convergence of the series for both PST and PHF cases. Having chosen the best values for � , we
are able to present the velocity profiles obtained for different combinations of k

1
 and Mn, and

investigate the effects of different parameters such as visco-elastic parameter, Radiation
parameter, magnetic number, Prandtl number, wall temperature parameter, and heat source/
sink parameter on the temperature field above the sheet for both PST and PHF cases. The
obtained analytical results are illustrated in Figs. 5-19 and Table 1-2.

Table 1
The Best Values of the Auxiliary Parameters and Wall Temperature Gradients for the PST Case

k
1

Pr r Nr Mn �
1

�
2

(0)

0 1.0 0.0 0.0 2.0 0.0 1.0 –
 
0.69 –

 
0.47 –

 
1.21550

0.2 1.0 0.0 0.0 2.0 0.0 1.0 –
 
0.71 –

 
0.44 –

 
1.16859

0.4 1.0 0.0 0.0 2.0 0.0 1.0 –
 
0.72 –

 
0.53 –

 
1.10125

0.1 1.0 –
 
0.1 0.0 2.0 0.0 0.1 –

 
0.98 –

 
0.58 –

 
1.35219

0.1 1.0 0.0 0.0 2.0 0.0 0.1 –
 
0.98 –

 
0.62 –

 
1.30354

0.1 1.0 0.1 0.0 2.0 0.0 0.1 –
 
0.98 –

 
0.67 –

 
1.24954

0.1 1.0 –
 
0.1 0.0 2.0 1.0 0.1 –

 
0.98 –

 
0.5 –

 
0.87594

0.1 1.0 –
 
0.1 0.0 2.0 3.0 0.1 –

 
0.98 –

 
0.23 –

 
0.54886

0.1 1.0 –
 
1.0 0.0 0.0 0.0 0.1 –

 
0.98 –

 
0.82 –

 
0.65243

0.1 1.0 –
 
1.0 0.0 –

 
2.0 0.0 0.1 –

 
0.98 –

 
1 –

 
0.58039

0.2 1.0 0.0 0.0 2.0 0.0 0.0 –
 
1.08 –

 
0.64 –

 
1.3000

0.2 1.0 0.0 0.0 2.0 0.0 2.0 –
 
0.5 –

 
0.51 –

 
1.07009

0.2 1.0 –
 
0.1 0.0 2.0 0.0 1.0 –

 
0.71 –

 
0.44 –

 
1.23432

0.2 2.0 –
 
0.1 0.0 2.0 0.0 1.0 –

 
0.71 –

 
0.3 –

 
1.89600

0.2 3.0 –
 
0.1 0.0 2.0 0.0 1.0 -0.71 –

 
0.2 –

 
2.29220



Table 2
The Best Values of the Auxiliary Parameters and Wall Temperature (0) for the PHF Case

k
1

Pr r Nr Mn �
1

�
2

(0)

0 1.0 –
 
0.1 0.0 2.0 0.0 1.0 –

 
0.69 –

 
0.4 0.78601

0.2 1.0 –
 
0.1 0.0 2.0 0.0 1.0 –

 
0.71 –

 
0.37 0.81025

0.4 1.0 –
 
0.1 0.0 2.0 0.0 1.0 –

 
0.72 –

 
0.46 0.97915

0.1 1.0 –
 
0.1 0.0 2.0 0.0 0.1 –

 
0.98 –

 
0.44 0.73953

0.1 1.0 0.0 0.0 2.0 0.0 0.1 –
 
0.98 –

 
0.48 0.76712

0.1 1.0 0.1 0.0 2.0 0.0 0.1 –
 
0.98 –

 
0.52 0.80024

0.1 1.0 –
 
0.1 0.0 2.0 1.0 0.1 –

 
0.98 –

 
0.48 1.14161

0.1 1.0 –
 
0.1 0.0 2.0 3.0 0.1 –

 
0.98 –

 
0.3 1.82175

0.1 1.0 –
 
0.1 0.0 0.0 0.0 0.1 –

 
0.98 –

 
0.98 1.53271

0.2 1.0 –
 
0.1 0.0 2.0 0.0 0.0 –

 
1.08 –

 
0.42 0.74127

0.2 1.0 –
 
0.1 0.0 2.0 0.0 2.0 –

 
0.5 –

 
0.41 0.87655

0.2 1.0 –
 
0.1 0.0 2.0 0.0 1.0 –

 
0.71 –

 
0.37 0.81025

0.2 2.0 –
 
0.1 0.0 2.0 0.0 1.0 –

 
0.71 –

 
0.19 0.52466

0.2 3.0 –
 
0.1 0.0 2.0 0.0 1.0 –

 
0.71 –

 
0.13 0.42053

Figure 2: Typical �
1
-Curve for k

1
 = 0.2

Figure 3: Typical �
2
-Curves for k

1
 = 0.2, Mn = 1, Pr = 1,  = 0,  = 0, r = 2, Nr = 0, h

1
 = –

 
0.71 for PST Case
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Figure 5 is a graphical representation which depicts the effect of magnetic field parameter
Mn on the horizontal velocity profile f ( ). It is found that the effect of magnetic field parameter
Mn is to reduce the horizontal velocity profile f ( ). This graphical representation reveals that
magnetic field parameter Mn decreases the horizontal velocity profile f ( ), significantly in the
visco-elastic flow in comparison with the viscous flow, this is due to the fact that increase of
Mn signifies the increase of Lorentz force, which opposes the horizontal flow in the reverse
direction.

Figure 4: Typical �
2
-Curves for k

1
 = 0.2, Mn = 1, Pr = 1,  = 0,  = 0, r = 2, Nr = 0, h

1
 = –

 
0.71 for PHF Case
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Figure 6 shows the effect of visco-elastic parameter, k
1
 on the horizontal velocity profile

f ( ). The effect of visco-elastic parameter k
1
 is seen to decrease the boundary layer velocity

throughout the boundary layer but significantly near the stretching sheet.

Figure 5: Effect of Magnetic Parameter Mn on Horizontal Velocity
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Figure 7-8 represents variations in the transverse velocity for different numerical values of

visco-elastic parameter k
1
 and magnetic parameter Mn. Obviously transverse velocity v is

enhanced as visco-elastic parameter k
1
 or magnetic parameter Mn rises. Idrees and Abel [40]

have shown that visco-elasticity acts physically to increase the adherence to the wall of the

hydrodynamic boundary layer, which in turn retards the flow in the horizontal direction

explaining the monotonically decreasing nature of the curves. The drag force appears as a term

M
n
 f  in the transform momentum of Eq. (3.5) and serves to retire the momentum in the positive

direction of the x-axis, also affecting via the coupling with the other terms, the momentum in

the y-direction. The shear stresses are therefore lowered at the wall as Mn is increased, which

decreases both u and v velocities. In both cases the maximum values of shear stress are reported

at  = 0.

Figure 6: Effect of Visco-Elastic Parameter k
1
 on Horizontal Velocity
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Figure 7: Effect of Magnetic Parameter Mn on Transverse Velocity
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These findings of the study correlate very well with the general conclusions arrived at by

other classical magnetohydrodynamic studies including those of Cramer and Pai [41],

Siddheshwar and Mahabaleshwar [42]. It is noted that the depression in the horizontal velocity

is less prominent than the transverse velocity. Thus the influence of magnetic field is to aid

more strongly in decelerating the flow perpendicular to the plate.

Figures 9-10 demonstrate the effect of visco-elastic parameter ˝ k1
 on the temperature profile

 
( ) in the boundary layer in PST and PHF cases respectively. It is observed that the temperature

profile decreases in the boundary layer with the increase of distance from the boundary. It is

also noticed that the temperature distribution is unchanged at the wall with the change of physical

parameters. However, it tends to zero in the free stream. The temperature increases with the

increasing values of visco-elastic parameter k
1
 both in the case of PST and PHF. This is due to

Figure 8: Effect of Visco-Elastic Parameter k
1
 on Transverse Velocity
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Figure 9: Effect of Visco-Elastic Parameter k
1
 on the Temperature Profile in 

 
( ) PHF case
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the fact that the thickening of thermal boundary layer occurs due to the increase of visco-elastic

normal stress. From Tables 1 and 2, we observe that the effect of visco-elastic parameter is to

increase the wall temperature gradient –
 

(0) in PST case and the wall temperature ΄
 
(0) in

PHF case.

The effect of magnetic parameter Mn on temperature profile 
 
( ) in the presence/absence

of variable thermal conductivity is shown in Figs. 11-12 in case of PST and PHF respectively.

It is noticed that the effect of magnetic parameter is to increase the temperature profile 
 
( ) in

the boundary layer. This is because of the fact that the introduction of transverse magnetic field

to an electrically conducting fluid gives rise to a body force known as Lorentz force which

opposes the motion. The resistance offered to the flow because of this force is responsible in

enhancing the temperature. Also, the effect on the flow and thermal fields become more so as

Figure 10: Effect of Visco-Elastic Parameter k
1
 on the Temperature Profile in 

 
( ) PHF Case
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Figure 11: Effect of Magnetic Parameter Mn on Temperature Profile in 
 
( ) PST Case
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the strength of the magnetic field increases. The effect of magnetic parameter Mn is to increase

the wall temperature gradient ˝– 
(0) in PST case and the wall temperature ˝  

(0) in PHF case.

This is due to the fact that thermal boundary layer thickness decreases as the magnetic parameter

Mn increases which results in higher temperature gradient at the wall and hence higher heat

transfer at the wall.

For fixed values of Prandtl number and magnetic parameter the effect of wall temperature

parameter r, on the temperature profile 
 
( ) in the boundary layer is shown in Figs. 13-14.

From the graphical representation we observe that the increase in wall temperature parameter r
leads the temperature profile 

 
( ) to decrease and the magnitude of wall temperature gradient

increases with wall temperature. This is due to the fact that, when r > 0, heat flows from the

stretching sheet into the ambient medium and, when r < 0, the temperature gradient is positive

and heat flows into the stretching sheet from the ambient medium.

Figure 12: Effect of Magnetic Parameter Mn on Temperature Profile 
 
( ) in PHF Case

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

�

�(
�)

Mn=2,k1=0.2,Pr=1,�=0,Nr=0,r=2,�=0,h2=-0.45

Mn=1,k1=0.2,Pr=1,�=0,Nr=0,r=2,�=0,h2=-0.44

Mn=0,k
1
=0.2,Pr=1,�=0,Nr=0,r=2,�=0,h

2
=-0.44

PHF case

Figure 13: Effect of Wall Temperature Parameter r, on the Temperature Profile 
 
( ) in PST Case
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Figure 14(a): Effect of Wall Temperature Parameter r, on the Temperature Profile 
 
( ) in PHF Case
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Figure 14(b): Effect of Tharmal Radiation on Temperature Profile 
 
( ) in PSt Case
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Figure 15: Effect of Thermal radiation on temperature profile 
 
( ) in PHF Case
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Figures 14-15 shows the effect of thermal radiation on temperature profile 
 
( ) in the

boundary layer. It is observed that the increase in thermal radiation parameter ˝ Nr produces a
significant increase in the thickness of the thermal boundary layer of the fluid and so the
temperature profiles 

 
( ) increases. The wall gradients of PST and PHF cases increase as the

thermal radiation parameter increases which can be observed in Tables 1 and 2.

The effect of heat source/sink parameter ˝  on temperature profile 
 
( ) in the boundary

layer is shown in Fig. 5. It is observed that the effect of heat source  > 0 in the boundary layer
generates the energy which causes the temperature to increase, while the presence of heat sink

 < 0 in the boundary layer absorbs the energy which causes the temperature to decrease. These
behaviours are seen in Fig. 5. From Tables 1 and 2 we see that the effect of heat source is more
pronounced as compared to that of heat sink. These behaviours are even true in the presence of
variable thermal conductivity.

Figure 16: Effect of Heat Source/Sink Parameter ˝  on Temperature Profile in PST Case

Figure 17: Effect of Heat Source/Sink Parameter ˝  on Temperature Profile in PST Case
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Fig. 6 demonstrates the effect of Prandtl number on temperature profile in the boundary
layer. It is seen that the effect of Prandtl number is to decrease the temperature profile in the
boundary layer. This is because of the fact that thermal boundary thickness decreases with
increase in Prandtl number. It is also observed from Tables 1 and 2 that the heat transfer increases
with Prandtl number because a higher Prandtl number fluid has relatively lower thermal
conductivity which reduces conduction and there by increases the variation. This results in the
reduction of the thermal boundary layer thickness and increase in the heat transfer at the wall.
For PHF case, the temperature at the wall reduces as the Prandtl number increases because of
the cooling effect on the surface caused by the increase in Prandtl number.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

�

�(
�)

Mn=1,k1=0.2,Pr=1,�=-0.1,Nr=0,r=2,�=0,h2=-0.44

Mn=1,k1=0.2,Pr=2,�=-0.1,Nr=0,r=2,�=0,h2=-0.3

Mn=1,k1=0.2,Pr=3,�=-0.1,Nr=0,r=2,�=0,h2=-0.2

PST case

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

�

�(
�)

Mn=1,k1=0.2,Pr=1,�=-0.1,Nr=0,r=2,�=0,h2=-0.37

Mn=1,k1=0.2,Pr=2,�=-0.1,Nr=0,r=2,�=0,h2=-0.19

Mn=1,k
1
=0.2,Pr=3,�=-0.1,Nr=0,r=2,�=0,h

2
=-0.13

PHF case

Figure 18: Effect of Prandtl Number on Temperature Profile in PST Case

Figure 19: Effect of Prandtl Number on Temperature Profile in PHF Case
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