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Abstract: In this study, fin efficiency of convective straight fins with temperature-dependent thermal
conductivity is solved using an analytical method called the Parameterized Perturbation Method
(PPM). The concept of Parameterized Perturbation Method is briefly introduced and employed to
derive solutions of nonlinear equation. The obtained results from PPM are compared with those from
the Numerical Method and also Homotopy Analysis Method (HAM) and Variational Iteration Method
(VIM) to verify the accuracy of the proposed method. The results reveal that the Parameterized
Perturbation Method can achieve suitable results in predicting the solution of such problems. After
this verification, the effects of some physical applicable parameters have been analyzed in this problem
such as thermo-geometric fin parameter and thermal conductivity parameter.

Keywords: Fin efficiency, Temperature dependent, Thermal conductivity, Parameterized Perturbation
Method (PPM), Numerical Method (NM), Homotopy Analysis Method (HAM), Variational Iteration
Method (VIM).

A
c

cross-sectional area of the fin (m2)

b fin length (m)

HAM Homotopy Analysis Method

h heat transfer coefficient (W m–1 K –1)

k thermal conductivity of the fin material (W m–1 K–1)

k
a

thermal conductivity at the ambient fluid temperature (W m–1 K–1)

k
b

thermal conductivity at the base temperature (W m–1 K–1)

NM Numerical Method

PPM Parameterized Perturbation Method

P fin perimeter (m)
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Q heat-transfer rate (W)

r Constant parameter

T
a

temperature of surface a (K)

T
b

temperature of surface b (K)

VIM Variational Iteration Method

x distance measured from the fin tip (m)

dimensionless coordinate

fin efficiency

dimensionless parameter describing variation of thethermal conductivity

the slope of the thermal conductivity–temperaturecurve (K-1)

thermo-geometric fin parameter

dimensionless temperature

Constant normalized thickness

A growing number of engineering applications are concerned with energy transport by requiring
the rapid movement of heat. To increase the heat transfer rate on a surface, fin assembly is
commonly used. The heat transfer mechanism of fin is to conduct heat from heat source to the
fin surface by its thermal conduction, and then dissipate heat to the air by the effect of thermal
convection. These extended surfaces are extensively used in various industrial applications. An
extensive review on this topic is presented by Kern and Krause [1] and Aziz [2]. Also a
considerable amount of research has been conducted about the variable thermal parameters
which are associated with fins operating in practical situations. In the present paper, the resulting
nonlinear differential equation is solved by PPM to evaluate the temperature distribution within
the fin and compared with exact solution [3, 4] and numerical solutions. Using the temperature
distribution, the efficiency of the fins is expressed through a term called thermo-geometric fin
parameter ( ) and thermal conductivity parameter ( ), describing the variation of the thermal
conductivity. All these problems and phenomena are modeled by ordinary or partial differential
equations. In most cases, these problems do not admit analytical solution, so these equations
should be solved using special techniques. In recent years some researchers used new methods
to solve these kinds of problem [5-10]. Integral transform methods such as the Laplace and the
Fourier transform methods are widely used in engineering problems. These methods transform
differential equations into algebraic equations which are easier to deal with. However, integral
transform methods are more complex and difficult when applying to nonlinear problems.
Perturbation methods depend on a small parameter which is difficult to be found for real-life
nonlinear problems. Parameterized Perturbation Method (PPM) [11-14] helps us to overcome
this shortcoming and improves the accuracy of solution.

In this study, analytical solution of fin efficiency of convective straight fins with temperature-
dependent thermal conductivity has been studied by Differential Transformation Method. For



this purpose, after description of the problem and brief introduction for DTM, we applied
DTM to find the approximate solution. Obtaining the analytical solution of the model and
comparing with numerical results, HAM, VIM reveal the capability, effectiveness, convenience
and high accuracy of this method.

To analyze the fin problem, the heat transfer performance of the extended surface refers to two
approaches. One is based on thermal convection through fin surface area where the heat transfer
rate of fin is a product of three factors which are heat transfer coefficients, fin surface area, and
temperature difference between fin surface and surrounding. The other one is based on thermal
conduction through fin cross-section where the main factors that govern the heat removal of fin
are thermal conductivity, fin cross-section area, and temperature gradient along heat flow direction.

Consider a straight fin with a temperature-dependent thermal conductivity, arbitrary constant
cross-sectional area A

c
; perimeter P and length b (see Fig. 1).

Figure 1: Geometry of a Straight Fin

The fin is attached to a base surface of temperature T
b
, extends into a fluid of temperature

T
a
, and its tip is insulated. The one-dimensional energy balance equation is given:
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The thermal conductivity of the fin material is assumed to be a linear function of temperature
according to:

( ) [1 ( )]a ak T k T T� � � � . (2.2)

Where k
a
 is the thermal conductivity at the ambient fluid temperature of the fin and k is the

parameter describing the thermal conductivity variation.

Employing the following dimensionless parameters [15]:
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The problem formulation reduces to:
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The heat transfer rate from the fin is found by using Newton’s law of cooling
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b

a
a

Q P T T dx� �� . (2.6)

The ratio of actual heat transfer from the fin surface to the other side while whole fin
surface is at the same temperature, we commonly called it the fin efficiency.
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The parameterized perturbation method was first proposed in 1999 in [11]. According to [11],
an expanding parameter is introduced by a linear trans-formation:

v r� � � � (3.1)

where  is the perturbation parameter, by substituting Eq. (1) into an original equation in order
to have no secular term in the equation; we can obtain the un-known constant parameter r,
Then, the solution is expanded in the form:
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Here  is an artificial bookkeeping parameter. Unlike traditional perturbation methods,
we keep

0
1
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Considering Eqs. (2.4) and (2.5), by subsisting Eq. (3.1) we can obtained that:
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In order to have no secular term in the equation we can obtain the un-known constant
parameter b:

2( ) 0r� � � � . (4.2)

By solving Eq. (4.2) constant parameter r can be obtained:

0r � . (4.3)

Then Eq. (3.1) must be subsisted into Eq. (4.1), after some simplification and rearranging
based on powers of -terms, we have:
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Solving Eqs. (4.4), (4.5) with boundary conditions, we have:
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According to Eq. (3.2) we can obtain v, by subsisting into Eq. (3.1) we can find v:
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In the present study PPM is applied to obtain an explicit analytic solution of fin efficiency for
convective straight fins with temperature dependent thermal conductivity (Fig. 1). In this study,
the percentage of Error is introduced as fallow:
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a
 is the amount obtained using analytical methods.

In Fig. 2 the comparison of the DTM and exact solutions is represented. The results were
well matched with the results carried out by numerical method (fourth-order Runge–Kutta).

(a) (b) (c)

Figure 2: Comparison between Numerical Results and PPM when (a)  = – 0.5,  = 1, (b)  = 0,  = 1 and
(c)  = 0.5, y = 1 .

Comparison between the obtained results showed that PPM is more acceptable and accurate
than HAM and VIM as we can see in Fig. 3.

Figure 4 depicts the effective temperature difference with various values of thermo-
geometric fin parameter ( ) from 0.5 to 0.65. This figure displays that for all amount of thermal
conductivity, increasing in the values of thermo-geometric fin parameter, results the decrease
in the values of dimensionless temperature.

The dimensionless temperature distributions along the fin surface with  varying from
–

 
0.2 to 0.2 are depicted in Fig. 5 for different values of  = 0.5 and  = 1, respectively. If the

thermal conductivity of the fin’s material increases with the temperature, the dimensionless
temperature increases, too.



Figure 3: Comparison between % Errors of PPM, HAM and VIM for  when  = 0.4,  = 1.

Figure 5: Temperature Distribution in Convective Fins with Variable Thermal Conductivity. (a) When  = 0.5,
(b) when  = 1.

(a) (b)
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Figure 4: Temperature Distribution in Convective Fins with Variable Thermal Conductivity. For Various  when
(a)  = –

 
0.5, (b)  = 0 and (c)  = 0.5.



Figure 6 shows the fin efficiency as a function of the thermo-geometric fin parameter for
different values of the thermal conductivity parameter. This figure shows that fin efficiency
increased as the result of thermo-geometric fin parameter reduction and thermal conductivity
parameter increment.

In this study, we presented the definition and operation of Parameter Perturbation (PPM) method.
Using the parameterized perturbation method a small parameter was created in the differential
equation which is a difficulty of perturbation method. This method has been applied to solve a
nonlinear differential equation arising in convective straight fins with temperature dependent
thermal conductivity problem. The results of this method are compared to exact solution. The
figures clearly show high accuracy of PPM to solve heat transfer problems in engineering.
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