
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008
CSES International © 2008 ISSN 0973-4406

Manuscript received December 5, 2007
Manuscript revised January 12, 2008

A Secure against High Order DPA Attacks AES
Coprocessor Based on Masking Scheme

Yuan-Man TONG, Zhi-Ying WANG, Kui DAI & Hong-Yi LU
School of Computer Science, National University of Defense TechnologyChangsha, Hunan 410073, China

E-mail: yuanmantong@yahoo.com.cn

Abstract: An AES implementation based on masking scheme is presented. Five masked primitive operations and their hardware
circuits are defined. Then the masked data-path of all the transformations in AES is built on these primitive operations. All
the input signals of the masked primitive operations are synchronized by the generated enable signals. And a simple method
is proposed to generate random values to mask all the intermediate variables. Our scheme is probably secure against first
order DPA (differential power analysis) and high order DPA (HODPA) attacks.

Keywords: side-channel attack, power analysis attack, AES, DPA, HODPA, masking scheme, primitive operation, probably
security

1. INTRODUCTION

Side-channel attacks, especially the power analysis attacks,
on software or hardware implementations of various
cryptosystems aim at recovering the secret key information
from power consumption performed on the electronic device
such as smartcard [1-2]. Power analysis attacks are very
powerful as they do not require expensive resources. Almost
all cryptographic algorithms including AES are susceptible
to power analysis attacks while there are no appropriate
countermeasures.

Power analysis attack is classified to SPA (simple power
analysis), DPA (differential power analysis) and HODPA (high
order DPA) [1-3]. SPA just exploits the relationship between
the operations that are executed and the power leakage. DPA
attacks use statistical analysis and error correction techniques
to extract information correlated to secret keys. In fact, the
DPA attack can be considered as a hypothesis testing including
mean test and correlation analysis, the latter is also called CPA
(Correlation Power Analysis) [4]. A HODPA attack is a
generalization of the (first-order) DPA attack in which the
power consumption curves are analyzed by using a joint
statistic applied to collections of points in time.

The AES is the de-facto standard for symmetric
encryption. And it is an attractive algorithm for many security
relevant applications. Efficient implementation of AES on
smartcards that is resistant to power analysis attacks is now
a primary interest of the industry. Countermeasures for AES
implementation in smartcards include masking scheme
[5-17], random execution [10], and novel logic style
[18-20] etc. The masking scheme is the widely used method

to protect AES, and it can be implemented in software and
in hardware.

This paper presents an AES implementation based on
the masked primitive operations. Five masked primitive
operations and their hardware circuits are defined. According
to these masked primitive operations, the masked data-path
of all the transformations in AES is established. To avoid
the side-channel leakage pointed out in [21] caused by
different arrival time, all input signals of the masked
primitive operations are synchronized by generated enable
signals. And a simple method is proposed to generate the
random values to mask all the intermediate variables. The
proposed AES implementation is provably secure against
first order and high order DPA attacks.

2. RELATED WORKS

Masking scheme is a kind of frequently used algorithmic
countermeasure against power analysis attacks. In a masked
implementation, each intermediate variable is masked by a
uniformly distributed random value. For instance, in Boolean
masking, X� = X � R, where X is masked by R and X� is the
masked value. So the masked value never depends on the
secret key and power analysis attack is prevented. However,
some masked implementations do not really prevent power
analysis attacks, i.e. they are vulnerable to DPA or HODPA.
The following definition shows when an adversary can
perform an n-th (n � 1) order DPA attacks [7, 22-23]. And
we will use this definition to validate the resistance to power
analysis of our method and other proposed masking schemes.

Definition GDPA (Generic DPA): Let z
1
, z

2
, …, z

n
 be

n (n � 1) intermediate variables, and the joint distribution
of (z

1
, z

2
, …, z

n
) is denoted as D(m, k) for a pair of (m, k)

of plaintext and key, where D(m, k) is discretely distributed.

International Journal of Computer Sciences and Engineering Systems
Vol. 3 No. 1 (January-June, 2018)

Manuscript received December 5, 2017, Manuscript revised January 12, 2018

19

International Journal of Computer Sciences and Engineering Systems
Vol. 12 No.1 (June, 2018)

100 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008

If there exist at least two different assignments of (m, k)
such that D(m

1
, k

1
) is not identical with D(m

2
, k

2
), then an

attacker may be able to perform a n-th order DPA attack
on (z

1
, z

2
, …, z

n
).

In the past, many different masking schemes have been
presented to protect AES implementation.

(1) Multiplicative Masking Scheme

Akkar proposed the transformed multiplicative masking
scheme for AES [5]. However, it has the so-called zero
problem, i.e. zero is not masked at all. So the distributions
of some intermediate variables are correlated to the key and
satisfy the precondition of GDPA so that this scheme is
vulnerable to DPA. Trichina and Goliæ then tried to enhance
this scheme [9, 17]. But they did not solve the zero-problem
perfectly.

(2) log/alog Tables based Masking

Trichina and Korkishko proposed a software-oriented
masking method based on log/alog tables [16]. However,
this scheme still has the zero-problem.

(3) Random Isomorphism based Masking

Rostovtsev and Shemyakina proposed to use isomorphism
of the underlying finite field [14]. The first isomorphism in
the paper has zero-problem too. For the second one, it must
be carefully implemented or it may be subject to DPA attacks.

(4) Tower Fields Methods

Oswald proposed a masking scheme based on the arithmetic
over GF(2-4) [11-12]. In this scheme, the masks of the input
and output of S-box are the same, so it is vulnerable to 2nd

DPA. Blömer proposed the scheme based on the arithmetic
over the composite field GF(((22)2)2) [7]. It has been proven
to be true that this scheme is secure against DPA. However,
it is pointed out that the glitches in masked multipliers lead
to side-channel leakage [21].

(5) Fourier Transformation based Masking

Prouff proposed a Fourier transformation based masking
scheme for AES S-box [13]. This scheme is proven to be
secure against first order DPA, but it may be subject to 2nd

DPA caused by the unsecure switching between arithmetic
masking and Boolean masking.

(6) Algebraic Masking

Courtois proposed a general high-level algebraic method to
protect AES against power attacks of any given order [8].
Using the group of homographic transformations over the
projective space, a secure computation of a whole masked
inverse is achieved. The high order DPA attacks resistant
implementation seems to require large amount of computation.

(7) Masking and Randomization

Herbst proposed an efficient AES software implementation
that is well suited for 8-bit smart cards and resistant against

power analysis attacks [10]. This implementation masks the
intermediate results and randomizes the sequence of
operations at the beginning and the end of the AES execution.
Resistant to high order DPA attacks mean that a large number
of measurements are required for a successful attack. And
the expected number of measurements is tunable.

(8) High order Masking

Schramm proposed a masking scheme which protects an AES
implementation against n-th order DPA for any arbitrary
chosen order n [15]. However, Coron pointed out that this
scheme is subject to 3rd order DPA attacks [24].

So we can see that it is still an open problem to protect
AES against high order DPA attacks.

3. MASKED PRIMITIVE OPERATIONS

The AES algorithm is a symmetric block cipher that operates
on 128-bit data blocks. AES uses a cipher key to encrypt a
128-bit data block. The input, output and intermediate cipher
result called State are represented as 4×4 arrays of bytes.
As most symmetric ciphers, AES encrypts an input data-
block by applying the same round function iteratively. In
one round, the input state is mapped to the output state by
performing the following four different transformations one
after another.
(1) The SubBytes transformation is a non-linear byte

substitution (which is called S-box) that operates
independently on each byte of the State. For a byte x,
the S-box on x, S(x), is defined as follows

S(x) = L·Inv(x) � c, x � GF(28) (1)

�
�
� �

�
� otherwise,

0,0
)(

1x

x
xInv (2)

where L and c are the parameters of the affine transformation
in AES. Inv(x) computes the inversion of x when x is not 0.
(2) In the ShiftRows transformation, the bytes in the last

three rows of the State are cyclically shifted over
different numbers of bytes (offsets). The first row is not
shifted. In this paper, ShiftRows is not implemented
directly, but integrated into MixColumns.

(3) MixColumns transforms each column of the State. Each
byte in a column is interpreted as the coefficients of a
polynomial in an extension field over GF(28). This
polynomial is multiplied by the constant polynomial c(x)
= {03}x3 +{01}x2 + {01}x + {02}, where the coefficients
are elements of GF(28) in hexadecimal notation. The
modular remainder of the resulting product modulo
x4 + 1 is the output of MixColumns. In the last round,
the MixColumns is not needed.

(4) In the AddRoundKey transformation, a round key is
added to the State by a simple bitwise XOR operation
(�). Each round key is derived from the key schedule
and the size of a round key is equal to the State’s. Before

20

A Secure against High Order DPA Attacks AES Coprocessor Based on Masking Scheme 101

the first round, the AddRoundKey is performed on the
initial key and input block.

In this paper, Inv(x) is implemented in the composite field
GF(((22)2)2) [7]. The following field structures are used:

GF(22) � GF(2)[x]/P(x), P(x) = (x2 + x + 1), P(�) = 0
GF((22)2) � GF(22) [y]/(y2 + y + �), � = (10)

2
,

GF(((22)2)2) � GF((22)2)[z]/(z2 + z + �), � = (1100)
2

For x � GF(28), it is mapped into GF(((22)2)2) by the
isomorphism �, i.e. �x � GF(((22)2)2), where � is a 8×8
binary matrix. After the Inv(�x) has been computed, it is
then mapped to GF(28) by the inverse isomorphism �–1, i.e.
Inv(x) = �–1(Inv(�x)). The isomorphism mapping � is similar
to the affine transformation. And � can be combined with
affine transformation, i.e. the new matrix �×L is pre-
computed and used.

Let A � GF(((22)2)2), then Inv(A) = Inv(A·A16)·A16 and
B = A17 � GF((22)2). Inv(B) = Inv(B5)B4 and C = B5 � GF(22).
And Inv(C) = C2. The square and multiplication over the
composite fields are computed as follows . Since A, B and
C can be denoted by A = az + b, a, b � GF((22)2), B = cy + d,
c, d � GF(22), C = ex + f, e, f � GF(2), we get the following
equations
(az + b)2 = a2z + a2��+ b2,
(az + b)(a�z + b�) = ((a + a�)(b + b�)+bb�)z + aa��+ bb�,
(cy + d)2 = c2y + c2�+ d2,
(cy + d)(c�y + d�) = ((c+c�)(d+d�)+dd�)y + cc��+ dd�,
(ex + f)2 = ex + (e + f),
(ex + f)(e�x + f�) = ((e + e�) (f + f�) + ff�)x + ee��+ ff�.

The required computation can be further reduced using
the following tricks.

- Since B = A·A16 � GF((22)2), the coefficient of z is not
computed in the multiplication.

- B4 can be computed as cy + (c � d), i.e., only one
addition over GF(22).

- Since B5 � GF(22), it can be computed as c2 � � cd �
d2.

All the transformations in AES algorithm can be
decomposed to the following primitive operations. And these
primitive operations are masked in this paper. Let x

1
 = u

1
 �

r
1
, x

2
 = u

2
 � r

2
, u

1
, r

1
, u

2
, r

2
� GF(28), where r

1
 and r

2
 are

random values, and x
1
 and x

2
 are the masked variables.

(1) Addition (add)

The addition in AES is simple bit-wise XOR operation. The
masked addition is defined as

t
1
 = (r

1
 � r

2
) � r�

t
2
 = (x

1
 � x

2
) � t

1
 = (u

1
 � u

2
) � r�

In the masked addition, r� is a newly generated random
value so that the desired result (u

1
 � u

2
) is masked by r�.

The hardware circuit of masked addition is shown in Fig. 1.

(2) Affine Transformation (aff)

The affine transformation is the linear part of S-box. And
the masked affine transformation is defined as

t
1
 = L·r

1
 � r�

t
2
 = L·x

1
 � c

t
3
 = t

1
 � t

2

Similarly, the desired result (L·u
1
 � c) is also masked

by r�. And the hardware circuit of masked affine
transformation is shown in Fig. 2.

x1 x2 r1 r2 r′

i1 i2

i3

(u1 u2) r′

Figure 1: The Masked Addition

f(L, c)(x1) f(L, r′)(r1)

x1 r1

i1 i2

(L·u1 c) r′
Figure 2: The Masked Affine Transformation

(3) Square (sqr)

While calculating Inv(x) using the composite field arithmetic,
square is the necessary operation. The masked square is
defined as

t
1
 = r

1
2 � r�

t
2
 = x

1
2 � t

1
 = u

1
2 � r�

In the masked square, the desired result (u
1

2) is also
masked by r�. And the hardware circuit is shown in Fig. 3.

(4) Multiplication (mul)

The masked multiplication is defined as
t

1
 = r

1
r

2
 � r

3

t
2
 = x

1
r

2
 � t

1
 � (r

3
 � r

4
)

t
3
 = x

2
r

1
 � t

2
 � (r

4
 � r

5
)

t
4
 = x

1
x

2
 � t

3
 � (r

5
 � r2) = u

1
u

2
 + r�

In the above computation, r
3
, r

4
, r

5
, and r� are newly

generated random values. And the desired result (u
1
u

2
) is

masked by r�. And the hardware circuit is shown in Fig. 4.

21

102 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008

(5) Multiplication with Constant Value (mulc)

When a variable x
1
 is multiplied by a constant value, a, the

masked multiplication is defined as
t

1
 = ar

1
 � r�

t
2
 = ax

1
 � t

1
 = au

1
 � r�

Here the desired result (au
1
) is also masked by r�. And

the hardware circuit is shown in Fig. 5.

The key schedule in AES algorithm can also be
implemented as the sequence of masked primitive operations.
And the transformations in inverse cipher including
InvSubBytes and InvMixColumns can also decomposed to
masked primitive operations. For space saving, their
implementations are not included in this paper.

4. ARCHITECTURE OF THE AES COPROCESSOR

All the transformations in AES can be implemented using
the mentioned masked primitive operations. So the data-path
of one round in AES is equivalent to a graph in which each
node represents a masked primitive operation. And each byte
of the State is processed and updated in parallel in our
coprocessor. The block diagram of the arithmetic core to
perform the round function is shown in Fig. 6. The core may
be a pipeline stage in an entire AES coprocessor, or it is the
only unit to perform each round function iteratively.

x1 x1 r1 r1 r′

i1 i2

i3

u1
2 r′

Figure 3: The Masked Square

x1 x2 x1 r2 r1 x2 r1 r2 r3

r3 r

r4 r

r5 r′

i1 i2 i3 i4

i5

i6

i7

i8

i9

i10

(u1 u2) r′

x1 c r1 c r′

i1 i2

i3

(u1 c) r′

Figure 5: The Masked Mulc

Figure 4: The Masked Multiplication

masked data-path

masked S-box

σ(x)

y=Inv(σ(x))

σ-1(y)

masked
MixColumns

mulc, mulc,
add, add, add

masked
AddRoundKey

add

I′, Rclk

I′, R′

en1

en2

en3

en1

en2

en3

R1

R2

R′

X

F(·)

F(·)

F(·)

en- gen mask-gen

Figure 6: The Architecture of the Arithmetic Core

Let I� be the masked State and R be the corresponding
mask, i.e. I� = I � R, where I is the State. The arithmetic
core takes I� and R as the input and generates new masked
State I� which is masked by the newly generated mask R�.

For simplicity, we do not describe the practical
implementation of the masked transformations including
S-box, MixColumns and AddRoundKey in details. The key
to implement the arithmetic core has two sides. The first
one is to avoid the side-channel leakage caused by different
arrival time of the input signals of the masked circuits [21].
This is achieved by the sub-block ‘en-gen’. And the second
one is to generate the required random masks by the sub-
block ‘mask-gen’.

22

A Secure against High Order DPA Attacks AES Coprocessor Based on Masking Scheme 103

(1) The Sub-block en-gen

To ensure nearly the same arrival time of all input signals of
a masked primitive circuit, the input signals together with
the generated enable signal are transmitted to the masked
circuit through AND gates. The enable signals are generated
by the sub-block en-gen using sequential buffers as shown
in Fig. 6. When the enable signal is 1, the input signals to
the masked circuit are valid. Otherwise, the input signals
are zero. In other words, the input signals are synchronized
by the enable signal. The sub-block en-gen takes the clock
signal as input. So clk passes through the buffers one by
one. In one clock cycle, 1 and 0 are transmitted alternately.

Let the critical path consists of the following primitive
operations, P

1
, P

2
, …, P

n
 (n > 1). The timing constraint can

be defined as

t
r
 + t

d
 > m

0
× t

d
 � t

r

max(t
r
, t

i
) + t

d
 > m

i
× t

d
 � max(t

r
, t

i
), n > i � 1

T � (m
0
 + m

1
 + … + m

n-1
) × t

d
 + t

n
 � t

r
 + t

1
 + … + t

n

where m
i
 (n > i � 0) is the number of buffer stages for the

primitive operation P
i
, t

r
 is the delay to generate random

mask, t
d
 is the delay of a buffer. And t

i
 (n � i � 1) is the delay

of the primitive operation P
i
, T is the clock cycle. The

waveform of the enable signals is shown in Fig. 7.

uniformly distributed. The key in mask-gen is the function
F which generates an m-bit random mask using an m-bit
input. And F generates an m-bit random mask iteratively.
Like the LFSR based random sequence generation, an
irreducible polynomial with degree m is introduced and
defined as

miaxaxaxxf i

m

n

m �������� �
� 0},1,0{,1...)(1

1
1

Figure 7: The Waveform of Enable Signals

clk

en1

en2

en3

T
t d

...

The difference of the arrival time of two different input
signals must not exceed T/2, where T is the clock cycle.
Otherwise, several buffers can be added for the input
signals which are generated much earlier. So that the arrival
time of different inputs can be balanced. For example, we
can add one buffer stage for the input x

2
 of the masked

addition when the difference of the arrival time of x
1
 and

x
2
 exceeds T/2.

(2) The Sub-block Mask-gen

The sub-block mask-gen generates all the required random
masks to mask each intermediate variable. It takes X as the
seed, where X is the truly random value generated outside
the AES coprocessor and updated every clock. In other
words, X is uniformly distributed. The implementation of
mask-gen is shown in Fig. 8 in details.

P1, P2, …, and Ps are permutations that change the
position of each bit in X. P1(X), P2(X), …, Ps(X) are also

Figure 8: The Implementation of Mask-gen

P1(X)

F(·)

F(·)

F(·)

R1
0

R1
1

R1
i

P2 (X)

F(·)

F(·)

F(·)

R 2
0

R 2
1

R2
i

Ps(X)

F(·)

F(·)

F(·)

Rs
0

Rs
1

Rs

i

……

……

……

……

……

……

……

……

……

……

XX X

Let the input of F be (b
m-1

,…, b
1
, b

0
). The generated

random mask (b
m-1
�, …, b

1
�, b

0
�) is defined as

b
0
� = b

0
 ^ (a

1
b

1
) ^ … ^ (a

m-1
b

n-1
)

b
1
� = b

1
 ^ (a

1
b

2
) ^ … ^ (a

m-1
 b

0
�)

……

B
m-1
� = b

n-1
 ^ (a

1
 b

0
�) ^ … ^ (a

m-1
 b

n-2
�)

If the coefficient a
i
 (1 � i � m-1) of f(x) is zero, the

corresponding terms containing a
i
 to compute b

j
� (0 � j � m-

1) are not necessary.
To simplify the hardware complexity, we use the

polynomial f(x) = x16 + x + 1, i.e., the function F generates a
16-bit random mask every time. And X is a 16-bit random
value too. Then the output of F is defined as, b

0
� = b

0
 ^ b

1
,

b
1
� = b

1
 ̂ b

2
, …, b

15
��= b

15
 ̂ b

0
� = b

15
 ̂ (b

0
 ̂ b

1
). The delay to

generate one mask is equivalent to the delay of 2 XOR
operations (to compute b

15
�). So we can conclude that t

r
 < t

i

(1 � i � n-1). To mask 16 bytes of the State, 8 set of generators
are placed in mask-gen, i.e., s = 8. The number of stages of
generating function F is equal to the number of required
random masks in the masked data-path.

In addition, the generated masks are alternately used.
For a certain byte I

ij
 (0 � i, j � 3) (the byte in i-th row and

j-th column), all the primitive operations P
1
, P

2
, …, P

n
, in

the data-path of I
ij
 use the masks from different generator

alternately. For example, the data-path of I
00

 use the
following random masks R

1
0, R

2
1, R

3
2, …, R

8
7, R

1
8, …, and

so on.

23

104 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008

5. SECURITY AND PERFORMANCE

5.1 Security Analysis

To demonstrate the security of our implementation, we have
to determine all the intermediate variables do not satisfy the
precondition of GDPA.

Lemma 1. The function F generates an m-bit uniformly
distributed mask b while its input a (b = F(a)) is a uniformly
distributed random value. And the average Hamming
distance of b and a is m/2.

The proof of this lemma is omitted. The generated masks
are alternately used. And there exists weak correlation of
two masks from different generators. Their average
Hamming distance is m/2 too. So the weak correlation can
not be used to improve the power analysis attack. It is
considered that the masks for the data-path of a certain byte
are nearly independent and uniformly distributed.

Lemma 2. Let u � GF(28) be arbitrary, and c be a non-
zero constant element of GF(28). Let r be uniformly
distributed over {0, …, 255} independent of u. Then the
variables, u � r, c�(u � r), f

(L,c)
(u � r) and r2 are uniformly

distributed.
Lemma 3. Let u

1
, u

2
 � GF(28) be arbitrary, and r

1
, r

2
 be

independently and uniformly distributed over {0, …, 255}.
Set I

1
 = u

1
�r

1
 and I

2
 = u

2
�r

2
. Then the distributions of I

1
�I

2
,

r
1
�I

2
, I

1
�r

2
, and r

1
�r

2
 are independent of u

1
and u

2
 and

identical to the distribution of a random variable z in GF(28).
The distribution of z is defined as

��

�
�
� �

��
otherwise,2/255

0,2/511
)Pr(

16

16 i
iz (3)

The proofs of these two lemmas are straightforward and
therefore omitted. Now we will show the security of the
masked primitive operations.

In the masked addition, i
1
, i

2
, i

3
, and the result (u

1
 � u

2
)

� r� are uniformly distributed according to lemma 2. In the
masked affine transformation, i

1
, i

2
, and the result f

(L,c)
(u

1
) �

r� are also uniformly distributed. In the masked square, the
distributions of i

1
and i

2
are identical to the distribution shown

in Eq. (3) according to lemma 3. And i
3
 and the result u

1
2 �

r� are uniformly distributed. In the masked constant
multiplication, i

1
, i

2
, i

3
, and the result (c � u

1
) � r� are

uniformly distributed too. In the masked multiplication, the
distributions of i

1
, i

2
, i

3
and i

4
 are identical to the one in Eq.

(3). And i
5
, i

6
, i

7
, i

8
, i

9
, i

10
 and the result (u

1
 � u

2
) � r� are all

uniformly distributed.
According to the above analysis, we can see that the

distr ibution of each intermediated variable in our
implementation is independent of the sensitive data (i.e. key).
In other word, there is no single intermediate variable that
satisfies the precondition of GDPA. So our AES
implementation is secure against first order DPA attack. Now
we will discuss the security against high order DPA attacks
of our implementation.

Lemma 4. Let x
1
, x

2
, …, x

n
 (n > 0) be n masked values,

where x
i
 = u

i
 � r

i
, 0 � i � n, and r

1
, …, r

n
 are independently

and uniformly distributed random masks. The joint
distribution of the n masked values is independent of u

1
, u

2
,

…, u
n
 so that these n variables do not satisfy the precondition

of GDPA.
Since the n random masks are independently and

uniformly distributed, the n masked values are independently
and uniformly distributed too. The proof of this lemma is
omitted here.

In the masked primitive operations, we can conclude
that the joint distributions of multiple intermediate results
calculated at different time are independent of the key and
plaintext. For instance, in the masked multiplication, the
distributions of the pairs of (i

p
, i

q
) (1 � p � 4, 5 � q � 10),

(i
6
, i

7
), (i

8
, i

9
), and (i

9
, i

10
) are independent of u

1
 and u

2
.

According to lemma 4, the other pairs of variables are
independent of u

1
 and u

2
 too. The four variables, i

1
, i

2
, i

3
,

and i
4
 are produced at nearly the same time, so the attack on

(i
1
, i

2
, i

3
, i

4
) is not feasible. The other combination of more

than 2 variables can be analyzed similarly.
Since all the input signals of a masked primitive

operation are synchronized, the side-channel leakage pointed
out in [21] caused by different arrival time is avoided. To
sum up, the proposed AES implementation is secure against
the first order and high order DPA attacks.

To validate the security of the proposed scheme, we have
performed a first order DPA attack on the practical
implementation. This attack is mounted on the output of S-
box in the first round, i.e. S(M

00
 � K

00
), where M and K are

the plaintext and key respectively, and M
00

, K
00

 denote the
first byte of M and K. Here K

00
 is the target to break. And

the correlation power analysis is used so that we calculate
the correlation coefficient between the power traces and the
Hamming Weight of S(M

00
 K

00
). Let the correct value of K

00

be 0x9C. The result of the attack is shown in Fig. 9. The
result for 1000 power traces is shown in the top, and the

Figure 9: The Result of a Practical Attack

24

A Secure against High Order DPA Attacks AES Coprocessor Based on Masking Scheme 105

result for 5000 traces is shown in the bottom. We can see
that both attacks fail to determine the correct key and it is
useless to increase the number of power traces.

5.2 Performance Analysis

We have implemented an AES coprocessor which consists
of only one arithmetic core presented in section 4. The
coprocessor performs encryption/decryption with 128-bit
key in 11 clock cycles. For comparison, we also implemented
a common AES coprocessor in which no countermeasure is
applied. And the S-box in the common coprocessor is
implemented as a look-up table. We call the common
coprocessor reference design. Using 0.18ìm CMOS
technology, the experiment results of the two coprocessors
under typical condition are shown in Table 1.

We can see that our design achieves resistance to high
order DPA attacks at the cost of 3.1 times larger areas and
1.2 times greater delay than the common AES coprocessor.

Table 1
The Experiment Results of the Two Coprocessors

Area Clock Freq. Throughput Throughput/

(gates) (MHz) (Mbps) Area(Kbps/gates)

this paper 140K 180 1100 7.9

reference 45K 220 1342 29.8
design

6. CONCLUSION

In this paper, we have proposed an AES implementation
secure against high order DPA attacks based on masking
scheme. Several masked primitive operations are defined
and all the transformations in AES are then transformed to
the sequence of these primitive operations. The composite
field arithmetic over GF(((22)2)2) is used to implement
inversion efficiently. The arithmetic core of the AES
coprocessor is presented. Besides the masked data-path, two
additional sub-blocks are introduced. The one is to generate
enable signals to synchronized all the input signals of masked
primitive operations. And the other one is to generate the
required random values to mask all the intermediate
variables. Theoretical analysis shows that our
implementation is secure against first order and high order
DPA attacks.

In the future works, we will try to reduce the required
hardware cost and computation without loss of security.

ACKNOWLEDGMENTS

The authors would like to thank the Natural Science
Foundation of China (NSFC) for funding this research
project (No. 60706026).

REFERENCES

[1] P. C. Kocher, B. Jun, “Differential Power Analysis”, in
Advances in Cryptology, 1999, LNCS 1666, 388-397.

[2] T. Messerges, E. A. Dabbish, R. H. Sloan, “Examining
Smart-Card Security under the Threat of Power Analysis
Attacks”, IEEE Transaction on Computers, 51(5), 2002,
541-552.

[3] M. Joye, P. Paillier, B. Schoenmakers, “On Second-Order
Differential Power Analysis”, in Cryptographic Hardware
and Embedded Systems, 2005, LNCS 3659, 293-308.

[4] E. Brier, C. Clavier, F. Olivier, “Correlation Power
Analysis with a Leakage Model”, in Cryptographic
Hardware and Embedded Systems, 2004, LNCS 3156,
16-29.

[5] M. L. Akkar, C. Giraud, “An Implementation of DES
and AES, Secure against Some Attacks”, in
Cryptographic Hardware and Embedded Systems, 2001,
LNCS 2162, 309-318.

[6] Y. J. Baek, M. J. Noh, “DPA-Resistant Finite Field
Multipliers and Secure AES Design”, in ISPEC, 2006,
LNCS 3903, 1-12.

[7] J. Blömer, V. Krummel, “Provably Secure Masking of
AES”, in Selected Areas in Cryptography, 2005, LNCS
3357, 60-83.

[8] N. T. Courtois, L. Goubin, “An Algebraic Masking
Method to Protect AES Against Power Attacks”, in
Information Security and Cryptology, 2006, LNCS, 3935,
199-209.

[9] J.D. Goliæ, “Multiplicative Masking and Power Analysis
of AES”, in Cryptographic Hardware and Embedded
Systems, 2003, LNCS 2523, 198-212.

[10] C. Herbst, E. Oswald, S. Mangard, “An AES Smart Card
Implementation Resistant to Power Analysis Attacks”,
in ACNS, 2006, LNCS 3989, 239-252.

[11] E. Oswald, S. Mangard, N. Pramstaller, V. Rijmen, “A
Side-Channel Analysis Resistant Description of the AES
S-box”, in Fast Software Encryption, 2005, LNCS 3557,
413-423.

[12] E. Oswald, K. Schramm, “An Efficient Masking Scheme
for AES Software Implementations”, in WISA, 2005,
LNCS 3786, 292-305.

[13] E. Prouff, C. Giraud, S. Aumônier, “Provably Secure S-
Box Implementation Based on Fourier Transform”, in
Cryptographic Hardware and Embedded Systems, 2006,
LNCS 4249, 216-230.

[14] A. G. Rostovtsev, O. V. Shemyakina, “AES Side Channel
Attack Protection using Random Isomorphisms”, 2005,
Available on http://eprint.iacr.org/2005/087.pdf.

[15] K. Schramm, C. Paar, “Higher Order Masking of the
AES”, in CT-RSA, 2006, LNCS 3860, 208-225.

[16] E. Trichina, L. Korkishko, “Secure and Efficient AES
Software Implementation for Smart Cards”, in WISA,
2004, LNCS 3325, 425-439.

[17] E. Trichina, D. D. Seta, L. Germani, “Simplified Adaptive
Multiplicative Masking for AES”, in Cryptographic

25

106 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008

Hardware and Embedded Systems, 2003, LNCS 2535,
187-197.

[18] T. Popp, S. Mangard, “Masked Dual-Rail Pre-charge
Logic: DPA-Resistance Without Routing Constraints”,
in Cryptographic Hardware and Embedded Systems,
2005, LNCS 3659, 172-186.

[19] K. Tiri, I. Verbauwhede, “Securing Encryption
Algorithms against DPA at the Logic Level: Next
Generation Smart Card Technology”, in Cryptographic
Hardware and Embedded Systems, 2003, LNCS 2779,
137-151.

[20] Y. Tong, Z. Wang, K. Dai, H. Lu, “Designing Power
Analysis Resistant and High Performance Block Cipher
Coprocessor Using WDDL and Wave-Pipelining”, in
Inscrypt, 2006, LNCS 4318, 66-77.

[21] S. Mangard, K. Schramm, “Pinpointing the Side-Channel
Leakage of Masked AES Hardware Implementations”,
in Cryptographic Hardware and Embedded Systems,
2006, LNCS 4249, 76-90.

[22] M. L. Akkar, R. Bevan, L. Goubin, “Two Power Analysis
Attacks against One-Mask Methods”, in FSE, 2004,
LNCS 3017, 332-347.

[23] S. Chari, C. S. Jutla, J. R. Rao, R. Rohatgi, “Towards
Sound Approaches to Counteract Power-Analysis
Attacks”, in Crypto, 1999, LNCS 1666, 398-412.

[24] J. S. Coron, E. Prouff, M. Rivain, “Side Channel
Cryptanalysis of a Higher Order Masking Scheme”, in
Cryptographic Hardware and Embedded Systems, 2007,
LNCS 4727, 28-44.

26

