International Journal of Computer Sciences and Engineering Systems
Vol. 12 No.1 (June, 2018)

Computational Power and Level of Parallelism Based
Scheduling for Heterogeneous Grid Environments

G. Sumathi' & N. P. Gopalan®

!Department of Information Technology, Sri Venkateswara College of EngineeringSriperumbudur 602105
Tamil Nadu, India, E-mail:sumathiganesan@yahoo.com
2Department of Computer Applications, National Institute of TechnologyTiruchirappalli 620015
Tamil Nadu, India, E-mail: gopalan@nitt.edu

Manuscript received August 25, 2017, Manuscript revised November 30, 2017

Abstract: Grids have emerged as paradigms for the next generation parallel and distributed computing. Computational
Grid can be defined as large-scale high-performance distributed computing environments that provide access to high-end
computational resources. Grid scheduling is the process of scheduling jobs over grid resources. Improving overall system
performance with a lower turn around time is an important objective of Grid scheduling. In this paper a Computational
Power and Level of Parallelism based scheduling algorithmisproposed. The algorithm classifies the jobsinto high, medium
and low categories based on their priority. The classification is done based on the overall objective of maximizing resource
utilization and maximizing the throughput. Priority assignment is done by considering the new parameters computational
power of job and level of parallelism. Computational power required by a job is computed by considering it's computational
complexity. Value for level of parallelism is assigned by considering the job parallelism and resource parallelism. A job,
which needs high computational power and exhibits low parallelism is given a high priority. The fastest free resource
availablein the grid isallocated to thejob that has high priority. Prioritizing thejobs in thisway can improve the performance
of computational grids. The effectiveness of our algorithmis evaluated through simulation results and it's superiority over

other known algorithms is demonstrated.

Keywords: Computational Grid, Scheduling, Computational Complexity, Job Parallelism, Resource Parallelism

1. INTRODUCTION

Computational Grids are emerging as a new computing
paradigm for solving challenging applications in science,
engineering and economics[1]. Computational Grid can be
defined as large-scale high-performance distributed
computing environments that provide access to high-end
computational resources[2]. Each of these resources could
be a uni-processor machine, a symmetric multiprocessor
cluster, a distributed memory multiprocessor system, or a
massively parallel supercomputer. Each resource (node)
consists of a number of heterogeneous resources. The
resources on the grid are usually accessed via an executing
“job”.

Grid scheduling is the process of scheduling jobs over
grid resources. A grid scheduler is different from local
scheduler in that a local scheduler only manages a single
steor cluster and usually ownstheresource A grid scheduler
isin charge of resource discovery, grid scheduling (resource
allocation and job scheduling) and job execution
management over multiple administrative domains.

In heterogeneous grid en-vironment with its multitude
of re-sources, a proper scheduling and efficient load

balancing acrossthegrid can lead toimproved overal system
per-formance and a lower turn-around time for individual
jobs. First Come First Serve (FCFS) algorithm neither
considers any of the job parameters nor the resource
parameters. Shortest Job Fastest Resource (SJFR) and
Longest Job Fastest Resource (LJFR) algorithms consider
computational complexity of jobsfor scheduling and ignore
the priority of ajab.

A scheduling algorithm based on computational
complexity and level of parallelism of the jobsis proposed
and tested. Priority assignment is done by considering the
new parameters computational power of job and leve of
parallelism. Computational power required by a job is
computed by considering it's computational complexity.
Computational power of job is directly proportional to the
amount of time a resource needs to be reserved by a job.
Valuefor level of parallelism isassigned by considering the
job parallelism and resource parallelism. Valuefor level of
parallelismisindirectly proportional to theamount of time
a resource needs to be reserved by a job. The fastest free
resource availablein the grid isallocated to thejob that has
high priority. Prioritizing the jobs based on their nature can
improvethereal time performance of computational grids.

The rest of the paper is organized as follows: Thegrid
framework is presented in Section 2. The proposed

13

IJCSES International Journal of Computer Sciences and Engineering Systems,

scheduling algorithm is discussed in Section 3. The
performance study is carried out and results are discussed
in Section 4. Finally, some concluding remarksare madein
Section 5.

2. GRID FRAMEWORK

Fig. 1 shows the framework of the grid. Global and Local
Grid Resource Brokers (GGRB & LGRB) and Grid
Information Server (GIS) arethethree main components of
the grid. Each of these components hasit’s own independent
functionalities that help in grid management and job
scheduling and thus serve the purpose of agrid.

Figure 1: Framework of a Grid

2.1 Local Grid Resource Broker (LGRB)

Local grid resource broker isa synonym for a grid resource.
Each grid resource has been categorized based on it's
processing speed asfollows:

(8 Typel-TFLOPS machines

(b) Type?2 - GFLOPS machines

(c) Type3—MFLOPS machines

This categorization adds to the heterogeneous nature
of agrid. Each LGRB in thegrid can be any one of the above
three resources. There can be many LGRBs possible in the
grid. With the addition of every LGRB, the number of
resources and consequently the number of processing
elements (PEs) are increased. A job submitted to the grid
may be migrated to any of the LGRBs in the grid for
execution. Once a job has been migrated to a particular
LGRB, the LGRB ensures execution of the job on specified
number of processors. Since computational grids have been
taken into consideration, the number of processing el ements
in an LGRB is the actual resource of thegrid.

2.2 Global Grid ResourceBroker (GGRB)

Incoming jobs are submitted to the GGRB wherein the jobs
are scheduled. Basically, agrid scheduler (GGRB) receives
applications from users, selects feasibleresources for these
applications according to acquired information from grid
information server, and finally generates application-to-
resource mappings, based on certain objective functionsand
predicted resource performance. The role of a scheduler is

to make intelligent decisions about when and whereto run
jobsin order to maximize job throughput and the utilization
of resources.

A sngle GGRB takes care of scheduling jobsin the grid
based on the resources available as per the scheduling
algorithm. Once a task has been scheduled to a particular
LGRB, GGRB migratesthejob to that LGRB for execution.

2.3 Grid Information Server (GIS)

Grid Information Server is the database bank of the grid.
Information about the status of available resources is very
important for the GGRB to make a proper schedule. The
role of GISisto provide such information to grid schedul er.
GlISisresponsiblefor collecting and predicting the resource
state information, such as CPU capacities, memory size, ec.
It can answer queries for resource information or push
information to subscribers.

It keeps track of resources available in the grid. Any
new LGRB should register itsalf with GIS. GIS provides
information regarding free resourcesto the GGRB based on
which the GGRB schedulesthe jobs.

Registration: Any new LGRB should regigter itsdf with
the GIS by sending a request. GIS responds with an
acknowledgement, which meansthat it is ready to accept a
new resource as a grid member. Now, it'sthe LGRBsturn
to send the details regarding itself, it’s type, number of
processing el ements, speed of each processing element, etc.

Job Scheduling: GGRB stores the incoming jobsin a
gueue. When scheduling isto be done GGRB requests GIS
with aquery for suitable resources. Assoon as Gl Sreceives
arequest from the GGRB it sends the | Paddress of suitable
resource to GGRB, if available. Jobs submitted to GGRB
aremigrated to LGRBs based on a scheduling algorithm for
execution.

3. SCHEDULING ALGORITHM

A proper scheduling algorithm can lead to an improved
overall system performance and a lower turn around time.
Sincea Grid has heterogeneous resourcesit is often complex
to design an efficient scheduling algorithm.

Computational Power and Level of Parallelism
based Algorithm: Thejobs present in the queue maintained
by GGRB are sorted according to their priority. GGRB sends
arequest to GIS for resource requirements having priority
as search parameter for each job. GIS finds a suitable
resource among the available free resources and sends the
IP address of that resource to GGRB. If there is no free
resource availablein the grid then the job will be added to
the queue. We categorize the grid resources based on their
execution speed. The fastest free resource available in the
grid is allocated to the job which has high priority.
Accordingly, resourceswill be allocated to thejobsthat have
medium and low priority aswe discussed in [4].

The Computational Power and Level of Paralldism
based algorithm classifies the jobs into high, medium and

14

Computational Power and Level of Parallelism Based Scheduling for Heterogeneous Grid Environments

low categories based on their priority. The classification is
done based on the overall objective of maximizing resource
utilization and maximizing the throughput (in terms of
number of jobs completed). Priority assignment is done by
considering the new parameters computational power of job
and level of parallelism. Computational power required by
a job is computed by considering it's computational
complexity. Computational complexity isdirectly related to
the amount of time a resource needsto bereserved by ajob.
Valuefor level of parallelism isassigned by considering the
job parallelism and resource parallelism. Value for level of
parallelism is indirectly related to the amount of time a
resource needs to be reserved by ajob.

Computational Complexity: Task partitioning
algorithm takes care of efficiently dividing an application
into tasks of appropriate grain size and an abstract model of
such a partitioned application is represented by a Directed
Acyclic Graph (DAG). Each task of aDAG corresponds to
a sequence of operations and a directed arc represents the
precedence constrains between the tasks. Each task can be
executed on aprocessor and the directed arc showstransfer
of relevant data from one processor to ancther.

Each nodein DAG represents sequence of operations.
All the operationsare represented in terms of additions. Node
wel ght represents the amount of computations (in terms of
additions) involved in the particular node. This graph needs
to betraversed to find out the longest path. Thetotal sum of
the amount of computati onsinvolved in each node through
which the traversal has been performed leads to
computational complexity of theapplication. In categorizing
the computational complexity “high” means that the job
needs scarce, powerful resources and high runningtimeor a
proper combination of them.

o
©

Figure 2: An Example DAG

L evel of Parallelism: Amount of parallelism exhibited
by a job is computed by analyzing it's layered DAG
representation. Number of subtasksthat can be executed in
parallel isequal to width of the DAG. Fig.2 showsthe DAG
with subtasks S, S, S,, S,, S, and S, Width of the sample
DAG isthree. Subtasks S1, S2 and S3 can be executed in
parallel. Maximum number of independent instructions
getting executed in a unit time (in one clock cycle) isequal
to width of the DAG that gives the amount of parallelism
exhibited by the job.

Amount of parallelism exhibited by a resource is
computed by congdering the number of operationsper cycle
per processor, number of processors per node and number
of nodes in a system. Amount of parallelism exhibited by
each free resource availablein the grid is computed. Max,
min and mid ranges arefixed by cons dering the amount of
parallelism exhibited by all available free resourcesin the
grid. Valuefor level of parallelism isassigned by comparing
the amount of parallelism exhibited by each job with max,
min and mid ranges. Low level of parallelism meansthat a
resource needs to be used for along time.

Priority Assignment: A job which needs high
computational power and which exhibitslow parallelismis
given ahigh priority. A job, which exhibitshigh parallelism
and needs |ow computational power, is given alow priority.
A job, which exhibits a medium level of parallelism and
needs normal computational power, is given a medium
priority. The fastest free resource available in the grid is
allocated to the job that has high priority. The procedures
are given below:
Procedure
R _List)

While(R_List ““ NULL)
For each resource
P1 = No. of operations per cycle per processor
P2 = No. of processors per node
P3 = No. of nodesin a system
/*PR_List containsthe amount of parallelism exhibited by
each resource*/
PR _Ligt[i]=P1* P2* P3
End While
Find Max, Minand Mid valuesin PR_List
/*PJ_List contains the amount of parallelism exhibited by
each job*/
For each job in PJ_List
If PJ_List[i] >= Max
LP_List[i] = High
/ILP_List containslevel of parallelism value
Elself PJ_List[i] >= Mid
LP_Ligt[i] = Medium
ElseLP_List[i] = Low
EndIf
End AssignLevelofParallelism
Procedure AssignPriority(GridletList G_List)
While(G_List *“ NULL)

AssignLevel of Parallelism(ResourceList

15

IJCSES International Journal of Computer Sciences and Engineering Systems, |

For each job
/ICC_List contains the Computational Complexity of jobs
If (CC_List[i] =High AND LP_List[i] = Low)
Priority_List[i] =1
Elself (CC_List[i] =High AND LP_List[i] = Medium)
Priority_List[i] =2
Elself (CC_List[i] = Medium AND LP_List[i] = Low)
Priority_List[i] =3
Elself (CC_Lidt[i] = HighAND LP_List[i] = High)
Priority_List[i] =4
Elself (CC_Lidt[i] = Medium AND LP_Lig[i] =
Medium)
Priority_List[i] =5
Elself (CC_List[i] =Low AND LP_Ligt[i] = Low)
Priority_List[i] =6
Elself (CC_List[i] = Medium AND LP_List[i] = High)
Priority_List[i] =7
Elself (CC_List[i] =LowAND LP_List[i] = Medium)
Priority_List[i] =8
Elself (CC_List[i] =Low AND LP_List[i] = High)
Priority_List[i] =9
EndIf
End AssignPriority Let m represents number of free
resources available in the grid and n represents number of
jobs present in the queue. The worst case time complexity
of the algorithm is O(n logn) when m < n and O(m logm)
whenm>n.

4. PERFORMANCE STUDY

We compare the performance of our algorithm with First
ComeFirst Serve, Shortest Job Fastest Resource and Longest
Job Fastest Resource algorithms.

Firs ComeFirgt Serve (FCFS): Asthename suggests
this scheduling a gorithm schedulesthejobson a“First come
First serve’ basis. As soon a job is submitted to GGRB,
scheduler searches the Resource Database for an appropriate
resource linearly. The job is migrated to that resource for
execution. Thisalgorithm neither considers any of the job
parameters nor the resource parameters.

Shortest Job Fastest Resour ce (SJIFR): Shortest Job
Fastest Resource is a scheduling algorithm, which tries to

reducethe overall turn around time of thejobs. The shortest
job (based on computational complexity) isscheduled tothe
fastest resource (based on speed of each system availablein
that node). SIFR algorithm does not consider the priority of
the job submitted.

Longest Job Fastest Resource(L JFR): Longest Job
Fastest Resource is a scheduling algorithm, which tries to
reduce the overall execution time of the jobs. The longest
job (based on computational complexity) isscheduled tothe
fastest resource (based on speed of each system availablein
that node). Since the longest job is submitted to the fastest
resource execution time of the longest job is drastically
reduced when compared to its execution time on any other
resource in the grid. LJFR does not consider the priority of
a job. As far as execution time is considered it gives the
best results.

Simulation Setup: We tested our algorithm by
conducting many experiments. There areatotal of ten free
resources in thesimulated grid and these are classified into
Typel (TFLOPS), Type2 (GFLOPS) and Type3 (MFLOPS)
machines. Ten different jobs are considered at a time. We
conducted more than 50 experiments. Different sets of jobs
and resources are considered for each experiment.

Performance evaluation is done based on execution
time. Execution time for each job is calculated by
calculating the el apsed ti me between submission time and
compl etion time of the job. The sampletest case has been
shown in Fig.3 to have a relative comparison of FCFS,
SJFR, LJFR and Computational Power and Level of
Parallelism based Scheduling algorithms. Graphs are drawn
with the GridletID (Jobl D) on X-axisand Execution Time
in seconds on Y-axis.

Thesimulation results show that all thethree algorithms
outperform FCFS. LJFR and Computational Power &
Level of Parallelism based algorithms outperform
SIFR. Sometimes LJFR and Computational Power &
Level of Parallelism based algorithms are close
and sometimes Computational Power & Level of
Parallelism based algorithm outperforms LIFR. Minimal
elapsed time implies high throughput and better resource
utilization.

Execution Time

EISJFR
EILJFR

MFCFs

Elnpand Tima {Fou.}

JOB ID

OPRIORITY

Figure 3: Sample Test Case

16

Computational Power and Level of Parallelism Based Scheduling for Heterogeneous Grid Environments

5. CONCLUSIONS

Design of a proper scheduling algorithm with an aim to
improve the performanceof agrid hasindeed been acomplex
jobwith alot of parameters to be taken into consideration.
The SJFR and LJFR algorithms take computational
complexity of the jobs and speed of the resources into
consideration while scheduling the jobs. The Computational
Power and Leve of Parallelism based algorithm classifies
the jobsinto high, medium and low categories based on their
priority. The classification is done based on the overall
objective of maximizing resource utilization and maximizing
the throughput in terms of number of jobs completed. Priority
assignment is done by considering the new parameters
computational power of job and level of paralleism. A job,
which needs high computational power, exhibiting low
parallelismisgiven ahigh priority. Thefastest free resource
available in the grid is allocated to the job that has high
priority. Prioritizing the jobs in this way can improve the
performance of computational grids. The effectiveness of
our algorithm is evaluated through simulation results and
it'ssuperiority over other known algorithmsis demonstrated.

REFERENCES

[1] Foster, I., Kesselman, C. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1998.

[2] Foster, I., Kesselman, C.: The Globus Project: a Status
Report In Proc. IPPS/SPDP'98 Workshop on
Heterogeneous Computing, 1998, pp. 4-18.

(3]

(4]

(5]

(6]

[7]

(8]

(9]

17

Abraham. A., Buyya. R., and Nath. B.: “Nature’'s
heuristics for scheduling jobs on computational grids”,
Proc. 8" IEEE Int. Conf. on Advanced computing and
communications, Cochin, India, 2000.

Sumathi. G, Gopalan. N.P: “Grid Scheduling Algorithms
for Heterogeneous Environment”, Proc. |EEE Int. Conf.
on Signal & Image Technology and Internet Based
Systems (SITIS 2005), Cameroon, West Africa.

Kwok. Y. K. and Ahmad. |.: “Static Scheduling
Algorithms for Allocating Directed Task Graphs to
Multiprocessors, ACM Computing Surveys, 31(4), pages
406-407, 1999.

Rajkumar Buyya, David Abramson and Jonathan Giddy,
“Economy Driven Resource Management Architecture
for Computational Power Grids”, International
Conference on Parallel and Distributed Processing
Techniques and A pplications (PDPTA 2000), Las Vegas,
USA, 2000.

Francine Berman, Richard Wolski, Henri Casanova and
Walfredo Cirne, “ Adaptive Computing on the Grid Using
AppLes”, In IEEE Transactions on Parallel and
Distributed Systems, 14, 369-382, 2003.

Tsan Sheng Hsu, Joseph C. Lee, Dian Rae Lopez and
William A. Royce, “Task Allocation on a Network of
Processors’, In IEEE Transactions on Computers, 49,
1339-1353, 2000.

www.gridbus.org/gridsim

