
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008
CSES International © 2008 ISSN 0973-4406

Manuscript received August 25, 2007
Manuscript revised November 30, 2007

Computational Power and Level of Parallelism Based
Scheduling for Heterogeneous Grid Environments

G. Sumathi1 & N. P. Gopalan2

1Department of Information Technology, Sri Venkateswara College of EngineeringSriperumbudur 602105
Tamil Nadu, India, E-mail:sumathiganesan@yahoo.com

2Department of Computer Applications, National Institute of TechnologyTiruchirappalli 620015
Tamil Nadu, India, E-mail: gopalan@nitt.edu

Abstract: Grids have emerged as paradigms for the next generation parallel and distributed computing. Computational
Grid can be defined as large-scale high-performance distributed computing environments that provide access to high-end
computational resources. Grid scheduling is the process of scheduling jobs over grid resources. Improving overall system
performance with a lower turn around time is an important objective of Grid scheduling. In this paper a Computational
Power and Level of Parallelism based scheduling algorithm is proposed. The algorithm classifies the jobs into high, medium
and low categories based on their priority. The classification is done based on the overall objective of maximizing resource
utilization and maximizing the throughput. Priority assignment is done by considering the new parameters computational
power of job and level of parallelism. Computational power required by a job is computed by considering it’s computational
complexity. Value for level of parallelism is assigned by considering the job parallelism and resource parallelism. A job,
which needs high computational power and exhibits low parallelism is given a high priority. The fastest free resource
available in the grid is allocated to the job that has high priority. Prioritizing the jobs in this way can improve the performance
of computational grids. The effectiveness of our algorithm is evaluated through simulation results and it’s superiority over
other known algorithms is demonstrated.

Keywords: Computational Grid, Scheduling, Computational Complexity, Job Parallelism, Resource Parallelism

1. INTRODUCTION

Computational Grids are emerging as a new computing
paradigm for solving challenging applications in science,
engineering and economics [1]. Computational Grid can be
defined as large-scale high-performance distributed
computing environments that provide access to high-end
computational resources [2]. Each of these resources could
be a uni-processor machine, a symmetric multiprocessor
cluster, a distributed memory multiprocessor system, or a
massively parallel supercomputer. Each resource (node)
consists of a number of heterogeneous resources. The
resources on the grid are usually accessed via an executing
“job”.

Grid scheduling is the process of scheduling jobs over
grid resources. A grid scheduler is different from local
scheduler in that a local scheduler only manages a single
site or cluster and usually owns the resource. A grid scheduler
is in charge of resource discovery, grid scheduling (resource
allocation and job scheduling) and job execution
management over multiple administrative domains.

In heterogeneous grid en-vironment with its multitude
of re-sources, a proper scheduling and efficient load

balancing across the grid can lead to improved overall system
per-formance and a lower turn-around time for individual
jobs. First Come First Serve (FCFS) algorithm neither
considers any of the job parameters nor the resource
parameters. Shortest Job Fastest Resource (SJFR) and
Longest Job Fastest Resource (LJFR) algorithms consider
computational complexity of jobs for scheduling and ignore
the priority of a job.

A scheduling algorithm based on computational
complexity and level of parallelism of the jobs is proposed
and tested. Priority assignment is done by considering the
new parameters computational power of job and level of
parallelism. Computational power required by a job is
computed by considering it’s computational complexity.
Computational power of job is directly proportional to the
amount of time a resource needs to be reserved by a job.
Value for level of parallelism is assigned by considering the
job parallelism and resource parallelism. Value for level of
parallelism is indirectly proportional to the amount of time
a resource needs to be reserved by a job. The fastest free
resource available in the grid is allocated to the job that has
high priority. Prioritizing the jobs based on their nature can
improve the real time performance of computational grids.

The rest of the paper is organized as follows: The grid
framework is presented in Section 2. The proposed

International Journal of Computer Sciences and Engineering Systems
Vol. 3 No. 1 (January-June, 2018)

Manuscript received August 25, 2017, Manuscript revised November 30, 2017

13

International Journal of Computer Sciences and Engineering Systems
Vol. 12 No.1 (June, 2018)

94 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008

scheduling algorithm is discussed in Section 3. The
performance study is carried out and results are discussed
in Section 4. Finally, some concluding remarks are made in
Section 5.

2. GRID FRAMEWORK

Fig. 1 shows the framework of the grid. Global and Local
Grid Resource Brokers (GGRB & LGRB) and Grid
Information Server (GIS) are the three main components of
the grid. Each of these components has it’s own independent
functionalities that help in grid management and job
scheduling and thus serve the purpose of a grid.

to make intelligent decisions about when and where to run
jobs in order to maximize job throughput and the utilization
of resources.

A single GGRB takes care of scheduling jobs in the grid
based on the resources available as per the scheduling
algorithm. Once a task has been scheduled to a particular
LGRB, GGRB migrates the job to that LGRB for execution.

2.3 Grid Information Server (GIS)

Grid Information Server is the database bank of the grid.
Information about the status of available resources is very
important for the GGRB to make a proper schedule. The
role of GIS is to provide such information to grid scheduler.
GIS is responsible for collecting and predicting the resource
state information, such as CPU capacities, memory size, etc.
It can answer queries for resource information or push
information to subscribers.

It keeps track of resources available in the grid. Any
new LGRB should register itself with GIS. GIS provides
information regarding free resources to the GGRB based on
which the GGRB schedules the jobs.

Registration: Any new LGRB should register itself with
the GIS by sending a request. GIS responds with an
acknowledgement, which means that it is ready to accept a
new resource as a grid member. Now, it’s the LGRBs turn
to send the details regarding itself, it’s type, number of
processing elements, speed of each processing element, etc.

Job Scheduling: GGRB stores the incoming jobs in a
queue. When scheduling is to be done GGRB requests GIS
with a query for suitable resources. As soon as GIS receives
a request from the GGRB it sends the IP address of suitable
resource to GGRB, if available. Jobs submitted to GGRB
are migrated to LGRBs based on a scheduling algorithm for
execution.

3. SCHEDULING ALGORITHM

A proper scheduling algorithm can lead to an improved
overall system performance and a lower turn around time.
Since a Grid has heterogeneous resources it is often complex
to design an efficient scheduling algorithm.

Computational Power and Level of Parallelism
based Algorithm: The jobs present in the queue maintained
by GGRB are sorted according to their priority. GGRB sends
a request to GIS for resource requirements having priority
as search parameter for each job. GIS finds a suitable
resource among the available free resources and sends the
IP address of that resource to GGRB. If there is no free
resource available in the grid then the job will be added to
the queue. We categorize the grid resources based on their
execution speed. The fastest free resource available in the
grid is allocated to the job which has high priority.
Accordingly, resources will be allocated to the jobs that have
medium and low priority as we discussed in [4].

The Computational Power and Level of Parallelism
based algorithm classifies the jobs into high, medium and

Figure 1: Framework of a Grid

2.1 Local Grid Resource Broker (LGRB)

Local grid resource broker is a synonym for a grid resource.
Each grid resource has been categorized based on it’s
processing speed as follows:

(a) Type 1 – TFLOPS machines
(b) Type 2 – GFLOPS machines
(c) Type 3 – MFLOPS machines
This categorization adds to the heterogeneous nature

of a grid. Each LGRB in the grid can be any one of the above
three resources. There can be many LGRBs possible in the
grid. With the addition of every LGRB, the number of
resources and consequently the number of processing
elements (PEs) are increased. A job submitted to the grid
may be migrated to any of the LGRBs in the grid for
execution. Once a job has been migrated to a particular
LGRB, the LGRB ensures execution of the job on specified
number of processors. Since computational grids have been
taken into consideration, the number of processing elements
in an LGRB is the actual resource of the grid.

2.2 Global Grid Resource Broker (GGRB)

Incoming jobs are submitted to the GGRB where in the jobs
are scheduled. Basically, a grid scheduler (GGRB) receives
applications from users, selects feasible resources for these
applications according to acquired information from grid
information server, and finally generates application-to-
resource mappings, based on certain objective functions and
predicted resource performance. The role of a scheduler is

14

Computational Power and Level of Parallelism Based Scheduling for Heterogeneous Grid Environments 95

low categories based on their priority. The classification is
done based on the overall objective of maximizing resource
utilization and maximizing the throughput (in terms of
number of jobs completed). Priority assignment is done by
considering the new parameters computational power of job
and level of parallelism. Computational power required by
a job is computed by considering it’s computational
complexity. Computational complexity is directly related to
the amount of time a resource needs to be reserved by a job.
Value for level of parallelism is assigned by considering the
job parallelism and resource parallelism. Value for level of
parallelism is indirectly related to the amount of time a
resource needs to be reserved by a job.

Computational Complexity: Task partitioning
algorithm takes care of efficiently dividing an application
into tasks of appropriate grain size and an abstract model of
such a partitioned application is represented by a Directed
Acyclic Graph (DAG). Each task of a DAG corresponds to
a sequence of operations and a directed arc represents the
precedence constrains between the tasks. Each task can be
executed on a processor and the directed arc shows transfer
of relevant data from one processor to another.

Each node in DAG represents sequence of operations.
All the operations are represented in terms of additions. Node
weight represents the amount of computations (in terms of
additions) involved in the particular node. This graph needs
to be traversed to find out the longest path. The total sum of
the amount of computations involved in each node through
which the traversal has been performed leads to
computational complexity of the application. In categorizing
the computational complexity “high” means that the job
needs scarce, powerful resources and high running time or a
proper combination of them.

Level of Parallelism: Amount of parallelism exhibited
by a job is computed by analyzing it’s layered DAG
representation.

Number of subtasks that can be executed in

parallel is equal to width of the DAG. Fig.2 shows the DAG
with subtasks S

0
, S

1
, S

2
, S

3
, S

4
 and S

5.
Width of the sample

DAG is three. Subtasks S1, S2 and S3 can be executed in
parallel. Maximum number of independent instructions
getting executed in a unit time (in one clock cycle) is equal
to width of the DAG that gives the amount of parallelism
exhibited by the job.

Amount of parallelism exhibited by a resource is
computed by considering the number of operations per cycle
per processor, number of processors per node and number
of nodes in a system. Amount of parallelism exhibited by
each free resource available in the grid is computed. Max,
min and mid ranges are fixed by considering the amount of
parallelism exhibited by all available free resources in the
grid. Value for level of parallelism is assigned by comparing
the amount of parallelism exhibited by each job with max,
min and mid ranges. Low level of parallelism means that a
resource needs to be used for a long time.

Priority Assignment: A job which needs high
computational power and which exhibits low parallelism is
given a high priority. A job, which exhibits high parallelism
and needs low computational power, is given a low priority.
A job, which exhibits a medium level of parallelism and
needs normal computational power, is given a medium
priority. The fastest free resource available in the grid is
allocated to the job that has high priority. The procedures
are given below:
Procedure AssignLevelofParallelism(ResourceList
R_List)

While(R_List ‘“ NULL)
For each resource
P1 = No. of operations per cycle per processor
P2 = No. of processors per node
P3 = No. of nodes in a system

/*PR_List contains the amount of parallelism exhibited by
each resource*/

PR_List[i] = P1 * P2 * P3
End While

Find Max, Min and Mid values in PR_List
/*PJ_List contains the amount of parallelism exhibited by
each job*/

For each job in PJ_List
If PJ_List[i] >= Max
LP_List[i] = High
//LP_List contains level of parallelism value
ElseIf PJ_List[i] >= Mid
LP_List[i] = Medium
Else LP_List[i] = Low
EndIf

End AssignLevelofParallelism
Procedure AssignPriority(GridletList G_List)

While(G_List ‘“ NULL)Figure 2: An Example DAG

S
0

S
1

S
2

S
3

S
4

S
5

15

96 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008

For each job
//CC_List contains the Computational Complexity of jobs

If (CC_List[i] =High AND LP_List[i] = Low)
Priority_List[i] = 1

ElseIf (CC_List[i] = High AND LP_List[i] = Medium)
Priority_List[i] = 2

ElseIf (CC_List[i] = Medium AND LP_List[i] = Low)
Priority_List[i] = 3

ElseIf (CC_List[i] = High AND LP_List[i] = High)
Priority_List[i] = 4

ElseIf (CC_List[i] = Medium AND LP_List[i] =
Medium)

Priority_List[i] = 5
ElseIf (CC_List[i] = Low AND LP_List[i] = Low)

Priority_List[i] = 6
ElseIf (CC_List[i] = Medium AND LP_List[i] = High)

Priority_List[i] = 7
ElseIf (CC_List[i] = Low AND LP_List[i] = Medium)

Priority_List[i] = 8
ElseIf (CC_List[i] = Low AND LP_List[i] = High)

Priority_List[i] = 9
EndIf

End AssignPriority Let m represents number of free
resources available in the grid and n represents number of
jobs present in the queue. The worst case time complexity
of the algorithm is O(n logn) when m � n and O(m logm)
when m > n.

4. PERFORMANCE STUDY

We compare the performance of our algorithm with First
Come First Serve, Shortest Job Fastest Resource and Longest
Job Fastest Resource algorithms.

First Come First Serve (FCFS): As the name suggests
this scheduling algorithm schedules the jobs on a “First come
First serve” basis. As soon a job is submitted to GGRB,
scheduler searches the Resource Database for an appropriate
resource linearly. The job is migrated to that resource for
execution. This algorithm neither considers any of the job
parameters nor the resource parameters.

Shortest Job Fastest Resource (SJFR): Shortest Job
Fastest Resource is a scheduling algorithm, which tries to

reduce the overall turn around time of the jobs. The shortest
job (based on computational complexity) is scheduled to the
fastest resource (based on speed of each system available in
that node). SJFR algorithm does not consider the priority of
the job submitted.

Longest Job Fastest Resource(LJFR): Longest Job
Fastest Resource is a scheduling algorithm, which tries to
reduce the overall execution time of the jobs. The longest
job (based on computational complexity) is scheduled to the
fastest resource (based on speed of each system available in
that node). Since the longest job is submitted to the fastest
resource execution time of the longest job is drastically
reduced when compared to its execution time on any other
resource in the grid. LJFR does not consider the priority of
a job. As far as execution time is considered it gives the
best results.

Simulation Setup: We tested our algorithm by
conducting many experiments. There are a total of ten free
resources in the simulated grid and these are classified into
Type1 (TFLOPS), Type2 (GFLOPS) and Type3 (MFLOPS)
machines. Ten different jobs are considered at a time. We
conducted more than 50 experiments. Different sets of jobs
and resources are considered for each experiment.

Performance evaluation is done based on execution
time. Execution time for each job is calculated by
calculating the elapsed time between submission time and
completion time of the job. The sample test case has been
shown in Fig.3 to have a relative comparison of FCFS,
SJFR, LJFR and Computational Power and Level of
Parallelism based Scheduling algorithms. Graphs are drawn
with the GridletID (JobID) on X-axis and Execution Time
in seconds on Y-axis.

The simulation results show that all the three algorithms
outperform FCFS. LJFR and Computational Power &
Level of Parallelism based algorithms outperform
SJFR. Sometimes LJFR and Computational Power &
Level of Parallelism based algorithms are close
and sometimes Computational Power & Level of
Parallelism based algorithm outperforms LJFR. Minimal
elapsed time implies high throughput and better resource
utilization.

Figure 3: Sample Test Case

16

Computational Power and Level of Parallelism Based Scheduling for Heterogeneous Grid Environments 97

5. CONCLUSIONS

Design of a proper scheduling algorithm with an aim to
improve the performance of a grid has indeed been a complex
job with a lot of parameters to be taken into consideration.
The SJFR and LJFR algorithms take computational
complexity of the jobs and speed of the resources into
consideration while scheduling the jobs. The Computational
Power and Level of Parallelism based algorithm classifies
the jobs into high, medium and low categories based on their
priority. The classification is done based on the overall
objective of maximizing resource utilization and maximizing
the throughput in terms of number of jobs completed. Priority
assignment is done by considering the new parameters
computational power of job and level of parallelism. A job,
which needs high computational power, exhibiting low
parallelism is given a high priority. The fastest free resource
available in the grid is allocated to the job that has high
priority. Prioritizing the jobs in this way can improve the
performance of computational grids. The effectiveness of
our algorithm is evaluated through simulation results and
it’s superiority over other known algorithms is demonstrated.

REFERENCES

[1] Foster, I., Kesselman, C. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1998.

[2] Foster, I., Kesselman, C.: The Globus Project: a Status
Report In Proc. IPPS/SPDP’98 Workshop on
Heterogeneous Computing, 1998, pp. 4-18.

[3] Abraham. A., Buyya. R., and Nath. B.: “Nature’s
heuristics for scheduling jobs on computational grids”,
Proc. 8th IEEE Int. Conf. on Advanced computing and
communications, Cochin, India, 2000.

[4] Sumathi. G., Gopalan. N.P.: “Grid Scheduling Algorithms
for Heterogeneous Environment”, Proc. IEEE Int. Conf.
on Signal & Image Technology and Internet Based
Systems (SITIS 2005), Cameroon, West Africa.

[5] Kwok. Y. K. and Ahmad. I.: “Static Scheduling
Algorithms for Allocating Directed Task Graphs to
Multiprocessors, ACM Computing Surveys, 31(4), pages
406-407, 1999.

[6] Rajkumar Buyya, David Abramson and Jonathan Giddy,
“Economy Driven Resource Management Architecture
for Computational Power Grids”, International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2000), Las Vegas,
USA, 2000.

[7] Francine Berman, Richard Wolski, Henri Casanova and
Walfredo Cirne, “Adaptive Computing on the Grid Using
AppLes”, In IEEE Transactions on Parallel and
Distributed Systems, 14, 369-382, 2003.

[8] Tsan Sheng Hsu, Joseph C. Lee, Dian Rae Lopez and
William A. Royce, “Task Allocation on a Network of
Processors”, In IEEE Transactions on Computers, 49,
1339-1353, 2000.

[9] www.gridbus.org/gridsim

17

