
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008
CSES International © 2008 ISSN 0973-4406

Manuscript received January 15, 2008
Manuscript revised March 15, 2008

New Approaches to Enhance the Computation Efficiency
on Particle Swarm Optimization Algorithm

Yang YI1 and Qiang LI2

1Computer Science Department, Sun Yat-Sen University GuangZhou, GuangDong 510275, P. R. China
E-mail:issyy@mail.sysu.edu.cn

2Computer Science Department, Sun Yat-Sen University GuangZhou, GuangDong 510275, P. R. China
E-mail: liqiang0730@qq.com

Abstract: Methodologies and approaches to improve the computation efficiencies on particle swarm optimization (PSO) is
address in the paper. Firstly, several heuristic rules are proposed to be used in particle velocity updating in order to promote
their global exploration abilities. Secondly, the theories of building high performance PSO algorithm are described and
proved, which consist of introducing a new selection mechanism, inducing a dynamic particle neighbor structure, employing
the non-linear inertia weight value and interacting within near neighborhood. Thirdly, a new improved PSO algorithm
based upon above theoretical achievements are presented. The notable benchmark tests show that the presented algorithm
can obtain the global optimal solutions very quickly. The comparing experiments with two other popular improved PSO
algorithms demonstrate that our algorithm has much better performance and lower premature convergence rate than the
other methods.

Keywords: Artificial Life Computing, Particle Swarm Optimization, Dynamic Neighborhood, Velocity Updating, Near
Neighbor Interaction

1. INTRODUCTION

PSO (Particle Swarm Optimization) [1], which is inspired
by the cognitive behavior of bird flocking or fish schooling,
has become a real competitor for GA (Genetic Algorithm)
and ACO (Ant Colony Optimization) in evolutionary
computation. It has the advantages of simple model, less
parameters and relative ease of implementation, which
attracts more and more attention of scholars. Nowadays, PSO
has been successfully applied to many fields [2-6], such as
scheduling, communication, high efficiency computation, E-
Business and so on.

PSO can provide high speed of convergence in the initial
computation periods, yet, it is apt to trap in a near optimal
solution in the later iterations due to its weak global
exploration capability. In order to alleviate this problem, Shi
and Eberhart[7] introduced an inertia weight into its velocity
update equation, which makes the former particle’s velocity
have a bigger impact on the following particles’ velocity
changing. Then, they developed the inertia weight linearly
decreasing PSO algorithm (IWLD_PSO) [8,9]. In
IWLD_PSO, the inertia weight linearly decreased with the
iteration and the maximum allowable velocity in each
dimension was introduced, which can guarantee the particles
search within the feasible solution fields.

Clerk and Eberhart[3] introduced a new concept of
constraint factor, which affects three parts of the velocity
update parameters, and after that, it will have some influence
on the particles ‘exploration capability. Another improved
PSO with constraint factors is developed(CF_PSO). Shi and
Eberhart [9,10] compared IWLD_PSO with CF_PSO in
detail. Chatterjee and Siarry[11] provided some general
suggestions for parameter selection by using nonlinear
variation for inertia weight values.

Although all the modifications mentioned above
upgrade the PSO’s performance to some extent, there still
exits a common challenge that the premature convergence
rate remains pretty high[14]. Liu and Wang[12] incorporated
the Chaotic Local Search (CLS) into the algorithm by
optimizing one fifth of the best particles. Though CLS
reduces the premature convergence rate significantly, it cost
great number of computation, so, it is not suitable for
practical applications.

In this paper, some new principles of building high
performance PSO algorithm are brought forward and
testified. The new approaches give attention to two or more
things, such as local exploitation capability, global
exploration capability and convergence speed. A new
improved PSO algorithm (NNI_PSO), which adopts a novel
selection mechanism, near neighbor interaction method and
nonlinearly varying inertia weight value, is described.
NNI_PSO owns the characteristic of maintaining more

International Journal of Computer Sciences and Engineering Systems
Vol. 3 No. 2 (July-December, 2018)

Manuscript received January 15, 2018, Manuscript revised March 15, 2018

69

International Journal of Computer Sciences and Engineering Systems
Vol. 12 No.2 (December, 2018)

150 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008

diversities of the population and moving rapidly towards to
the global optimum. The methodologies and approaches may
provide some valuable information for solving some complex
practical application problem. Benchmark experiments
demonstrate that NNI_PSO can achieve the global optimal
results with high efficiency, furthermore, the comparative
experiments among NNI_PSO, CF_PSO and IWLD_PSO
illustrate that NNI_PSO has much better performance than
the other two improved PSO algorithms.

The rest of the paper is organized as follows. Section 2
gives a brief description about the methods and algorithm
of traditional particle swarm optimization with its all
necessary variations. Section 3 analyzes some heuristic
methods used in particle velocity updating computation.
Section 4 puts forward and testifies some new theories for
PSO algorithm optimization. In Section 5, an improved PSO
approach is proposed in detail. Benchmark tests and data
experiments are performed in Section 6. Conclusion and
further efforts are given finally in Section 7.

2. TRADITIONAL PSO ALGORITHM

i, particle;
d, solution space dimension;
v

i
, velocity of particle i in feasible solution space, v

i
=

(v
i1
, v

i2
, …,v

id
);

v
max

, maximum allowable velocity;
x

i
, particle i in the searching space; x

i
=(x

i1
 , x

i2
, …, x

id
);

p
i
, best position it ever visited so far of particle i, p

i
=

(p
i1
, p

i2
, …, p

id
);

g, index of global optimum position;
p

g
, global best position, p

g
= (p

g1
, p

g2
, …, p

gd
);

x
max

, limitation of searching range;
k, constraint factor;
w, inertia weight;
n, particles population;
iter, current iteration time;
NC, total iteration times.

In PSO algorithm, each particle is a potential solution
for the objective function. Particles adjust their positions
combined with the computing process in the iterations, so
as to move toward to the global optimum. In a d-dimensional
space, each particle is referred to as a point x

i
= (x

i1
 , x

i2
, …,

x
id
) in the searching space. Let v

i
= (v

i1
, v

i2
, …,v

id
) be the

velocity of the particle i in the feasible solution space.
Particle i remembers the best position p

i
= (p

i1
, p

i2
, …,

p
id
) it ever visited so fa. The best position in the neighborhood

field is represented as p
g
= (p

g1
, p

g2
, …, p

gd
). At each iteration,

particle i adjusts its velocity v
i
 and position x

i
 by considering

the personal best and the global best ones. The update
equations are given as follows [1].

v
id

= wv
id

+ c
1
rand()(p

id
– x

id
) + c

2
Rand()(p

gd
– x

id
) (1)

x
id

= x
id
+ v

id
(2)

c
1
 is the cognitive factor and c

2
 is the social factor. Generally,

let w = 0.729, c
1
 = c

2
 = 1.4495. rand() and Rand() are random

number functions and their values are uniformly distributed
within [0,1]. w is the inertia weight, who reflecting the control
and influence degree of current particle to its next generation
or neighbors. w will impact both of the velocity and position
on the particles.

Pseudo-code of PSO_Algorithm
Step 1: Initialize n, NC, d, k, w, c

1
 and c

2
; initialize v

i
 and x

i

stochastically;
Step 2: For particle (i = 1 to n), do

{
Step 3: Calculate f

i
 // fitness of particle i;

Step 4: Find the p
g
 and its index g;

// global optimal particle
Step 5: Let p

i
 = x

i
;

}
Step 6: While (Stop criterion is not satisfied), do

{
Step 7: Update x

i
 and v

i
 of each particle i

// by using Eqs. (1) and (2)
v

id
= wv

id
+c

1
rand()(p

id
– x

id
) + {c

2
Rand()(p

gd
– x

id
);

x
id
= x

id
+ v

id
;

Step 8: Recalculate f
i
 of particle i;

Step 9: Update p
i
 for each particle;

Step 10: Update g and p
g
 ;

}
Step 11: Stop.

3. INTELLIGENCE RULES ON PARTICLE VELOCITY
UPDATING

It can be noticed in Eq. (1) that v
id
 is composed of three

elements: (1) the influence from previous particles’ velocity;
(2) the cognitive from other particle; (3) social affection from
the particle environment.

Heuristic Rule 1 (HR1)[7]: It will be better for the PSO
algorithm to restrict particles velocities in a field scale, which
means v

id
� [–v

max1
, v

max2
] for all the particles, v

max1
> = 0;

v
max2

> = 0
Based up our researches on the properties of

evolutionary computation and also inspired by other
methods, we present several new heuristic rules to control
the particle velocity and the movement distance, in order to
increase the algorithm’s calculation efficiency.

Heuristic Rule 2 (HR2)[8]: there exists an allowable
range for particles’ movements in the searching space for
each iteration, which means the distance of each movement
is between [x

max1
, x

max2
], x

max1
> = 0, x

max2
> = 0.

Heuristic Rule 3 (HR3): let x
max2

, the maximal allowable
movement range of particles in one step, to be bigger in the
earlier period than it is in the later computation period.

Heuristic Rule 4 (HR4): let x
max1

, the minimal
movement range for particles in one step, to be bigger in the

70

New Approaches to Enhance the Computation Efficiency on Particle Swarm Optimization Algorithm 151

earlier period than it in the later period during the
computation.

Heuristic Rule 5 (HR5): let v
max2

, the maximal particle
velocity, to be bigger in the earlier period than it in the later
period in the process of iteration computation.

Heuristic Rule 6 (HR6): let v
max1

, the minimal particle
velocity, to be smaller in the earlier period than it in the
later period in the process of iteration computation.

The particles move in the fields of vector space, so, there
exist negative velocities. For any iteration searching based
intelligent algorithm, the early computation focus on the
global searching and exploration abilities in the early period,
and then, pay special attention on the convergence speed in
the final calculation period. With a bigger velocity and
moving distance limitation, the particles can have a bigger
chance to move quickly in a larger space, in order to find
out the global optimal solution. On the other hand, in the
final period of computation, a smaller velocity and moving
distance limitation will prevent the particle moving out of
the feasible space, and then, make the particles concentrate
to the global optimal point quickly.

IWLD_PSO Inertia Weight Rule (IWLD_Rule)[8]:
the inertia weight descends linearly with the increasing of
iteration times.

IWLD_Rule is illustrated by Eq. (3). w
final

 and w
initial

are
the predetermined maximum and minimum inertia weight
values, respectively.

w= (w
final

 – w
initial

)(NC - iter) / NC + w
initial

(3)

A large inertia weight value facilitates a global search
while a small inertia weight facilitates a local search [9]. By
linearly decreasing, the inertia weight value changes from a
relatively larger value to a smaller one through the process
of computing, so that, the algorithm tends to have more
global search abilities at the beginning period while more
local search abilities in the final period.

So, a proper selection on the inertia weight value w
final

and w
initial

 can make a balance between the exploitation
capability and the exploration capability.

CF_PSO Constriction Factor Rule (CF_Rule)[10]:
adding a new factor to restrict the velocity, so as to limit the
maximum velocity v

max
 to a dynamic range.

CF_Rule is illustrated by Eq. (4) and Eq. (5) .

v
id
 = k[v

id
+ c

1
r and ()(p

id
- x

id
) + c

2
Rand()(p

gd
– x

id
)] (4)

4,,422 21
2 ������� ����� cck (5)

The influence factor k will have impact on each of the
three components in velocity update equation. CF_Rule can
be considered as a special case of HR1 to HR6, whose
objective is to use the constriction factor while limiting the
maximum velocity v

max
 to the dynamic range of the variable

x
max

 on each dimension, such as let v
max

=x
max

.

Generally, the parameters in above formulas are given
by c

1
=c

2
=2.05, and k=0.729, equivalent to the case of setting.

4. OPTIMAL METHODOLOGIES TO IMPROVE PSO
ALGORITHM

With the help of above intelligent methodologies, the
improved PSO algorithm shows a good performance at the
beginning of the computation, and also maintains a relatively
high speed of convergence speed near the end calculation.
However, it has no way to deal some other big challenges,
such as adjusting the iteration searching direction
dynamically according to the acquired information and
escaping premature convergence.

The major cause of premature convergence is due to
the decreases on the diversity character of the particles since
the information exchanges very rapidly. We develop a new
approach, named by new Near Neighbor Interaction based
PSO (NNI_PSO), which can maintains a high speed
exchange of information among particles, and can also let
the algorithm maintain a rather high-level diversity of particle
swarm.

Remark 1: Preserving some fittest particles during the
whole computing process will abate the premature
convergence problem for the PSO algorithm.

Proof: Keeping some fittest particles can eliminate the
chance of selecting unsuitable particles[13]. Generate new
ones stochastically for the population n, ust like infusing
some “flesh blood” continually flowing into the swarm, the
swarm diversity will be kept at a high level during all the
process of computation.

High level swarm diversity can effectively alleviate the
premature convergence problem of PSO. NNI_PSO owns
the ability of alleviating the premature convergence problem.
Remark1 is used as a new selection mechanism of PSO
algorithm.

Definition 1: near neighbor, each particle and its four
following ones consist of a near neighbor.

Remark 2: Inducting current best particle from the near
neighbor field into the velocity updating can improve the
global exploration ability near the end of the calculation.

Proof. The new velocity updating expression is shown
in Eq. (6) and Eq. (7), each particle and its four following
particles constitute a neighborhood.

v
id
 = w v

id
+ c

1
rand()(p

id
- x

id
) + c

2
rand()(p

id
*

- x

id
)

 + c
3
rand()(p

gd
- x

id
) (6)

x
id
 = x

id
 + v

id
(7)

p
id
* is the best in near neighborhood; c

2
* is the near

neighbor’s social factor; rand()* is the random function for
the new added element.

It is clear that, by inserting a new element into the
updating equation, the current particles will have a greater
chance to cluster toward the direction of the neighborhood
optimal position to interact with the best particle in near
neighborhood.

The convergence rate of NNI_PSO becomes much
larger. So, the problem of lacking of global exploration
ability near the end of the calculation is corrected.

71

152 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008

Remark 3: Introducing a power factor into the inertia
weight calculation may have chance to enhance the
computation efficiency.

Proof: As show in Eq. (8), the new inertia weight
updating equation is modified by introducing a power factor
m, then, the w will change non-linearly along with the
computing.

w* = (w
final

 – w
initial

)[(NC - iter) / NC]m + w
initial

(8)

� ß0<(NC – iter) / NC<=1;

� the value of [(NC – iter) / NC]m is a positive decimal
fraction which becomes smaller and smaller while the
computing processing.
� In the earlier computing period, w* � w, but in the later to
the end period, w* will be more smaller than w.

We change the expression of Eq. (6) to Eq. (9), and Eq.
(7) to Eq. (10), under the principle of Remark 3.

v
id
 = w v

id
+ c

1
r and()(p

id
– x

id
) + c

2
rand()(p

id
*

- x

id
) +

c
3
rand()(p

gd
- x

id
) (9)

x
id
 *= x

id
 + v

id
* (10)

� At the beginning computing period, v
id
 * � v

id
, x

id
 * � x

id
,

when closing to the end, v
id
 * << v

id
, x

id
 * << x

id
.

The initial value of w* is relative small. It will be non-
linearly reduced to a small value through the course of the
PSO running. According to the HR1-HR6, Remark 3 will
make the algorithm to have larger global search ability at
the beginning computation phase and also help the algorithm
to avoid leaving out of the solution fields in the later period.

��x
id
 * is better than x

id
. Introducing the power factor m

may bring a better chance to enhance the algorithm’s
efficiency.

5. STEP-BY-STEP PROCESS OF NNI_PSO

In NNI_PSO algorithm, the velocity update equation is
composed of four parts, which makes “the process of
particles learning” more similar to that of nature. Remark 1,
Remark 2 and Remark 3 have some interior relationships.
Remark 1 determines which particle is worthy of learning
and which should be abandoned; Remark 2 provides new
neighbors to the current particle, so as to assure the particles
have continuous learning object; and Remark 3 presents a
dynamically searching method for particles. The benefits
from above remarks result in that the active particles in the
population are those who can be optimized continuously,
and then the state of swarm environment will stay healthy
sustained.

Pseudo-code of NNI_PSO
Step1: Initialize n, NC, v

max
, d, x

max
, k, w, c

1
, c

2
, c

2
*, m;

initialize v
i
 and x

i
 stochastically; near neighbor size;

Step 2: For particle (i=1 to n), do
{

Step 3: Calculate f
i
 , // fitness value of particle i;

Step 4: Find p
g
 and its index g;

// the global optimal particle

Step 5: Let p
i
 = x

i
;

}
Step 6: While (Stop criterion is not satisfied), do

{
Step 7: Calculate w* by using Eq. (8)

w* = (w
final

 – w
initial

)[(NC - iter) / NC]m + w
initial

Step 8: Update x
i
 and v

i
 of each particle i

// by using Eq. (9) and Eq. (10)
v

id
 = w v

id
+ c

1
rand()(p

id
– x

id
) + c

2
rand()(p

id
*

– x

id
)

+ c
3
rand()(p

gd
- x

id
)

x
id
 *= x

id
 + v

id
*

Step 9: Recalculate f
i
 of particle i;

Step 10: Update p
i
 for each particle;

Step 11: Update the neighbor optimum p
id
* all particles;

Step 12: Replace one-fifth worst performance particles in
the swarm population with new generated ones;

Step 13:Update g and p
g
 ;

}
Step 14: Stop.

6. EXPERIMENTS AND ANALYSIS

6.1 Benchmark Functions

NNI_PSO algorithm is applied to five notable benchmark
functions to evaluate its computing efficiency and its results
quality. The five benchmark functions f

0
 to f

4
 are given in

Eq. (11) to Eq. (15)

f
0
(x) = min £

i=1
n

x

i
2,

where x = [x
1
, x

2
, x

n
], is the real number vector (11)

f
1
(x) = min �

i=1
n

(100(x

i+1
– x

i
) 2 + (x

i
– 1) 2) (12)

f
2
(x) = min �

i=1
n

(x

i
2 – 10 cos (2nx

i
) + {10) (13)

)2020min()(
12.0 1

2 2cos

3 ee n

x

n

x
n

i i
n

i i

exf
�� �� �

����
�

(14)

f
4
(x) = min (1/n)�

i=1
n

(x

i
4 – 16

x

i
2 + {5

x

i
) (15)

The global optimal values of the functions from f
0
 to f

3

are all 0, and that of f
4
 is -78.3323. Function f

4
is considered

to be very complex and difficult to be optimized, since its
local optimal solutions increase exponentially with the
increase of dimension.

6.2 Experimental Results and Analysis

(a) Setting the Parameters’ Values

In the calculation of NNI_PSO, the size of neighborhood is
set to be 5; the neighborhood includes the particle itself and
its four offspring. In order to test the effectiveness of the
presented algorithm, data tests are processed.

72

New Approaches to Enhance the Computation Efficiency on Particle Swarm Optimization Algorithm 153

The space dimension of the benchmark is [10, 20, 30,
40, 60], respectively. The value of v

max
 and x

max
 are set

beforehand randomly and provided in Table 1.

Table 1
v

max
 and x

max
 of each Funtion

function v
max

x
max

f
0

5.12 5.12

f
1

2.048 2.048

f
2

10 10

f
3

32 32

f
4

100 100

The parameters used in those algorithms are established
according to the experiences from lots of experiments and
the instances form other research literatures. The
comparative experiments are performed among NNI_PSO,
CF_PSO and IWLD_PSO, presented in Table 2.

Table 2
Parameters Value in Different Algorithms

c
1

c
2

c
2
* k m w

final
w

initial
n

CF_PSO 2.05 2.05 — 0.729 — — —

IWLD_PSO 2 2 — — — 0.9 0.4 20/40

NNI_PSO 1 1 2 — 1.2 0.9 0.2

(b) Comparative Experiments on Benchmark
Functions

Detail results are shown in Table 3 and Table 4. In Table 3,
the final output is the average optimal solution after 50
iterations, and the maximum iteration is 100 times of the
problem dimension.

For function f
0
, NNI_PSO performs better than CF_PSO

and IWLD_PSO except that when the dimension is 30.
For f

1
 and f

2
, the results of NNI_PSO is much better

than that of CF_PSO and IWLD_PSO, the optimal solution
of NNI_PSO is almost the real global optimal while neither
CF_PSO nor IWLD_PSO could achieve a satisfied
solution.

For function f
3
, when the scale of the problem becomes

larger than 10, NNI_PSO will obtain much better than the
other two algorithms.

For the complex multi-modal function f
4
, NNI_PSO can

obtain the global optimum solution while CF_PSO and
IWLD_PSO can never.

(c) Larger Scale Problems Experiments

In order to testify that the performance of NNI_PSO is much
better than both of IWLD_PSO and CF_PSO when there
are much more particles and the dimension is very big,
another experiment is addressed shown in Table 4. It can be
noticed that NNI_PSO performs better than CF_PSO and
IWLD_PSO in most of the cases.

Table 3
Comparative Experiments of NNI_PS, CP_PSO and IWLD_PSO (population = 20)

Fitness value

Funct. dimension iteration IWLD_PSO CF_PSO NNI_PSO (n=1.2) NNI_PSO (n=1)

10 1000 6.025 E-15 3.788 E-40 3.555 E-54 8.589 E-48

f
0

20 2000 5.530 E-4 5.374 E-11 1.070 E-27 1.104 E-30

30 3000 5.975 E-4 4.497 E-8 6.019 E-15 5.253 E-9

10 1000 10.789 2.576 0.004 0.011

f
1

20 2000 13.357 18.515 0.011 0.074

30 3000 42.592 41.168 0.007 0.018

10 1000 1.989 1.989 8.587 E-7 1.801 E-4

f
2

20 2000 10.952 11.939 9.257 E-4 0.002

30 3000 22.884 42.783 7.172 E-5 3.253 E-4

10 1000 0.002 0.003 0.006 0.002

f
3

20 2000 7.771 E-4 5.839 E-4 9.177 E-4 0.006

30 3000 0.001 0.001 5.172 E-4 2.001 E-4

10 1000 -71.735 -72.678 -72.678 -78.3323

f
4

20 2000 -72.678 -75.504 -78.332 -78.3323

30 3000 -73.62 -74.562 -75.504 -78.3323

73

154 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 2, April 2008

Table 4
Comparative Experiments on Large Scale Problems (population = 40)

function dimension iteration IWLD_PSO CF_PSO NNI_PSO

f
0

20 2000 1.122 E-23 8.543 E-26 4.963 E-63

40 4000 9.609 E-24 8.508 E-25 1.873 E-34

60 6000 6.524 E-20 1.784 E-23 3.522 E-25

f
1

20 2000 3.815 E-25 5.406 E-26 1.609 E-24

40 4000 4.940 E-15 1.577 E-19 2.649 E-22

60 6000 3.461 E-15 7.618 E-22 1.100 E-22

f
2

20 2000 1.433 E-23 8.985 E-26 1.085 E-25

40 4000 7.467 E-23 8.957 E-22 3.326 E-26

60 6000 9.935 E-27 1.010 E-24 4.397 E-25

f
3

20 2000 1.322 E-23 1.083 E-21 2.489 E-16

40 4000 1.561 E-23 1.461 E-19 4.241 E-26

60 6000 8.307 E-23 2.208 E-21 1.011 E-22

f
4

20 2000 -69.85 -74.091 -73.774

40 4000 -73.62 -72.678 -78.332

60 6000 -71.264 -72.206 -75.735

(d) Comparative Experiments with Different Factor Values

Some other comparison experiments with different factor
values are made as proposed in Fig.1 and Fig.2. Set the power
factor of NNI_PSO m by 1, make w non-linearly decrease.
Differ from IWLD_PSO, NNI_PSO keeps the near neighbor
interaction. The experiment results are presented in the last
column of Table 4. NNI_PSO’s results are better than
IWLD_PSO and CF_PSO.

Figure 1: Results of f
1
 of the Algorithms

Problem Scale

F
i
t
n
e
ss

f
o
r

b
e
n
ch
m
a
r
k

f
1

NNI_PSO

CF_PSO

IWLD_PSO

Figure 2: Results of f
4
 of the Algorithms

Problem scale

Fi
tn
es

s
of

 b
e
nc
hm

ar
k

f4

IWLD_PS
O

NNI_PS
O

CF_PSO

7. CONCLUSION AND FUTURE RESEARCHES

The results in Table 3 and Table 4 indicate that NNI_PSO
has a bigger chance to achieve the real global optimal results
than the other improved PSO algorithms. Fig 1 and Fig 2
demonstrate that NNI_PSO can convergence with higher
accuracy. The practical data tests suggest that the mechanism
of near neighbor interaction may help easing the premature
convergence effectively while maintaining rapid convergence
rate. So, the developed method in the NNI_PSO can be
considered as a successful and effective improvement for
PSO based algorithm.

The contributions of the paper can be summarized as
follows.

(a) Several new heuristic rules to limit the maximal and
minimal values of particle’ velocity and its one-step
movement range are established. Then, both of the
global search abilities and the computing
effectiveness have been enhanced.

(b) A new selection mechanism (Remark 1) is presented
and proved, by which the premature convergence
during the computation is decreased.

(c) The principles of using near neighbor optimal
particle (Remark 2), and combining with the
nonlinearly varying inertia weight (Remark 3), are
addressed and proved. The presented algorithm
adjusts the neighborhood structure of particles
dynamically using neighbor interaction, and those
methods are of great help to global searching.

(d) The step-by-step process about the new improved
PSO algorithm is described in detail. Benchmark
function experiments, together with the comparative
experiments with two other popular PSO based

74

New Approaches to Enhance the Computation Efficiency on Particle Swarm Optimization Algorithm 155

algorithm, demonstrate that the presented algorithm
(NNI_PSO) possesses the advantages of rapid
convergence speed and high-level diversity of the
swarm. A high level diversity helps easing the
premature convergence problem, and near neighbor
interaction guides the particles moving toward
global optimum effectively.

However, there is still some chance for the improvement
in NNI_PSO. Our researches in the future will focus on
applying NNI_PSO in more practical decision problem, so
as to fully verify its efficiency and accuracy.

ACKNOWLEDGMENTS

This paper is supported by the National Natural Science
Foundation of China (60573159).

REFERENCES

[1] J. Kennedy, and R. C. Eberhart, “Particle Swarm
Optimization”, in Proceedings of IEEE International
Conference on Neural Networks, Perth, Australia, IEEE,
1995, 4, 1942-1948.

[2] F. V. D. Bergh, and A. Engelbrecht, “Particle Swarm
Weight Initialization in Multi-layer Perception Artificial
Neural Networks”, in Development and Practice of
Artificial Intelligence Techniques, Durban, South Africa,
1999, 41-45.

[3] M. Clerc, and J. Kennedy, “The Particle Swarm-
Explosion, Stability, and Convergence in a
Multidimensional Complex Space”, in IEEE
Transactions on Evolutionary Computation, 6, 2002, 58-
73.

[4] J. L. Ching, T. T. Chao, and L. Pin, “A Discrete Version
of Particle Swarm Optimization for Flowshop Scheduling
Problems”, in Computers & Operations Research,
Elsevier, 34, 2005, 3099-3111.

[5] F. Elizabeth, G. Gouvea, and C. G. Marco, “Particle
Swarm for the Traveling Salesman Problem”, in
Evolutionary Computation in Combinatorial
Optimization, Springer Berlin / Heidelberg, 3906, 2006,
99-110.

[6] Z. Hong, L. Heng, and C. M. Tam, “Particle Swarm
Optimization-based Schemes for Resource-Constrained
Project Scheduling”, in Automation in Construction, 14,
2005, 393-404.

[7] Y. Shi, and R. C. Eberhart, “A Modified Particle Swarm
Optimizer”, in IEEE International Conference on
Evolutionary Computation, Anchorage, Alaska, May 4-
9, 1998, 69-73.

[8] Y. Shi, and R. C. Eberhart, “Parameter Selection in
Particle Swarm Optimization”, in Evolutionary
Programming VII, Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 1447, 1998, 591-600.

[9] Y. Shi, and R. C. Eberhart, “Empirical Study of Particle
Swarm Optimization”, in Congress on Evolutionary
Computation, Washington DC, USA, July 6-9, 1999, 3,
1945-1950.

[10] Y. Shi, and R. C. Eberhart, “Comparing Inertia Weights
and Constriction Factors in Particle Swarm
Optimization”, in Proceedings of 2000 Congress
Evolutionary Computation, La Jolla, CA, USA, 2000,
1, 84-88.

[11] A. Chatterjee, and P. Siarry, “Nonlinear Inertia Weight
Variation for Dynamic Adaptation in Particle Swarm
Optimization”, in Computers & Operations Research.
Elsevier, 33, 2006, 859-871.

[12] B. Liu, L. Wang, Y. H. Jin, F. Tang, and D. X. Huang,
“Improved Particle Swarm Optimization Combined with
Chaos”, in Chaos Solitons & Fractals, Elsevier, 25, 2005,
1261-271.

[13] R. Jacques, and S. V. Jakob, “A Diversity-guided Particle
Swarm Optimizer –the ADPSO” available: http://
citeseer.nj.nec.com/riget02diversityguided.html, April
11, 2007.

[14] S. M. Arvind, M. Rui, W. Christopher, and P. Christian,
“Neighborhood Re-structuring in Particle Swarm
Optimization”, in AI 2005: Advances in Artificial
Intelligence, Springer Berlin / Heidelberg, 3809, 2005,
776-785.

75

