International Journal of Computer Sciences and Engineering Systems

Vol. 12 No.2 (December, 2018)

New Approaches to Enhance the Computation Efficiency
on Particle Swarm Optimization Algorithm

Yang YI' and Qiang LI*

!Computer Science Department, Sun Yat-Sen University GuangZhou, GuangDong 510275, P. R. China
E-mail:issyy@mail.sysu.edu.cn

2Computer Science Department, Sun Yat-Sen University GuangZhou, GuangDong 510275, P. R. China
E-mail: ligiang0730@qg.com

Manuscript received January 15, 2018, Manuscript revised Mar ch 15, 2018

Abstract: Methodologies and approaches to improve the computation efficiencies on particle swarm optimization (PSO) is
addressin the paper. Firstly, several heuristic rules are proposed to be used in particle velocity updating in order to promote
their global exploration abilities. Secondly, the theories of building high performance PSO algorithm are described and
proved, which consist of introducing a new selection mechanism, inducing a dynamic particle neighbor structure, employing
the non-linear inertia weight value and interacting within near neighborhood. Thirdly, a new improved PSO algorithm
based upon above theoretical achievements are presented. The notable benchmark tests show that the presented algorithm
can obtain the global optimal solutions very quickly. The comparing experiments with two other popular improved PSO
algorithms demonstrate that our algorithm has much better performance and lower premature convergence rate than the

other methods.

Keywords: Artificial Life Computing, Particle Swarm Optimization, Dynamic Neighborhood, Velocity Updating, Near

Neighbor Interaction

1. INTRODUCTION

PSO (Particle Swarm Optimization) [1], which isinspired
by the cognitive behavior of bird flocking or fish schooling,
has become a real competitor for GA (Genetic Algorithm)
and ACO (Ant Colony Optimization) in evolutionary
computation. It has the advantages of simple model, less
parameters and relative ease of implementation, which
attracts more and more attention of scholars. Nowadays, PSO
has been successfully applied to many fields[2-6], such as
scheduling, communi cation, high efficiency computation, E-
Businessand so on.

PSO can provide high speed of convergencein theinitial
computation periods, yet, it isapt totrap in a near optimal
solution in the later iterations due to its weak global
exploration capability. In order to alleviatethis problem, Shi
and Eberhart[7] introduced an inertiawe ght into itsvelocity
update equation, which makesthe former particle's vel ocity
have a bigger impact on the following particles' velocity
changing. Then, they developed theinertiaweight linearly
decreasing PSO algorithm (IWLD_PSO) [8,9]. In
IWLD_PSO, theinertiaweight linearly decreased with the
iteration and the maximum allowable velocity in each
dimens on wasintroduced, which can guaranteethe particles
search within thefeasible solution fields.

Clerk and Eberhart[3] introduced a new concept of
congtraint factor, which affects three parts of the velocity
update parameters, and after that, it will have someinfluence
on the particles ‘ exploration capability. Another improved
PSO with constraint factorsis developed(CF_PSO). Shi and
Eberhart [9,10] compared IWLD_PSO with CF_PSO in
detail. Chatterjee and Siarry[11] provided some genera
suggestions for parameter selection by using nonlinear
variation for inertiaweight values.

Although all the modifications mentioned above
upgrade the PSO’s performance to some extent, there still
exits a common challenge that the premature convergence
rate remains pretty high[14]. Liu and Wang[12] incorporated
the Chaotic Local Search (CLS) into the algorithm by
optimizing one fifth of the best particles. Though CLS
reduces the premature convergencerate significantly, it cost
great number of computation, so, it is not suitable for
practical applications.

In this paper, some new principles of building high
performance PSO algorithm are brought forward and
testified. The new approaches give attention to two or more
things, such as local exploitation capability, global
exploration capability and convergence speed. A new
improved PSO algorithm (NNI_PSO), which adoptsanovel
selection mechanism, near neighbor interaction method and
nonlinearly varying inertia weight value, is described.
NNI_PSO owns the characteristic of maintaining more

69

IJCSES International Journal of Computer Sciences and Engineering Systems, |

diversities of the population and moving rapidly towardsto
theglobal optimum. The methodol ogi es and approaches may
provide some val uabl einformation for solving some complex
practical application problem. Benchmark experiments
demonstrate that NNI_PSO can achieve the global optimal
results with high efficiency, furthermore, the comparative
experiments among NNI_PSO, CF_PSO and IWLD_PSO
illustrate that NNI_PSO has much better performance than
the other twoimproved PSO algorithms.

Therest of the paper isorganized asfollows. Section 2
gives a brief description about the methods and al gorithm
of traditional particle swarm optimization with its all
necessary variations. Section 3 analyzes some heuristic
methods used in particle velocity updating computation.
Section 4 puts forward and testifies some new theories for
PSO a gorithm optimization. In Section 5, an improved PSO
approach is proposed in detail. Benchmark tests and data
experiments are performed in Section 6. Conclusion and
further effortsaregiven finally in Section 7.

2. TRADITIONAL PSO ALGORITHM

i, particle;

d, solution space dimension;

v, velocity of particle i in feasible solution space, v, =
(Vi Vigs -2V

V. maximum allowable velocity;

X, particlei in the searching space; X=(X, , X, -+ X,);
p,, best position it ever visited so far of particle i,
(pil’ Pigr =ees pid);

0, index of global optimum position;
Py global best position, P,= (pgl, Py
X . limitation of searching range;

k, constraint factor;

w, inertiaweight;

n, particles population;

iter, current iteration time;

NC, total iteration times.

w0y Py

In PSO algorithm, each particleisa potential solution
for the objective function. Particles adjust their positions
combined with the computing process in the iterations, so
asto movetoward to theglobal optimum. In ad-dimensional
space, each particleisreferredtoasapoint X = (X, , X, «..
X) in the searching space. Letv.= (v, v, ...,V,) be the
velocity of the particlei in the feasible solution space.

Particlei remembers the best position p.= (p,,, Py -+
p,,) itever visted sofa. The best position in the neighborhood
fieldisrepresented aspgz(pgl, Py - pgd).At each iteration,
particlei adjustsitsvelocity v, and position x by considering
the personal best and the global best ones. The update
equations are given asfollows[1].

v, =wv, +crand()(p,— X, + czRand()(pg X (@D}

Xid = Xid+ Vid (2)

¢, isthe cognitivefactor and ¢, isthesocial factor. Generally,
let w=0.729, ¢, = ¢, = 1.4495. rand() and Rand() arerandom
number functionsand their valuesare uniformly distributed
within[0,1]. wistheinertiaweight, who reflecting the control
and influence degreeof current particletoits next generation
or neighbors. wwill impact both of thevel ocity and position
on the particles.

Pseudo-code of PSO_Algorithm
Step 1. Initializen, NC, d, k, w, ¢, and c,; initializev, and x
stochastically;
Step 2: For particle (i = 1 ton), do
{
Step 3: Caculatef, // fitness of particlei;
Step 4: Find the P, anditsindex g;
/I global optimal particle
Sep S: Letp = x;
}
Step 6: While (Stop criterion is not satisfied), do
{
Step 7: Update x, and v, of each particlei
/I by using Egs. (1) and (2)
v,,=wy, +crand()(p,,—x,) + { czRand()(pg X
Xid: Xid+ Vid;
Step 8: Recalculatef, of particlei;
Step 9: Update p, for each particle;
Step 10: Update g and Py ;
}
Step 11: Stop.

3. INTELLIGENCE RULESON PARTICLE VELOCITY
UPDATING

It can be noticed in Eq. (1) that v, is composed of three
elements: (1) theinfluencefrom previous particles veocity;
(2) the cognitivefrom other particle; (3) socia affection from
the particle environment.

Heuristic Rule1 (HR1)[7]: It will be better for the PSO
algorithm torestrict particlesvelocitiesin afiedd scale, which
meansv, e [-v_ ., v_]| for al the particles, v__ > = 0;
V...~ =0

Based up our researches on the properties of
evolutionary computation and also inspired by other
methods, we present several new heuristic rulesto control
the particle vel ocity and the movement distance, in order to
increase theal gorithm’s cal cul ation efficiency.

Heuristic Rule 2 (HR2)[8]: there exists an allowable
range for particles movements in the searching space for
each iteration, which means the distance of each movement
isbetween [x X _],x_>=0,x_>=0.

HeuristicRule 3 (HR3): letx _, themaximal allowable
movement range of particlesin one step, to bebigger in the
earlier period thanit isin thelater computation period.

Heuristic Rule 4 (HR4): let x__ ., the minimal
movement range for particlesin one step, to bebigger in the

70

New Approaches to Enhance the Computation Efficiency on Particle Swarm Optimization Algorithm

earlier period than it in the later period during the
computation.

HeuristicRule5 (HRS): letv__, themaximal particle
velocity, to bebigger in theearlier period thanitin thelater
period in the process of iteration computation.

Heurigtic Rule 6 (HR6): letv__ , the minimal particle
velocity, to be smaller in the earlier period than it in the
later period in the process of iteration computation.

Theparticlesmovein thefid ds of vector space, so, there
exist negative vel ocities. For any iteration searching based
intelligent algorithm, the early computation focus on the
global searching and exploration abilitiesin theearly period,
and then, pay special attention on the convergence speedin
the final calculation period. With a bigger velocity and
moving distance limitation, the particles can have abigger
chance to move quickly in a larger space, in order to find
out the glabal optimal solution. On the other hand, in the
final period of computation, a smaller velocity and moving
distance limitation will prevent the particle moving out of
the feasible space, and then, makethe particles concentrate
totheglobal optimal point quickly.

IWLD_PSO Inertia Weight Rule (IWLD_Rule)[8]:
the inertia weight descends linearly with the increasing of
iteration times.

IWLD_Ruleisillustrated by Eq. (3). w, ,andw, . are
the predetermined maximum and minimum inertia wei ght
values, respectively.

W= (W o — W) (NC - iter) I NC + 3)

A largeinertiaweight value facilitates a global search
whileasmall inertiaweight facilitatesalocal search[9]. By
linearly decreasing, theinertiaweight value changesfrom a
relatively larger value to a smaller one through the process
of computing, so that, the algorithm tends to have more
global search abilities at the beginning period while more
local search abilitiesin the final period.

So, aproper selection on theinertiaweight valuew,
and w . can make a balance between the exploitation
capability and the exploration capahility.

CF_PSO Congtriction Factor Rule (CF_Rule)[10]:
adding anew factor torestrict thevelocity, soastolimit the
maximum velocity v toadynamicrange.

CF_Ruleisillustrated by Eq. (4) and Eq. (5) .
v, =K v, ,+crand()(p,-x,)+ czRand()(pg —XJl 4

k=2/|2-p-o" 4o o =0, +cs0>4)

The influence factor k will haveimpact on each of the
three componentsin vel ocity update equation. CF_Rule can
be considered as a specia case of HR1 to HR6, whose
objectiveisto usethe constriction factor while limiting the
maximum velocity v tothe dynamicrange of the variable
X . On each dimension, such asletv_ =x .

Generaly, the parametersin above formulasare given
by c¢,=c,=2.05, and k=0.729, equivalent tothe case of setting.

4. OPTIMAL METHODOLOGIESTO IMPROVE PSO
ALGORITHM

With the help of above intelligent methodologies, the
improved PSO algorithm showsa good performanceat the
beginning of the computation, and lsomaintainsare atively
high speed of convergence speed near the end calculation.
However, it has no way to deal some other big challenges,
such as adjusting the iteration searching direction
dynamically according to the acquired information and
escaping premature convergence.

The major cause of premature convergence is due to
the decreases on the diversity character of the particlessince
the information exchanges very rapidly. We develop a new
approach, named by new Near Neighbor Interaction based
PSO (NNI_PSO), which can maintains a high speed
exchange of information among particles, and can also let
thealgorithm maintain arather high-level diversity of particle
swarm.

Remark 1: Preserving somefittest particlesduring the
whole computing process will abate the premature
convergence problem for the PSO algorithm.

Proof: Keeping some fittest particles can eiminatethe
chance of selecting unsuitable particles13]. Generate new
ones stochastically for the population n, ust like infusing
some“flesh blood” continually flowing into the swarm, the
swarm diversity will be kept at a high level during all the
process of computation.

High level swarm diversity can effectively alleviatethe
premature convergence problem of PSO. NNI_PSO owns
theability of alleviating the premature convergence problem.
Remarkl is used as a new selection mechanism of PSO
algorithm.

Definition 1: near neighbor, each particle and itsfour
following ones consist of anear neighbor.

Remark 2: Inducting current best particle from the near
neighbor field into the velocity updating can improve the
global exploration ability near the end of the calculation.

Proof. The new velocity updating expression isshown
in Eq. (6) and Eq. (7), each particle and its four following
particles congtitute a neighborhood.

v,=wv +crand()(p,- x,) + c,*rand()* (p,* - X,)

+ carand()(pg 4 X (6)

Xid = Xid + Vid (7)

p~ is the best in near neighborhood; c,* is the near
neighbor’s social factor; rand()* istherandom function for
the new added el ement.

It is clear that, by inserting a new eement into the
updating equation, the current particleswill have a greater
chanceto cluster toward the direction of the neighborhood
optimal position to interact with the best particle in near
nei ghborhood.

The convergence rate of NNI_PSO becomes much
larger. So, the problem of lacking of global exploration
ability near the end of the cal culation is corrected.

71

IJCSES International Journal of Computer Sciences and Engineering Systems, |

Remark 3: Introducing a power factor intothe inertia
weight calculation may have chance to enhance the
computati on efficiency.

Proof: As show in Eg. (8), the new inertia weight
updating equation ismodified by introducing a power factor
m, then, the w will change non-linearly along with the
computing.

W= (W

final
0<(NC—iter) / NC<=1,

.- the value of [(NC — iter) / NC]™ is a positive decimal
fraction which becomes smaller and smaller while the
computing processing.
-» Intheearlier computing period, w* = w, but in the later to
the end period, w* will bemore smaller than w.

We change the expression of Eq. (6) to Eqg. (9), and Eq.
(7) to Eq. (10), under the principle of Remark 3.
v, *=w v +crand()(p,— X, + ¢, rand()* (p,* - x,) +

w,_)I(NC- iter) / NC]"+ w

initial

(8)

carand()(pg 4 X (9
Xq = X T Vid* (10)
. At the beginning computing period, v, . * =V, X, * = X,

when closing totheend, v, * <<v,, X, * << X .

Theinitial value of w* isrelative small. It will be non-
linearly reduced to a small value through the course of the
PSO running. According to the HR1-HR6, Remark 3 will
make the algorithm to have larger global search ability at
the beginning computation phase and a so hd p the algorithm
toavoid leaving out of the solution fieldsin thelater period.

-~ X, * is better than x . Introducing the power factor m
may bring a better chance to enhance the algorithm’s
efficiency.

5. STEP-BY-STEP PROCESS OF NNI_PSO

In NNI_PSO algorithm, the velocity update equation is
composed of four parts, which makes “the process of
particleslearning” moresimilar tothat of nature. Remark 1,
Remark 2 and Remark 3 have some interior relationships.
Remark 1 determines which particle isworthy of learning
and which should be abandoned; Remark 2 provides new
neighborsto the current particle, soastoassurethepartices
have continuous learning object; and Remark 3 presents a
dynamically searching method for particles. The benefits
from aboveremarksresult in that the active particlesin the
population are those who can be optimized continuously,
and then the state of swarm environment will stay healthy
sustained.

Pseudo-code of NNI_PSO
Stepl: Initialize n, NC, v, d, x_, k, w, c, C, C*, m,
initializev, and x stochastically; near neighbor size;
Step 2: For particle (i=1ton), do
{
Step 3: Calculatef, , // fitness value of particlei;

Step 4: Find P, anditsindex g;
/I theglobal optimal particle

Sep S: Letp = x;
}

Step 6: While (Stop criterion isnot satisfied), do
{

Step 7: Calculatew* by using Eq. (8)
W= (W = W) [(NC - iter) /NCT™ + w
Step 8: Update x, and v, of each particlei
/I by using Eq. (9) and Eg. (10)
v, *=w v +crand()(p,—x,) + ¢, rand()* (p* —x,)
+ carand()(pg 4 X
Xid = Xid + Vid*
Step 9: Recalculatef, of particlei;
Step 10: Update p, for each particle;
Step 11: Update the neighbor optimum p, * all particles,
Step 12: Replace one-fifth worst performance particles in
the swarm population with new generated ones;
Step 13:Update g and Py ;
}
Step 14: Stop.

6. EXPERIMENTSAND ANALYSIS

6.1 Benchmark Functions

NNI_PSO algorithm is applied to five notable benchmark
functionsto evaluate its computing efficiency and itsresults
quality. The five benchmark functionsf to f, are given in
Eq. (11) to Eg. (15)

f,(x)=min£_"x?

wherex =[x, X,, X], isthereal number vector (1)

f,(x)=minZ_"(100(x,—x)*+ (x—1)?) (12)

f,(x) =minZ_"(x?-10 cos (2nx)+ { 10) (13)
DI

fa() =min@0+e-20@ V' 0 —@ 0) (14)

f,(x) = min (1/n)Z _"(x*—16x>+ {5x) (15)

The global optimal valuesof the functionsfrom f; tof,
areall 0, and that of f, is-78.3323. Function f,isconsidered
to be very complex and difficult to be optimized, since its
local optimal solutions increase exponentially with the
increase of dimension.

6.2 Experimental Resultsand Analysis

() Setting the Parameters' Values

In the calculation of NNI_PSO, the size of neighborhood is
set to be 5; the neighborhood includesthe particleitself and
its four offspring. In order to test the effectiveness of the
presented algorithm, data tests are processed.

72

New Approaches to Enhance the Computation Efficiency on Particle Swarm Optimization Algorithm

The space dimension of the benchmark is[10, 20, 30,
40, 60], respectively. The value of v and x are set
beforehand randomly and provided in Table 1.

Table 1
v_.andx_ of each Funtion

ma

function Vo X o
f 5.12 5.12
f, 2.048 2.048
f, 10 10
f, 32 32
f 100 100

The parametersused in those algorithms are established
according to the experiences from lots of experiments and
the instances form other research literatures. The
comparati ve experiments are performed among NNI_PSO,
CF_PSO and IWLD_PSO, presented in Table 2.

Table 2
Parameters Value in Different Algorithms

*
Cl CZ CZ k m \Nfi nal \Ninili al n

CF_PSO 205 205 — 0729 — — —

(b) Comparative Experimentson Benchmark
Functions

Detail resultsare shown in Table 3 and Table 4. In Table 3,
the final output is the average optimal solution after 50
iterations, and the maximum iteration is 100 times of the
problem dimension.

For function f, NNI_PSO performsbetter than CF_PSO
and IWLD_PSO except that when thedimension is 30.

For f, and f,, the results of NNI_PSO is much better
than that of CF_PSO and IWLD_PSO, the optimal solution
of NNI_PSOisalmost thereal global optimal whileneither
CF_PSO nor IWLD_PSO could achieve a satisfied
solution.

For function f,, when the scal e of the problem becomes
larger than 10, NNI_PSO will obtain much better than the
other two algorithms.

For the complex multi-modal function f,, NNI_PSO can
obtain the global optimum solution while CF_PSO and
IWLD_PSO can never.

(c) Larger Scale Prablems Experiments

In order totestify that the performance of NNI_PSO ismuch
better than both of IWLD_PSO and CF_PSO when there
are much more particles and the dimension is very big,
another experiment isaddressed shown in Table 4. It can be

wLp pso 22— — — 09 042080 \yiced that NNI_PSO performs better than CF_PSO and
NNI_PSO 11 2 — 12 09 02 IWLD_PSO in most of the cases.
Table 3

Compar ative Experiments of NNI_PS, CP_PSO and IWLD_PSO (population = 20)

Fitness value

Funct. dimension iteration IWLD_PSO CF_PSO NNI_PSO (n=1.2) NNI_PSO (n=1)
10 1000 6.025 E-15 3.788 E-40 3.555 E-54 8.589 E-48

f 20 2000 5.530 E-4 5.374 E-11 1.070 E-27 1.104 E-30
30 3000 5.975 E-4 4.497 E-8 6.019 E-15 5.253 E-9
10 1000 10.789 2.576 0.004 0.011

f, 20 2000 13.357 18.515 0.011 0.074
30 3000 42.592 41.168 0.007 0.018
10 1000 1.989 1.989 8.587 E-7 1.801 E-4

f, 20 2000 10.952 11.939 9.257 E-4 0.002
30 3000 22.884 42.783 7.172 E-5 3.253 E-4
10 1000 0.002 0.003 0.006 0.002

f, 20 2000 7.771 E-4 5.839 E-4 9.177 E-4 0.006
30 3000 0.001 0.001 5.172 E-4 2.001 E-4
10 1000 -71.735 -72.678 -72.678 -78.3323

f, 20 2000 -72.678 -75.504 -78.332 -78.3323
30 3000 -73.62 -74.562 -75.504 -78.3323

73

IJCSES International Journal of Computer Sciences and Engineering Systems,

Table 4
Comparative Experiments on Large Scale Problems (population = 40)

function dimension iteration IWLD_PSO CF_PSO NNI_PSO
f 20 2000 1.122 E-23 8.543 E-26 4.963 E-63
40 4000 9.609 E-24 8.508 E-25 1.873 E-34
60 6000 6.524 E-20 1.784 E-23 3.522 E-25
f, 20 2000 3.815 E-25 5.406 E-26 1.609 E-24
40 4000 4.940 E-15 1577 E-19 2.649 E-22
60 6000 3.461 E-15 7.618 E-22 1.100 E-22
f, 20 2000 1.433 E-23 8.985 E-26 1.085 E-25
40 4000 7.467 E-23 8.957 E-22 3.326 E-26
60 6000 9.935 E-27 1.010 E-24 4.397 E-25
f, 20 2000 1.322 E-23 1.083 E-21 2.489 E-16
40 4000 1.561 E-23 1.461 E-19 4.241 E-26
60 6000 8.307 E-23 2.208 E-21 1.011 E-22
f, 20 2000 -69.85 -74.091 -73.774
40 4000 -73.62 -72.678 -78.332
60 6000 -71.264 -72.206 -75.735

7. CONCLUSION AND FUTURE RESEARCHES

(d) Comparative Experimentswith Different Factor Values

Some other comparison experiments with different factor
valuesaremadeas proposed in Fig.1 and Fg.2. Set the power
factor of NNI_PSO mby 1, make w non-linearly decrease.
Differ from IWLD_PSO, NNI_PSO keepsthe near neighbor
interaction. The experiment resultsare presentedin the last
column of Table 4. NNI_PSO’s results are better than
IWLD_PSO and CF_PSO.

CF_PSO

IWLD_PSO S~
NNI_Pso
\

Fitness for benchmark f1
P d

Problem Scale

Figure 1: Results of f, of the Algorithms

IWLD_PS
T CE_PSO
\

\
\

NNI_PS

Fitness of benchmark f4

Problem scale

Figure 2. Results of f, of the Algorithms

Theresultsin Table 3 and Table 4 indicate that NNI_PSO
has abigger chanceto achievethereal global optimal results
than the other improved PSO algorithms. Fig 1 and Fig 2
demonstrate that NNI_PSO can convergence with higher
accuracy. Thepractical datatests suggest that the mechanism
of near neighbor interaction may hel p easing the premature
convergence effectively whilemaintaining rapid convergence
rate. So, the developed method in the NNI_PSO can be
considered as a successful and effective improvement for
PSO based algorithm.

The contributions of the paper can be summarized as

follows.

(8) Severa new heurigticrulestolimit themaximal and
minimal values of particle’ velocity and its one-step
movement range are established. Then, both of the
global search abilities and the computing
effectiveness have been enhanced.

(b) A new sdection mechanism (Remark 1) is presented
and proved, by which the premature convergence
during the computation is decreased.

(c) The principles of using near neighbor optimal
particle (Remark 2), and combining with the
nonlinearly varying inertiaweight (Remark 3), are
addressed and proved. The presented algorithm
adjusts the neighborhood structure of particles
dynamically using neighbor interaction, and those
methods are of great help to global searching.

(d) The step-by-step process about the new improved
PSO algorithm is described in detail. Benchmark
function experiments, together with the comparative
experiments with two other popular PSO based

74

New Approaches to Enhance the Computation Efficiency on Particle Swarm Optimization Algorithm

algorithm, demonstratethat the presented algorithm
(NNI_PSO) possesses the advantages of rapid
convergence speed and high-level diversity of the
swarm. A high level diversity helps easing the
premature convergence problem, and near ne ghbor
interaction guides the particles moving toward
global optimum effectively.

However, thereis still some chancefor the improvement
in NNI_PSO. Our researches in the future will focus on
applying NNI_PSO in more practical decision problem, so
asto fully verify its efficiency and accuracy.

ACKNOWLEDGMENTS

This paper is supported by the National Natural Science
Foundation of China (60573159).

REFERENCES

[1] J. Kennedy, and R. C. Eberhart, “Particle Swarm
Optimization”, in Proceedings of |EEE International
Conference on Neural Networks, Perth, Australia, | EEE,
1995, 4, 1942-1948.

[2] F V.D. Bergh, and A. Engédbrecht, “Particle Swarm
Weight Initialization in Multi-layer Perception Artificial
Neural Networks”, in Development and Practice of
Artificial Intelligence Techniques, Durban, South Africa,
1999, 41-45.

[3] M. Clerc, and J. Kennedy, “The Particle Swarm-
Explosion, Stability, and Convergence in a
Multidimensional Complex Space’, in IEEE
Transactions on Evolutionary Computation, 6, 2002, 58-
73.

[4] J.L.Ching, T.T. Chao, and L. Pin, “A Discrete Version
of Particle Swarm Optimization for Flowshop Scheduling
Problems”, in Computers & Operations Research,
Elsevier, 34, 2005, 3099-3111.

[5] F. Elizabeth, G Gouvea, and C. G. Marco, “Particle
Swarm for the Traveling Salesman Problem”, in
Evolutionary Computation in Combinatorial
Optimization, Springer Berlin / Heidelberg, 3906, 2006,
99-110.

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

75

Z. Hong, L. Heng, and C. M. Tam, “Particle Swarm
Optimization-based Schemes for Resource-Constrai ned
Project Scheduling”, in Automation in Construction, 14,
2005, 393-404.

Y. Shi, and R. C. Eberhart, “A Modified Particle Swarm
Optimizer”, in IEEE International Conference on
Evolutionary Computation, Anchorage, Alaska, May 4-
9, 1998, 69-73.

Y. Shi, and R. C. Eberhart, “Parameter Selection in
Particle Swarm Optimization”, in Evolutionary
Programming V11, Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 1447, 1998, 591-600.

Y. Shi, and R. C. Eberhart, “Empirical Study of Particle
Swarm Optimization”, in Congress on Evolutionary
Computation, Washington DC, USA, July 6-9, 1999, 3,
1945-1950.

Y. Shi, and R. C. Eberhart, “ Comparing I nertiaWeights
and Constriction Factors in Particle Swarm
Optimization”, in Proceedings of 2000 Congress
Evolutionary Computation, La Jolla, CA, USA, 2000,
1, 84-88.

A. Chatterjee, and P. Siarry, “Nonlinear Inertia Weight
Variation for Dynamic Adaptation in Particle Swarm
Optimization”, in Computers & Operations Research.
Elsevier, 33, 2006, 859-871.

B. Liu, L. Wang, Y. H. Jin, F. Tang, and D. X. Huang,
“Improved Particle Swarm Optimization Combined with
Chaos”, in Chaos Solitons & Fractals, Elsevier, 25, 2005,
1261-271.

R. Jacques, and S. V. Jakob, “ A Diversity-guided Particle
Swarm Optimizer —the ADPSQO” available: http://
citeseer.nj.nec.convrigetO2diver sityguided.html, April
11, 2007.

S. M. Arvind, M. Rui, W. Christopher, and P. Christian,
“Neighborhood Re-structuring in Particle Swarm
Optimization”, in Al 2005: Advances in Artificial
Intelligence, Springer Berlin / Heidelberg, 3809, 2005,
776-785.

