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Abstract: The partitioning or clustering method is an important research branch in data mining area, and it divides the
dataset into an arbitrary number of clusters based on the correlation attribute of all elements of the dataset. Most datasets
have the original clusters number, which is estimated with cluster validity index. But most methods give the error estimation
for most real datasets. In order to solve this problem, this paper applies the optimization technique of genetic algorithm
(GA) to the new adaptive cluster validity index, which is called the Gene Index (Gl). The algorithm applies GA to adjust the
weighting factors of adaptive cluster validity index to train an optimal cluster validity index. It is tested with many real
datasets, and results show the proposed algorithm can give higher performance and accurately estimate the original cluster

number of real datasets compared with the current cluster validity index methods.
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1. INTRODUCTION

Data partitioning is commonly encountered in real
applications. Lots of schemes are proposed to assess the
performancesfor specific algorithmsin literature. Themain
concern of data partitioning is how to correctly divide the
data pointsinto clusters. Some algorithmsiin literature are
specifically designed for certain databases. Thus, these may
perform well in some cases but not always good in general.
In this paper, wewould liketo propose ageneraized scheme,
which isintegrated with optimization techniques, for better
partitioning the data.

Thereareanumber of indicesproposed in literature to
assess the performances of data clustering. Themain ideas
aretwofold: (1) data pointswithin the same cluster should
locate as close as possible, and (2) data points in different
clusters should be as apart as possible. Based on the two
concepts, a variety of the cluster validity indices are
proposed. We make necessary simulations and verify that
not all the indices perform well. Therefore, we employ the
genetic algorithm (GA) [1] for resulting in better
performancesin data partitioning.

This paper isorganized asfollows. In Section 2 we point
out the data partitioning schemes and the cluster validity
indices. In Section 3 we describe the proposed algorithm by
integrating existing indicesandtraining with GA. Smulation

results are demonstrated in Section 4. Finally, we conclude
this paper in Section 5.

2. DATA PARTITIONING SCHEMESAND CLUSTER
VALIDITY INDICES

In this paper, we employ the fuzzy C-means (FCM) [2]
algorithm for data clustering, and then make comparisons
among several indices. By using the conceptsof fuzzy theory,
every data point does not absolutely belong to a certain
cluster; it is denoted by a floating number to represent the
degree of belonging to a certain cluster.

The major drawback for FCM or other algorithms is
that the correct number of clusters cannot be known exactly
in advance. Thus, the cluster validity indices with several
kinds of representations are proposed to eval uate the correct
number of clusters. Every index has its advantages and
drawbacks. We cite several commonly encountered indices;
then we perform verificationsin Sec. 2, and finally combine
the advantages of these indices and propose the genetic-based
cluster validity index in Sec. 3.

2.1 Cluster Validity Index: PC | ndex

PC (partition coefficient) index [3] was oneof the measures
used in early days, with the definition in Eqg. (1):

Vpc(U)=fZZuik )

where u, denotes the degree of membership of x, in the
cluster k, x, is the i" of d-dimensional measured data
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(and we use d = 2 here as an example), under the condition
that

u,€l0,1 Vik;

iuik =1 Vk,
i-1

To assessthe effecti veness of clustering al gorithm, the
larger the PC index value, the better the performance.

2.2 Cluster Validity Index: PE I ndex

PE (partition entropy) index was also proposed in [3], with
thedefinitionin Eq. (2):

_1 n c
Vee (U) =, {z Z [uik ’ |09(“ik )]} (2
k=1 i=1
To assessthe effecti veness of clustering al gorithm, the
smaller the PE index value, the better the performance.

2.3 Cluster Validity Index: XB I ndex

The XB index was proposed by Xieand Beni in [4] with the
two important concepts of compactness and separation. For
a good clustering result, the data points within the same
cluster should be as compact as possible, while any two
different clusters should be as far as possible. It can be
formulated by Eq. (3):

Vi (U, V: X )= P
xg\U, ¥, _W 3)

where x. is the i of d-dimensional measured data (and we
used =2 here), v, isthe d-dimension center of the cluster.

In Eqg. (3), thenumerator impliesthe compactness and
thedenominator denotesthe separation. Therefore, to assess
the effectivenessof clustering algorithm, thesmaller the XB
index val ue, the better the performance.

2.4 Cluster Validity Index: K Index

The K index was proposed by Kwon [5] based on the
improvement of the XB index. In Eg. (3), wefind when c—n,
V.s—0, and it is generally incorrect for practical
applications. By modifying Eg. (3), we obtain Eq. (4):

$ Sl [
2i-1 j=1

V(U ¥ X)= 25— @

i

where ;, denotes the geometric center of data points.
To assessthe effecti veness of clustering al gorithm, the
smaller the X B index value, the better the performance.

i

Index

crit

2.5 Cluster Validity Index: B
B . index was proposed in [6]. It is also composed of the

crit
compactness and separation parametersin order to obtain
the optimal number of dusters. Themeasure of compactness
and separation are independently derived. First, the

separation between clustersis denoted by G(c),
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maxo(r, 7;)

Gle)= sty (5)

where 5(K, Vj) isadistance measure between the geometric
centers of clustersi andj, with the definition of

5(Vi’ Vj): ((Vz _Vj)TA(Vi -V, ))Vz (6)
and 4 denotes a positive definite matrix with dimension of
dxd (or 2x 2 here). For simplicity, people use theidentity
matrix [ to replace the matrix 4 in Eq. (6) to verify the
distance measure.

Next, the compactness is represented by the ratio of
variances between the data points of the current cluster, and
the data pointswithin every cluster, denoted by V' (c),

1 % i varq(k)
V,(c)== 25—
ule ¢ L¥ala) ("

wherevarq denotesthe current cluster and var, , denotesthe
variance of the whole data set. From experimental results,
the value of G(c) ismuch larger than that of V| (c) with the
ranges of G(c)€[0, 20] and V' (c) € [0, 0.8], thus we need
to include a weighting factor o to balance the effects from
both factors, and we obtain

By(c)=Gle)+a-V,(c) (8)
where a = 1= denotesthe weighting factor.

From derivations above, when thesmaller B_ index is
obtained, the clustering performance woul d be better.

2.6 Cluster Validity Index: SV Index

SV index was proposed in [7]. It also adopted the concepts
of compactness and separation. Unlikethe B, index in Sec.
0, both factorsare normalized to the val ues between 0 and 1
to balance the effects from both factors. In measuring the
compactness, the mean distance of the ¢ clustersin the data

set iscalculated,

i=1 i XEX;

v, - X} 9)

where n, denotes the number of data pointswithin cluster i,
V. isthe geometric center of cluster 7, and thetotal of ¢ mean
distances are cal culated. The separation measureissimply
denoted by ¥V, =7+, where d_,, denotes the minimum
distance between any two clusters.

Next, normalization of Egs. (9) and (10) is performed
by

V,(c, V; X) = minl, (¢, v: X))

VuN(C’ ViX) = max[V, (¢, V. X)[ - min[V,(c, V; X)] * (10)
Vale V)= ma:[l(/(V )VS] T'?E.anv(”]m] (11)
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Finaly, the SV index isdefined by
V(e Ve X)=Vule Vo X)4V, (e V). (12)

To assessthe effecti veness of clustering al gorithm, the
smaller the SV index value, the better the performance.

2.7 Preliminary Results with Existing I ndices

To evaluatethe effectiveness of existing indices, we generate
a two-dimensional, 2000-point, 9-cluster testing database
caled My _sample, illustrated in Fig. 1. All sx indicesare
examined, and resultsarein Table 1.

With the database, we can expect that the column with
k =9 should perform the best, i.e., thelargest PC value and
the smallest values of the other five should be obtained. As
we can see, not all of the indices indicate that the correct
clustering result iswhen £ = 9. Moreover, the criterion for
PC isto search for its maximum value, while for the rest
indicesthe criterionisto find their minimum values. Based
on the two findings, the optimization techniques can be
included into the clustering algorithm to search for the better
and more correct results.

3. GENETIC-BASED CLUSTER VALIDITY INDEX

Aswe can see from Sec. 2.1t0 2.6, every index hasits own
specific concept for data clustering and the results in Sec.
2.7 haveadiversity of performances. Therefore, we employ
genetic algorithm (GA) for finding an optimized result based
on the concept of every index above. GA constitutesof three
major steps. crossover, mutation, and selection. Based on
the fitness function, we try to integrate our watermarking
schemewith GA procedures.

Figure 1: The Two-Dimensional, 2000-Point, 9-Cluster Database
My_sample.
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Table 1
The Index Values for Clustering from 2 to 10 Clustersin Six
Different Schemes for My_sample Database. The Shaded
Blocks Represent the Correct Clustering Results

index k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
PC 0.722 0.673 0.625 0.640 0.674 0.720 0.757 0.797 0.770
PE 0.631 0.852 1.051 1.071 1.030 0.936 0.855 0.754 0.834
XB 0.277 0.110 0.188 0.224 0.095 0.100 0.068 0.042 0.628
K 555 221 377 449 191 202 139 87 1300
B, 17.87 10.85 9.86 10.77 8.14 8.79 859 839 17.42
SV 1.000 0.691 0.619 0.485 0.334 0.312 0.261 0.220 1.000

3.1 Preprocessing in GA

We need to have chromosomesto perform thethree stepsin
GA. We employ five popularly used databases, including
auto-mpg [8], bupa[9], cmc[10], iris[11], and wine[12] in
Table 2 for GA optimization. Half of the data set in each
database is used for training, and the other half is used for
testing.

3.2 Deciding the Fitness Function

After considering practical implementations in GA, and
based on the indices described in Sec. 0 to 0O, in this paper,
we proposed the geneti c-based index for dataclustering. The
fitness function is denoted by

15 INTRA (k) maxd (v, ;)
Voo € V: X)= 0 i —+ By (13)
In thefirst term, it denotes the compactnesswith
INTRA(k)= 23" | -x,,and (14)
MSD, =23, -x | . (15)

J=1

In the second term, d(V/, VJ,) isthe same asthat defined
in Eq. (6). Also, o and B3 arethe weighting factors, which
act astheoutput after GA training.

Thegoal for optimization isto find the minimized value
in thefitnessfunction. Under the best condition, thefitness
valuereaches 0.

3.3 Proceduresin GA Training

The GA proceduresfor optimized cluster validity index are

described as follows.

Sep 11 Producing the chromosomes: 40 chromosomes are
produced. Each chromosome denctes the weighting
factors in the fitness function, i.e., (o, /), 1<i<40.
Because the fitness function is composed of two
opposing conditions, we only concern about the ratio

between the two weights;, weset 0<a , f,< 1.
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Table 2
The Five Databases Used in This Paper

Training database  # of data Testing database #of data
points points
auto-mpg_train 196 auto-mpg_test 196
bupa_train 173 bupa_test 172
cmc_train 737 cmc_test 736
iris_train 75 iris_test 75
wine_train 89 wine_test 89

Fitness values are calculated from the training
databases in Table 2. At the beginning of first iteration,
chromosome values are randomly set. In training,
chromosome values are modified based on the output of
the previousiteration.

Sep 2: Selecting the better chromosomes: All the 40 sets
of chromosomes are included into the fitness function
and the corresponding fithess scores are cal cul ated. The
20 chromosomes with smaller fitness values are kept
for use in the next iteration, and the other 20 are
discarded. 20 new chromasomes in the next iteration
are produced from crossover and mutation based on the
20 chromosomes remained.

Sep 3:  Crossover of chromosome: From the 20 remained
chromosomes, we randomly choose 10 of them, and
gather into 5 pairs, to perform the crossover operation.
By swapping the o or B values of every pair, 10 new
chromosomes are produced.

Sep4: Mutation of chromosome: The 10 chromosomes
that are not chosen in O are used in this step. The o
values in the first five chromosomes are replaced by
randomly set, new o values. Similar operation is
performed on the B values of the other five.

Sep 5:  The stopping condition: Oncethe pre-determined
number of iterationsisreached, or when thefitnessvalue
equals 0, the training is stopped, and the weighting
factors corresponding to the smallest fithess score in
thefinal iteration, (o, B), isthe output.

4. SIMULATION RESULTS

After training for 1000 iterations the GA optimization in
Sec. 3.3, we obtain the optimized weighting factors
(o, B) = (0.8561, 0.0826). With the two values, we can
compare the GA optimized result with those in
Sec. 2.1 to 2.6 by verifying the five test databases in
Table 2. We depict the detailed results with the auto-mpg
database in Table 3, the bupa database in Table 4, theiris
databasein

Table 5, the wine database in Table 6, respectively.
Numerical valuesin Table 3 depict theresults for the auto-
mpg database, which hasthree clugers. We can seethat only
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Table 3
Index Values from 2 to 10 Clustersin Seven Different Schemes.
Shaded Blocks Show the Correct Results for
Auto-mpg Database

index k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
PC 0.866 0.801 0.787 0.764 0.726 0.716 0.713 0.704 0.700
PE 0.330 0.522 0.596 0.679 0.804 0.847 0.869 0.915 0.944
XB 0.056 0.073 0.083 0.067 0.145 0.121 0.121 0.104 0.123
K 11.31 15.30 18.21 15.74 35.53 33.51 36.00 32.70 41.44

o 1357 820 6.94 6.47 921 9.89 1111 11.21 13.24
SV 1.000 0.633 0.466 0.415 0.548 0.592 0.705 0.771 1.000
Gl 0.523 0.487 0.521 0.536 0.780 0.854 0.960 0.974 1.148

Table 4

Index Values from 2 to 10 Clustersin Seven Different Schemes.
Shaded Blocks Show the Correct Results for
Bupa Database

index k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

PC 0.882 0.664 0.562 0.476 0.411 0.383 0.346 0.328 0.295
PE 0.304 0.809 1.136 1.435 1.676 1.826 2.011 2.131 2.309
XB 0.065 0.511 0.587 0.623 1.480 1.307 1.073 1.395 1.407
K 11.64 94.16 110.2 118.5 284.2 256.1 212.8 271.9 282.5

o 99-03 46.69 45.75 47.62 67.55 83.79 49.41 56.06 63.48
SV 1.000 0.718 0.617 0.555 0.702 0.786 0.699 0.882 1.000
Gl 1.088 1.225 1.286 1.328 1.754 1.787 1.690 1.903 1.981

with the proposed GA-based index hasthe correct result. In
bupa, cmc, iris, and wine databases, similar results can be
obtai ned, and detailed comparisons can befound from Table
4toTable7, respectively. In addition, from Table 8, we see
that the proposed Gl results in correct cluster numbersin
four of thefive test databases. Comparing to other Sx indices
that only result in one correct cluster number, our scheme
gets better performance. In addition, regarding to the cmc
database, none of the seven indices have the correct cluster
number.

5. CONCLUSION

In this paper, we discussed about data clustering schemes
and proposed anew cluster validity index based on GA. Gl
index outperforms all the six existing indicesin literature.
However, clustering resultsfor applicationsto some database
are not correct even after GA training. And this is the
motivation for our researchesin thefuture.
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Table 5
Index Values from 2 to 10 Clusters in Seven Different Schemes.
Shaded Blocks Show the Correct Results for cmc Database

index k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
PC 0.809 0.704 0.597 0.528 0.474 0.423 0.378 0.342 0.321
PE 0.459 0.773 1.089 1.323 1.523 1.723 1.905 2.066 2.189
XB 0.096 0.125 0.197 0.222 0.231 0.296 0.388 0.604 0.539
K 70.86 92.96 146.9 165.7 173.6 223.1 293.0 458.3 410.4
18.57 13.26 11.96 13.35 13.37 17.26 16.77 19.17 22.55
SV 1.000 0.580 0.452 0.428 0.440 0.514 0.664 0.935 1.000
Gl 0.617 0.595 0.660 0.721 0.771 0.866 0.990 1.214 1.206

Table 6
Index Values from 2 to 10 Clusters in Seven Different Schemes.
Shaded Blocks Show the Correct Results for iris Database.

index k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
PC 0.888 0.790 0.738 0.678 0.610 0.584 0.562 0.538 0.535
PE 0.290 0.559 0.736 0.933 1.108 1.216 1.337 1.435 1.486
XB 0.058 0.115 0.160 0.265 0.316 0.549 0.239 0.227 0.289
4.622 9.920 14.72 25.25 33.21 61.43 26.73 28.05 36.45

o 18.46 12,13 10.40 10.77 17.03 21.21 16.08 16.80 16.53
SV 1.000 0.724 0.598 0.628 0.695 0.907 0.700 0.832 1.000
Gl 0.442 0.510 0.602 0.755 0.887 1.147 0.881 0.953 1.091

Table 7
Index Values from 2 to 10 Clusters in Seven Different Schemes.
Shaded Blocks Show the Correct Results for
Wine Database

index k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

PC 0.868 0.783 0.772 0.746 0.751 0.784 0.786 0.760 0.738
PE 0.328 0.572 0.636 0.720 0.738 0.663 0.677 0.764 0.830
XB 0.067 0.141 0.101 0.081 0.123 0.071 0.097 0.209 0.261
6.264 13.81 11.28 11.00 18.96 14.83 22.75 50.47 67.97

o 22.85 1417 11.64 9.169 11.01 10.06 12.82 19.18 22.89
SV 1.000 0.672 0.569 0.413 0.406 0.357 0.461 0.772 1.000
Gl  0.570 0.566 0.605 0.641 0.841 0.828 1.061 1.594 1.896

Table 8
Comparisons of the Seven Indices for the Five Test Databases.
Our Scheme Performs the Best

Database  Original PC PE XB K B SV GA

crit

clusters
auto-mpg 3 2 2 2 2 5 5 3
bupa 2 2 2 2 2 5 5 2
cmc 3 2 2 2 2 4 4 2
iris g 2 2 2 2 4 5 3
wine 3 2 2 2 2 5 7 3
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