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Abstract: The residue number system (RNS) is a carry-free number system which can support high-speed and parallel
arithmetic. Two major issues in efficient design of RNS systems are the moduli set selection and the residue to binary
conversion. In this paper, we present two efficient residue to binary converters for the new three-moduli set {2n, 2n+1 + 1,
2n+1–1}. This moduli set consists of pairwise relatively prime and balanced moduli, which can offer fast internal RNS processing
and efficient implemenatation of the residue to binary converter. The proposed residue to binary converters are memoryless
and consist of adders. In comparison with other residue to binary converters for a three-moduli set, the proposed converters
have better area-time complexity.
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1. INTRODUCTION

The residue number system (RNS) is a non-weighted number
system which speeds up arithmetic operations by dividing
them into smaller parallel operations. Since the arithmetic
operations in each moduli are independent of the others, there
is no carry propagation among them and so RNS leads to
carry-free addition, multiplication and borrow-free
subtraction [1]. RNS is one of the most effective techniques
for reducing the power dissipation in VLSI systems design
[2]. Also RNS can be efficiently realized in multiple-valued
logic (MVL) [3, 4]. Some applications of the RNS are digital
signal processing (DSP) [5, 6], the RSA encoding algorithm
[7] and digital communication [8]. The architecture of the
RNS is naturally fault tolerant and consequently, it is used
for error detection, error correction and fault tolerance [9,10].
The complexity as well as the efficiency of residue to binary
converter is primarily based on the proper selection of the
moduli set and the conversion algorithm. Many different
moduli sets have been suggested. Among these, three-
moduli sets have been extensively investigated, such as
{2n – 1, 2n, 2n + 1} [11,12], {2n, 2n –1, 2n–1 –1} [13,14],
{2n, 2n – 1, 2n+1 –1} [15], {22n + 1, 2n + 1, 2n – 1} [16] and
{2n, 22n – 1, 22n + 1} [17]. The algorithms of residue to binary
conversion are mainly based on Chinese remainder theorem
(CRT) [1], mixed-radix conversion (MRC) [1] and new
Chinese remainder theorems (New CRTs) [18]. In addition
to these, novel conversion algorithms [19] which are
designed for some special moduli sets have been proposed.

Among these,  New CRTs algorithms have simple
computations which can be efficiently realized in hardware.

In this paper, firstly we proposed the new three-moduli
set {2n, 2n+1 + 1, 2n+1 – 1}. This moduli set contains balanced
and well-formed moduli which can result in efficient
implementation of the residue to binary converter. Then, we
present two efficient designs of the residue to binary
converter for these three-moduli set based on New CRT. The
proposed converters have better performance, compared to
the other residue to binary converters for a three-moduli set
with similar dynamic range, where the dynamic range is
defined in terms of product of the moduli.

The rest of paper is organized as follows. In section 2
we introduce the necessary background. The residue to
binary converters is presented in section 3. Section 4 makes
comparisons and section 5 is conclusion.

2. BACKGROUND

A residue number sytem is defined in terms of a relatively-
prime moduli set {P
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Such a representation is unique for any integer X in the
range [0, M-1], where M=P

1
P

2
…P

n
 is the dynamic range of

the moduli set {P
1
, P2… Pn} [11]. Addition, subtraction

and multiplication on residues can be performed in parallel
without carry propagation. Hence, by converting the
arithmetic of large numbers to a set of the parallel arithmetic
of smaller numbers, RNS representation yields significant
speed up. Binary to residue conversion [20] is very simple
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and can be implemented with modular adders. When binary
to residue conversion of the needed operands had finished,
arithmetic operations on RNS numbers are performed in
parallel without carry-propagation between residue digits.
Hence, RNS leads to carry-free, parallel and high-speed
arithmetic. It should be noted that each modulo of the moduli
set has its own arithmetic processor which is consists of a
modulo adder, a modulo subtractor and a modulo multiplier.
In order to use the result of arithmetic operations in outside
of RNS, the resulted RNS number must be converted into
its equivalent weighted binary number. The algorithms of
residue to binary conversion are mainly based on CRT, MRC
and New CRTs.

By CRT, the number X is calculated from residues by
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inverse of Mi modulo P
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. Using the MRC, the number X can

be computed by the equation
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where a
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s are called the mixed-radix coefficients and they

can be obtained from the residues by
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Where n>1 and a
1 
= x

1
. The MRC is a sequential approach

and CRT requires large modulo operations which is not
suitable for efficient hardware implementation. By New
CRT-I [21], the number X is calculated by
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For a three-moduli set {P
1
, P

2
, P

3
}, the number X can

be converted from its residue representation (x
1
, x

2
, x

3
) by

New CRT-I as follow
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3. RESIDUE TO BINARY CONVERTER

In this section, New CRT-I is applied to derive an efficient
residue to binary conversion algorithm for the new moduli-
set {2n, 2n+1 + 1, 2n+1–1}. First, we must prove that this moduli
set includes pairwise relatively prime numbers.

Theorem 1: The numbers 2n, 2n+1 + 1, 2n+1 – 1 are pairwise
relatively prime.

Proof: Baesd on Euclid’s Theorem, we have

gcd(a,b)=gcd(b,a mod b) (10)

where gcd(a,b) denotes the greatest common divisor of a
and b. So we have,

gcd (2n+1 +1, 2n+1 –1)= gcd (2n+1 –1, 2) = 1 (11)

gcd (2n+1 –1, 2n)= gcd (2n, –1)=1 (12)

gcd (2n+1 +1, 2n)= gcd (2n, 1)=1 (13)

since all the greatest common divisors are equal to 1, these
three numbers are pairwise relatively prime.

Proposition 1: The multiplicative inverse of 2n modulo
(22n+2 –1) is k

1
= 2n+2.

Proof: by substituting values in (8), we have
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Proposition 2: The multiplicative inverse of 2n×(2n+1+1)
modulo (2n+1 –1) is k

2
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in (9), we have
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Theorem 2: In the RNS defined by the three-moduli set
{2n, 2n+1 + 1, 2n+1 – 1}, the weighted binary number X can be
calculated from its corresponding residues (x

1
, x

2
, x

3
) by
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Proof: By letting P
1
=2n , P

2
=2n+1 +1, P

3
=2n+1 –1 and the

values of k
1
, k

2
 from Propositions 1 and 2 into (7), we have
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Example: Given the moduli set {2n, 2n+1 +1, 2n+1 –1}
where n = 3, the residue number (x

1
, x

2
, x

3
) = (2, 5, 7) is

converted into its equivalent weighted number as follows,
by substituting the residues and n = 3 into (16), we have
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By using the following properties, Theorem 2 is
simplified to reduce the hardware complexity.

Property 1: Modulo (2p–1) multiplication of a residue
number by 2k, where p and k are positive integers, is
equivalent to k bit circular left shifting [22].

Property 2: Modulo (2p–1) of a negative number is
accomplished by subtracting this number from (2p–1). This
is equivalent to taking the one’s complement of the number
[22].

Suppose that the residues x
1
, x

2
 and x

3
 have binary

representation as follow
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Equation (16) can be rewritten as
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With respect to the Properties 1 and 2, we have
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Since 2n+2–2n+1=2n+1, equation (23) can be rewritten as
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And v
3
 is calculated by
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Since both least significant (n+2) bits of v
1
 in (25) and

most significant n bits of v
22

 in (28) are 1’s, we can use the
following vectors instead of v
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So, Y in (21) can be calculated by
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Hardware implementation of the proposed residue to
binary converters for the moduli set {2n, 2n-1 +1, 2n-1 –1} are
based on (20) and (30) and consist of one (2n+2)-bit carry
save adder (CSA) with end around carry (EAC) and a
modulo (22n+2–1) adder. Modulo (22n+2–1) adder can be
implemented with different methods. By using a (2n+2)-bit
one’s complement adder for performing modulo (22n+2–1)
addition, we obtain a cost-efficient (CE) converter. One’s
complement adder is a carry propagate adder (CPA) with
EAC. Instead of using a one’s complement adder, we can
use the method of [23]. In this method, two (2n+2)-bit regular
CPA’s are work in parallel, one with a zero carry-in and the
other with a one carry-in. The correct result is selected by a
multiplexer (MUX) based on the carry-out of the adder with
zero carry-in. In this case, we obtain a speed-efficient (SE)
converter. It should be noted that, Since x

1
 is an n-bit number,

no computational hardware is needed to compute x
1
+2nY in

(20). The desired result is the result of concatenating x
1
 with

Y. The proposed implementations of the residue to binary
converter are shown in Fig. 1, 2.

4. COMPARISONS

In this section, we evaluate the performance of the proposed
residue to binary converters in terms of hardware cost and
conversion delay. In (33), the three operands are added using
a (2n+2)-bit CSA with EAC and a modulo (22n+2–1) adder.
Calculation of (27), (29) and (30) rely on simply
manipulating the routing of the bits of the residues and only
(2n+2) inverter are used for perfoming the inversions of (30).
Since (27) has n bits of 0’s, n of the full adders (FA’s) in
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CSA are reduced to half adders (HA’s). Hence, the CSA with
EAC is consists of (n+2) FA’s and n HA’s. The (2n+2)-bit
one’s complement adder has complexity of (2n+2) FA’s and
the delay of (4n+4)t

FA
, where t

FA
 denotes the delay of one

FA. Therefore, the total cost of the proposed cost-efficient
residue to binary converter is n+2+2n+2=(3n+4) FA’s and n
HA’s. The delay of a CSA is the same as that of an FA. So,
the proposed cost-efficient converter has a total delay of
1+4n+4=(4n+5)t

FA
. The proposed speed-efficient residue to

binary converter used two (2n+2)-bit CPA that work in
parallel. Therefore, the total cost of this converter is
n+2+4n+4=(5n+6) FA’s and n HA’s. Also it has the delay of
1+2n+2=(2n+3)t

FA
.

To verify the performance of the proposed converters,
they have to be compared with other residue to binary
converters for a three-moduli set with similar dynamic range.
The closest three-moduli set to the proposed moduli set is
the moduli set {2n, 2n –1,2n+1 –1}. Three residue to binary
converters for this moduli set have been presented in [15].
The first one is based on MRC and the second is based on
CRT, both are adder based. But the third converter uses
ROM. Table 1 shows the hardware requirements and
conversion delays of these converters and also the proposed
converters.

It is clear from Table 1 that the proposed speed-efficient
converter is faster than all the converters of [15] while it
requires less hardware than the converters [15]-CII and [15]-
CIII. Also the proposed cost-efficient converter utilizes lower
hardware than the converters of [15] and also it is faster
than the converter [15]-CI. It should be noted that for a same
value of n, the proposed residue to binary converters support
larger dynamic range than the residue to binary converters
of [15].

5. CONCLUSIONS

In this work, we introduced a new three-moduli set for RNS
which can results in efficient residue to binary conversion.
Also efficient residue to binary converters for the proposed
moduli set based on New CRT-I is presented. Comparison
with other residue to binary converters shown that the
proposed converters have better performance.

Figure 1: The Proposed Cost-efficient Residue to Binary Converter
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Figure 2: The Proposed Speed-efficient Residue to Binary
Converter
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Table 1
Hardware Requirements and Conversion Delays of the Residue to Binary Converters

Converter [15]-CI [15]-CII [15]-CIII Proposed-CE Proposed-SE

FA 4n+3 14n+21 12n+19 3n+4 5n+6

HA – 2n+3 2n+2 n n

OR/NOT n – – 2n+2 2n+2

XNOR n – – – –

Multiplexer – 1 1 – 1

ROM – – 1 – –

Delay (6n+5)t
FA

(2n+7)t
FA

 + t
MUX

(2n+7)t
FA

 + t
MUX

(4n+5)t
FA

(2n+3)t
FA

 + t
MUX
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