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Abstract: In thispaper a novel five-stage fifth order Runge-Kutta methods have been developed, compared and implemented
based on Geometric Mean coupled with Contraharmonic Mean and Harmonic Mean. The function of the simulator isthat it
is capable of performing connected component detector for any kind as well as any size of input image. It is a powerful tool
for researchersto examinethepotential applicationsof CNN. Using the Embedded method, a versatile algorithmfor simulating
connected component detector CNN array isimplemented. The aim of this articleisfocused on popular single step algorithms
for solving non linear differential equations of cellular Neural Networks are discussed. Simulation results and comparison
have also been presented to show the efficiency of the Numerical integration Algorithms. It is found that the fifth order RK-
Embedded Harmonic Mean outperforms well in comparison with Contrharmonic Mean. A more quantitative analysis has
been carried out to clearly visualize the goodness and robustness of the proposed algorithm.
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1. STRUCTURE AND FUNCTIONS OF CELLULAR
NEURAL NETWORK

The uniqueness of Cellular Neural Networks (CNNs) are
anal og, time-continuous, non-linear dynamical systemsand
formally belong to the class of recurrent neural networks.
CNNs have been proposed by Chua and Yang [, 2], and
they havefound that CNN hasmany important applications
in signal and real-timeimage processing.

Roska et al. [3] have presented the first widely used
simulation system which allows the simulation of a large
classof CNN and is especially suited for image processing
applications[20]. It alsoincludes signal processing, pattern
recognition and solving ordinary and partial differential
equations etc.

It is of interest to state that embedded methods are
actually two methods built into one. The first method is of
order p and the second has order p + 1. The difference
between these methods provides an error estimate for the
first method with order p. Error estimatesby these methods
have been derived by Merson [4], Fehlberg [5]. Evans and
Yaakub [6, 7] introduced a new embedded Runge-Kutta
RK (4,4) method which isactually two different RK methods
but of the same order p = 4. This embedded method has
been developed using Runge-Kutta methods based on
arithmetic mean (RKAM) and Contraharmonic Mean
(RKCoM). Yaacob and Sanugi [9] adapted embedded

Harmonic mean and Ponalagusamy and Senthilkumar
presented in detail about the Comparison of RK-Fourth
Orders of Variety of Means on Multilayer Raster CNN
Simulation. Evans [23] introduced a new 4™ order Runge-
KuttaMethod for Initial Value Problemswith Error Contral.
Sanugi [24] discussed about the numerical strategies for
initial value typeordinary differential equations.

Evans and Yaakub [12] introduced a new fourth order
Runge Kutta formula based on the Contra-Harmonic mean.
Evans and Yaakub[10] adapted fifth order contra harmonic
mean for initial value problemswith error contral. Chi-Chien
Lee and Jose Pineda de Gyvez [11] introduced Euler,
Improved Euler, Predictor-Corrector and Fourth-Order
(quartic) Runge-Kutta algorithmsin time-multiplexing CNN
simulation.

It isknown that the genera p-stage Runge-K utta method

for solving y(x) =f(x,y(x)) is defined by
p

yn+1 = yn+hzb|kl
i=1

where

p
k = f(xn+clhvyn+hzaijkij,
i1

p
c =Y a; =123..,p
=

with p dimensional vectors c and b and the (p x p) matrix
A(alj). The study of RK(p, p + 1) methods with a built in
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error estimate had been proposed by Merson [4] and
Fehlberg [5].
Thiscan be presented in thearray form as,
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of order p + 1 and the method.
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has order p. Thevaluesof y , from a given valueof y_ are
obtained from the above two methods of order p+1 and p
respectively and the difference of the results computed by
those methods is used to determine the error estimate. In
this article, the connected component CNN simulation
problem issolved with different approach using fifth order
RK-Embedded Contra-Harmonic Mean.

2. STRUCTURE AND FUNCTIONS OF CELLULAR
NEURAL NETWORK

CNN isahybrid of Cellular Automataand Neural Networks
and it shares the best features of both worlds. Like Neural
Networks, its continuoustimefeature allowsreal-timesignal
processing, and like Cellular Automata, its local
interconnection feature makesVLSI redlization feasible. Its
grid-like structureissuitable for the solution of a high order
system of first order non-linear differential equations on-
lineand inreal-time. CNN isan anal og nonlinear dynamic
processor array shown Figure, [(@). The following are the
features of CNN [12].
(i) Each analog processor is capable of processing
continuous signals, in ether continuous-time or
discrete-time modes.
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Figure 1: CNN Structure and Block Diagram

(ii) The processors are placed on a 3D geometric
cellular grid (several 2D layers) and are basically
similar.

(ii1) Interaction among processorsis local and mainly
trandation invariant.

(iv) The mode of operation may be transient,
equilibrium, periodic, chaotic, or combined with
logic (without Analogto/Digital Conversion).

The general CNN architecture consists of M*N cells

placed in arectangular array. The basic circuit unit of CNN
iscalled acell denoted byCij. It containslinear and nonlinear
circuit elements. Any cdll, C, is connected only to its
neighbor cells (adjacent cells interact directly with each
other). Thisintuitive concept iscalled neighborhood and is
denoted by N, and its size determines the degree of
connectivity of the CNN. For most applicationsonerestricts
N to nearest-neighbors (neighborhood radius 1), the
interaction with the nearby cells given by the spatially
invariant parameter set a, b, and|, hereafter called template
values. In thisarticle, the capacitance c and theresistance R
are assumed to be normalized to 1, and all quantities are
dimensionless. Theoutputyij of each cell isapiecewiselinear
function of its state x;, the function is called saturation
function shown in fig. 3. Values of —1 will be represented
by white cells, +1 by black cells. The total number of
parameters needed to specify a CNN with neighborhood
radiusis at most 19, the templatesA = {a } and B = {b,}
are 3 x 3 matrices and by employing thefollowing notation
todenotetheir corresponding entries.

a a & b b b
A=28 & &andB =b, b b 1)
a & & b, b b

The center entry of the A-template a, corresponds to
the self-coupling (self feedback) of a cell andisalso denoted
by a. The wholetemplatea T = {A, B, I} consists of the
feedback parameters A, the control parameters B, and
bias|.

Cdlsnot in theimmediate neighborhood have indirect
effect because of the propagation effects of the dynamics of
the network. Three voltages describe the operation of the
network. Each cell has a state xij(t) input uij(t) and output
yij(t) of the ij™ cell. The dynamics of each cdll is governed



An Efficient Five Stage Fifth order Embedded Techniques for Connected Component Detector with Error Control

by thedifferential equation, which correspondstotheanalog
circuit in Fig. 2.The state of each cell is bounded for all
timet > 0and, after thetrans ent has settled down, acdllular
neural network always approaches one of its stable
equilibrium points. Thislast fact isrelevant becauseit implies
that the circuit will not oscillate. The dynamics of a CNN
has both output feedback (A) and input control (B)
mechanisms.
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Figure 2: A CNN Cell
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Figure 3: Output Non-Linearity

Thefirst order nonlinear differential equation defining
thedynamics of acdlular neural network cell can bewritten
as foll ows.

O -1
&« R

%; )+ ZA(I Jik )y O+ ZB(I ik U, @+

c(k,)eN(,j c(k,)eN(,j
1<i sM,lgsN. (2
and the output equation isgiven by,
Hx” (®)+1]-|x, ©-1],
1<i<M;1<j<N. 3)

y; ()=

wherexij isthegateof cdl C(i, j), xU,(O) istheinitia condition
of thecdll, cisalinear capacitor, Risalinear resistor, | is
an independent current source, afi, j; k, 1)y, and B{i, j; k,
I)u, arevoltage controlled current sources for all cells C(k,l)
in the neighborhood N(i,j) of cell C(i,j), and y; represents
the output equation.

From the equ. (1) it is observed that the summation
operators of each cell is affected by its neighboring cells.
A(.) represents on the output of neighboring cells and is
called as feedback operator, B(.) in turn affects the input

251

control and isknown as the control operator. In particular,
the entry values of matrices A(.) and B(.) are dependent on
the application chosen by the user which are space invariant
and are referred as cloning templates. A current bias| and
cloning templ ates establishes the transient behavior of the
cellular nonlinear network. A continuous-time cell
implementation is shown in fig. 1(b) asan equivalent block
diagram. CNNshave asinput aset of analog values and its
programmability is done via cloning templates. Thus,
programmability is one of the most attractive properties of
CNNs.

3. NUMERICAL INTEGRATION TECHNIQUES

The CNN is described by a system of nonlinear differential
equations. Therefore, it is necessary to discretize the
differential equation for performing behavioura simulation.
For computational purposes, a normalized time differential
equation describing CNN isused by Nossek et al.,[14]

F(x(n0)) = “( 1
c(k,eN; (i,j)
> B(I,J;k,|)uk|(n‘r)+|,1£iﬁ M; 1< j<N;

c(k.DeN; (i,j)

Al ik DYy () +

¥, 09 =2[[x (00 +1 ||, (m) -], 1<i <M 1< <

(4)
where 1 isthe normalized time. For the purpose of solving
the initial-value problem, well established Single Step
methods of numerical integration techniquesareusedin [8,
9]. These methods can be derived using the definition of the
definiteintegral

Tnsl

X (+DD-% ()= [ F'(x)d()  (5)

Tn

3.1 Explicit Euler'sAlgorithm

Euler’smethod isthe simplest of all algorithmsfor solving
ordinary differential equations. It isan explicit formulawhich
uses the Taylor-series expansion to calculate the
approximation.

%; (N+1)1) = x; (7)) + f '(x(nr)) (6)

3.2 RK-Gill Algorithm

The RK-Gill agorithm discussed by Oliveria [9] is an
explicit method which requires the computation of four
derivatives per time step. The increase of the state variable
xlisstored in the constant ki, Thisresult isused in the next
iteration for evaluating k', and repeat the same process to
obtain the val ues of k', and K,

4 = 10x, ), K = 1105, () +5K)
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1

ky = f (x,(nr){f ;Jki"){l—ﬁjkéj) )

. 1 1) .
k, = f'(x (n)——=k; +| 1+— |k
2 = F105 (1) Nk ( &j&)
Therefore, the final integration is a weighted sum of
the four calculated derivatesis given bel ow.

%, (099 = X, () + <K + (22 + @432+ (8)

3.3 Fifth Order RK-Algorithm

TheFifth Order Runge-Kuttaagorithmisan explicit method
and discussed by MorrisBadder [6,7]. It startswith asimple
Euler method. Theincrease of the state variable x! isstored
in the constant k’,. Thisresult is used in the next iteration
for evaluating k.. The same procedure must be repeated to
compute the values of k', ki, ki and ki

ki = 1f /(x, (), K =rf’[>gj (m)+%k1”j
i g E ij E i

ky = tf (&j(nr)+[8jk1)+[8jkz).

i , 1. ij

ki =1f(x, (m)—Ek; +Ky)

kg =1 '(; () +—|<1’ ”)

+E i 12 ki

ij , 3 i 2 i i 8 i
kﬁj :Tf (XIJ (nT)—E klj +7k2J 7 k3] - 7 7k5J)

9)
Therefore, the final integration is a weighted sum of
thefive cal culated derivatives which is given bel ow.

% (n+DY1) = X”(n1:)+ [7k1J +32k! +12k} +32kY +7k! ]

(10)
wheref(.) is computed according to the given function.

3.4 RK-Embedded Contra-Har monic Mean

TheFifth Order RK-Embedded Contra-Harmonic Mean [10]
isgiven by,

k, =f(y), k,=f(y +0.101727541 hk))

k, = f(y, —0.5236574475 hk, + 111653361910 hk,),

k, = f(y, +4.7450804540 hk, — 4.2354437705 hk,

—0.0096366835hk, ) (1D

k, = f(y, —0.5736403905hk, +0.9301175162hk,
+ 0.4667978567hk, +0.1767250176hkK, )
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Therefore, the final integration is a weighted sum of
the four calculated derivatesis given bel ow.

n[ KIS
k1+k

G K Kk

ot Gt T,k

(12)

4. DERIVATION AND ERROR ESTIMATE OF
RKGCOM (5,5) METHOD

Thefifth order Geometric Mean (GM) formula[25] isgiven
by,

Yo = Yy +(~2.1088641714, [k k, +1.6117344951, [k, k,
+1.18943007144 kK, +0.3076996050, /K, ks

(13)
where
k, =f(y), k, = f(y, —0.2264469689 hk )
k, = f(y, -0.163031141 hk, + 0.1027569416 hk.),

k, = f(y, + 3.1992668228 hk, -0.4021478413 hk,
—2.2971189815 hk.);

k, = f(y —14.488068506 hk1 —0.6194404053 hk2

+ 13.65666768673 hk, + 2.3508320447 hk,) (14)

and thefifth order Contraharmonic Mean (CoM) formulain
theform[10]
S
Yo = yn+h( w( 1H
' |: IZ K k1+1
where
4

w=1W= —0.1773157366, w, = 1.0254553152,

(15

I
[N

w, = —0.0779114700, w, = 0.2297718914
k= f(y,), k2= f(y,+ 0101727541 hk)),
k, = f(y —0.523657447 hk,_ + 1.11653361910 hk),

k, = f(y, + 4.7450804540 hk, —4.2354437705 hk,
00096366835 hk,);

k5 =f(yn —0.5736403905 hk1 + 0.9301175162 hk2

+0.4667978567 hk, + 0.1767250176 hk,) (16)

Therefore, the final integration is a weighted sum of
the four calculated derivatesis given bel ow.

21,2 21,2 21,2 2 2
e M M Mk
(17)
is called RKGCoM(5,5). The difference between (15) and
(17) ji.e, y2 -y provides an error estimate for the

approximation to the numerical solution. By applying the
same procedure as in the RK (4,4) technique, it is possible

yn+1 yn \Nl
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to obtain an error estimate for the five stage explicit GM-
CoM method of order five by implementing the local
truncation error for thefifth order Geomentric mean Runge-
Kutta method and the fifth order Contraharmonic mean
technique.

For the fifth order Geomentric mean Runge-Kutta
method we have

Yoi = Yo +LTE®
and for the Contraharmonic mean method

CoM

yn+1 = yn + LTECOM

where y®™ and y<°) are the numerical approximations at

X.,, obtained by the Geomentric mean and Contraharmonic

mean methods respectively and y" and y" arethelocal

truncation errorsof thefifth order Geomentric mean Runge-
Kutta method and the fifth order Contraharmonic mean
methods.

The error estimate isobtained by taking the difference
between these two methodsfor the numerical approximations
at Xn+1 by

GM CoM
Yorr ~ Yon

Thelocal truncation error for thefifth order Geomentric
mean Runge-K utta method involvesy derivates given by

= LTE® — LTE®™

LTEg, =h®[-.0.00367007 ff® +0.00203894 * }f,,
-0.0121412f 2 {2 +0.00339055f *f 2,
4 4
+0.00411231f *f_f  —0.0000051775f*f f
5 7
+0.0000893556 f °f ] +O(h")

(18)

Similarly the local truncation error for the
Contraharmonic mean method i s given by
LTE., = h°[0.0132485733ff’ +0.0202501069f * f * f
+0.0095106268f °f, f —0.0022879188f°f >
-0.0001379536 f *f, f, —0.0003448339f*f f
-0.0000178190f °f,  1+0O(h")

(19)

Therefore the absolute difference between y*™ and

n+l

CoM

Yoo isgiven by

LTES-LTE®" | =h°[-0.0095785033 f
-0.0182111669f 2f*f  —0.0216518268°f f 2
+0.0056784688°f, 2, +0.0042502630f *f, f  (20)
+0.0002496564f *f, f,, +0.0001071746f°f,
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5. DERIVATION AND ERROR ESTIMATE OF
RKGHM (5,5) METHOD

Thefifth order Geometric Mean (GM) formula[25] isgiven
by,

Yo =Y, +h(-2.1088641714,/k k,
+1.6117344951,/k,k, +1.1894300714,/k;K,

(21)
+0.3076996050, /K k. )

where
k, =1f(y), k, = f(y,—0.2264469689 hk )
k, = f(y,—0.163031141 hk, + 0.1027569416 hk,),

k, = f(y, + 3.1992668228 hk, -0.4021478413
hk, —2.2971189815 hk);

k, = f(y, ~14.488068506 hk, —0.6194404053 hk,
+13.65666768673 hk, + 2.3508320447 hk)  (22)

and thefifth order Harmonic Mean (HM) formulain theform
4
yn+1 = yn + h|: \Nl (&]}
i=1 kl + ki+1
where

k,=f(y), k, = f(y, + 1.2808930996 hk)),
k, = f(y -0.1216330944 hk_+ 0.3153843796 hk ),

k, = f(y, + 0.1914004985 hk, + 0.1771161874 hk,
+0.1314833141 hk);

k= f(y, + 0.8116923889 hk — 0.0668709652 hk,
~0.12223829683 hk, + 0.3775615446 hk,) (24)

Therefore, the final integration is a weighted sum of
the four calculated derivatesis given bel ow.

(23)

y... =Y, +h(0.1990193382 2Kk,
k,+k,
—0.2535846961[M] + 0.5740453004(%

k, + K, k3+k4J (25)

10.4805200575| 24K
k, +k;

is caled RKGHM(5,5). The difference between (15) and
(23) ySM —y"™™ provides an error estimate for the

n+l
approximation to the numerical solution. By applying the
same procedure asin the RK (4, 4) technique, it is possible
to obtain an error estimate for the five stage explicit GM-
HM method of order five by implementing the local
truncation error for thefifth order Geomentric mean Runge-
Kuttamethod and thefifth order Harmonic mean technique.
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For the fifth order Geomentric mean Runge-Kutta where P and Q are positive constants and p is the order of

method we have
Yoi = Yo +LTE®
and for the Harmonic mean method
Y = Yo +LTE™

o are the numerical approximations at

X.,, obtained by the Geomentric mean and Harmonic mean

where ye¥ and y*V

n+l

methods respectively and y® and y°» are the local

n+l n+l
truncation errorsof thefifth order Geomentric mean Runge-
Kuttamethod and the fifth order Harmonic mean methods.
The error estimate isobtained by taking the difference
between these two methodsfor the numerical approximations
at Xn+1 by

Yra Vo1 = LTES —LTE™

Thelocal truncation error for thefifth order Geomentric
mean Runge-K utta method involvesy derivates given by

LTEg, =h®[-.0.00367007 ff +0.00203894 * }f,,
-0.0121412f 2 {2 +0.00339055f *f 2,
4 4
+0.00411231f *f_f  —0.0000051775f*f f
5 7
+0.0000893556 f °f ] +O(h")

(26)

Similarly the local truncation error for the Harmonic
mean method isgiven by

LTE,, = h°[-0.0000959103ff’ +0.00874182f*f’f
-0.0399141f°f, f? +0.0163115f °*f {2,

-0.00601939f *f, f, —0.00157171f*f f
+0.00003206141 °f,, ]+O(h")

(27)

Therefore the absolute difference between y= and
Yra ISgiven by

| LTES"-LTE™ |=h°[-0.0035741597 ff
~0.00670288 2f3f, —0.0277729f°f 2
001292095 *f f2 +0.0101317*f, f,,
+0.0016668875f “f, f,,, +0.0000563942f°f

(28)

By following an argument suggested by Lotkin [16], if
we assume that the following bounds for f and its partial
derivativeshold for x € [a, b] and y € (-0, ), we have

2" ey P
| axey') | QY

|f(x,y)|<Q, i+j<P (29)

the method.
In thiscase p = 6. Hence using (29), we obtain

P0+1
QI 71)

PI p2
|f2fy3+ fW|<Q2(@)36

[#] <

2
21,1 <Q3P(%)

3
[£2871,,] <Q3P2(%) <P°Q

PZ P3
f45 f |<Qf -
141, f] s (30)

From Egs. (20) and (29) we obtain
LTE,, -LTE_,, <(0.0391 559342) F* . Qh®

CoM —

(31)

CoM

ynGZI. ~ Yo (32)
If we supposethat thetolerance TOL = 0.00001 than by
CoM

setting |ysh -y | < TOL then theerror control and step

size selection can be determined by Eq.(18) to give the
formula

<0.0391559342P°.Qh°

0.0391559342 P Qh® <TOL or
1/6
TOL
h< 5 (33)
0.0391559342P°Q
Similarly from Egs. (29) and (30) We obtain

LTE,, -LTE,, < (0.016429892) P>. Qh* (34)

yeM — yi1 < 0.016429892P°.Qh° (35)

If we supposethat the tolerance TOL = 0.00001 than by

setting |yo — Y™ | < TOL then the error control and step

size selection can be determined by Eq.(26) to give the
formula

1/6
TOL
0.016429892P°Q

(36)

0.016429892P°Qh° < TOL or h {
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6. SIMULATION BEHAVIOR OF CONNECTED
COMPONENT DETECTOR

The behavior of the four algorithms are compared by
simulating the connected component detector is discussed
by Matsumoto et al. [20, 21].

6.1 Connected Component Detector (CCD)

Matsumoto et al. [20,21] discussed CCD which hasavery
important applications in image processing, pattern
recognition, data compression and in many other important
features of transaction process. The initial pattern and
cloning template chosen for simulation is shown in fig.4
because the CCD dtate variables frequently change sign
during the transient time and is called as a “Worst case
network” from theviewpoint of ringing of thevariables. The
obtained resultsare representativefor many other simulations
with different initial patternsand templates.

o K £ 1
S (CI[CNiS5]

Figure 4: Initial Pattern and Cloning Template
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Figure 5: Simulation Results for At =1 fromt=0tot =20

Fig. 5 showsthetransient of the state variables of cell 6
obtained by the different algorithms. The referencefunction
is constructed by using Fifth order RK-Embedded Contra-
Harmonic algorithm with amuch smaller step size (Atref =
0.01). Thelarger error term of other algorithm isdueto “run
after characteristic”. The zero crossings are shifted to the
right and the extreme values are larger than in the original
system. But, the RK-Gill algorithm reduces extreme val ues
and the fifth order RK-Embedded Contra-Harmonic
algorithm approximates the state variable best due to
computational effort. If a step size value is exceeds 1.52
then the other RK-Embedded algorithms becomes unstable
and the state variables starts to oscillate. As aresult, it is
desirableto know the maximum step sizeof all thea gorithms
to speed up the simulations. Theresultsare shownin Fig. 6.
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Figure 6: Maximum Stepsize Still Leads to more Convergence

The system gartsconverge even for very large step sizes,
but the transient behaviour of the state variables is
approximated roughly. If the computation timeis compared
considerably then the performance of an algorithm depends
on the computational effort for asingle time step aswell as
on the maximum step size still leading to convergence. From
this it is ease to compare the time necessary for a single
iteration step divided by the maximum step size. The
normalized to the performance of the Modified other RK-
Embedded algorithms areshown in fig. 7.
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Figure 7: Performance Comparison for four Numerical Methods

Theother RK-embedded algorithm fallout in the shortest
simulation time. Hence, it is useful for simulations where
high accuracy of the transient of the state variablesis not
obtained. Thisis particularly true for templates where the
correct dynamics behaviour depends primarily on the sign
of the derivatives and on their values. Asafinal point, the
accuracy of thealgorithm asafunction of thestepsize Dt is
depicted in fig. 8. for thisan error term ¢ is defined as the
maximum deviation of a state variablexij from itsreference

function g1, by & =max|x’ (t) X' t,)|

Fig. 8 shows that the other RK-embedded al gorithms
areunsuitablefor yielding low valueof €. Theerror function
increasesdrastically even for areativesmall size. Fifth order
RK-Embedded Contra—Harmonic Mean order algorithm
yield accuracy over a large range of the step size, however
if a“threshold” isexceeded the error term grows. The non-

monotonic behavior of ¢ is caused by shifting the timing
instances at which the state variables are evaluated. Thus
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Figure 8: Computation Accuracy (g) versus Stepsize(At)

one can jump over” worst case time instances and achieve
locally asmaller ¢ if the step sizeisincreased.

6.2 Bifurcation Behavior

In second example Seller [22] discussed about, a parameter
dependent late ischosen and the system issimulated near a
bifurcation value. Considering the template and the initial
pattern in Fig. 10 the output of cell 3 white for a current
i =—3 and black for acurrent i = —2. The bifurcation value
between is determined by interval nesting in several
imulations. The results depicted in Fig. 9 shows the
bifurcation behaviour versusthe stepsize At. The accuracy
of i iswith in 0.01 caused by the large error term the other
RK-Embedded algorithm resultsin an erroneousbifurcation
value. For large number of stepsizefifth order RK-Contra-
Harmonic Mean algorithm yields accurate.
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Table 1
Comparison of LTE and Error Estimation for
RK-Fifth Order Embedded Means

S. RK-Embedded Local Truncation Error

No. Method Error [LTE] Estimation

1 RK- LTEGM —LTEHM < ERREST =
Embedded (0.016429892) New = Youl
Harmonic P5.Qh6 = |yoh -y | x0.016429892
Mean [Present <0.016429892
Paper] .P5. Qht

2 RK- LTE,, — LTE,,, < ERREST =
Embedded (0.031559342) Ve = Youl
Contra- P°. Qht = <0.0391559342
Harmonic ATV
Mean <0.0391559342
[Present Paper]  .P°. Qh

7. DISCUSSIONS AND CONCLUSION

The present article sheds some light on different numerical
integration algorithms on the simulation of cellular neural
network. It is pertinent to pin-point out here that using the
fifth order RK-Embedded Harmonic Mean algorithm
guarantees more accurate values compared to the other
methods. Asthereisatrade-off between speed and accuracy
of numerical integration techniquesit isuseful toimplement
different algorithmsin CNN-simulators. Euler or classical
RK-Fourth order algorithmis preferential for avery fast tool
if only thecorrect final stateisof importance. Butin contrast,
the unusual good convergencefeature of thisalgorithm can
be explained by the fact that the desired behaviour of CNNs
depends primarily on the qualitative dynamics of the state
variables. If theend user isinterested in thetransient of the
state variables in detail the fifth order RK-Embedded
Harmonic Mean is well suitable if the chosen stepsize of
0.5 gives a good of the transient behaviour. For the
examination of bifurcation values only the fifth order RK-
Embedded Harmonic Mean algorithm is recommended
because of its high precision leading to reliable resultsin a
largerange of the stepsize.
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