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Abstract: In this paper a novel five-stage fifth order Runge-Kutta methods have been developed, compared and implemented
based on Geometric Mean coupled with Contraharmonic Mean and Harmonic Mean. The function of the simulator is that it
is capable of performing connected component detector for any kind as well as any size of input image. It is a powerful tool
for researchers to examine the potential applications of CNN. Using the Embedded method, a versatile algorithm for simulating
connected component detector CNN array is implemented. The aim of this article is focused on popular single step algorithms
for solving non linear differential equations of cellular Neural Networks are discussed. Simulation results and comparison
have also been presented to show the efficiency of the Numerical integration Algorithms. It is found that the fifth order RK-
Embedded Harmonic Mean outperforms well in comparison with Contrharmonic Mean. A more quantitative analysis has
been carried out to clearly visualize the goodness and robustness of the proposed algorithm.
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1. STRUCTURE AND FUNCTIONS OF CELLULAR
NEURAL NETWORK

The uniqueness of Cellular Neural Networks (CNNs) are
analog, time-continuous, non-linear dynamical systems and
formally belong to the class of recurrent neural networks.
CNNs have been proposed by Chua and Yang [l, 2], and
they have found that CNN has many important applications
in signal and real-time image processing.

Roska et al. [3] have presented the first widely used
simulation system which allows the simulation of a large
class of CNN and is especially suited for image processing
applications [20]. It also includes signal processing, pattern
recognition and solving ordinary and partial differential
equations etc.

It is of interest to state that embedded methods are
actually two methods built into one. The first method is of
order p and the second has order p + 1. The difference
between these methods provides an error estimate for the
first method with order p. Error estimates by these methods
have been derived by Merson [4], Fehlberg [5]. Evans and
Yaakub [6, 7] introduced a new embedded Runge-Kutta
RK(4,4) method which is actually two different RK methods
but of the same order p = 4. This embedded method has
been developed using Runge-Kutta methods based on
arithmetic mean (RKAM) and Contraharmonic Mean
(RKCoM). Yaacob and Sanugi [9] adapted embedded

Harmonic mean and Ponalagusamy and Senthilkumar
presented in detail about the Comparison of RK-Fourth
Orders of Variety of Means on Multilayer Raster CNN
Simulation. Evans [23] introduced a new 4th order Runge-
Kutta Method for Initial Value Problems with Error Control.
Sanugi [24] discussed about the numerical strategies for
initial value type ordinary differential equations.

Evans and Yaakub [12] introduced a new fourth order
Runge Kutta formula based on the Contra-Harmonic mean.
Evans and Yaakub[10] adapted fifth order contra harmonic
mean for initial value problems with error control. Chi-Chien
Lee and Jose Pineda de Gyvez [11] introduced Euler,
Improved Euler, Predictor-Corrector and Fourth-Order
(quartic) Runge-Kutta algorithms in time-multiplexing CNN
simulation.

It is known that the general p-stage Runge-Kutta method

for  solving ( ) ( , ( ))��y x f x y x  is defined by
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A(a
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). The study of RK(p, p + 1) methods with a built in
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error estimate had been proposed by Merson [4] and
Fehlberg [5].

This can be presented in the array form as,
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has order p. The values of y
n+1 

from a given value of y
n
 are

obtained from the above two methods of order p+1 and p
respectively and the difference of the results computed by
those methods is used to determine the error estimate. In
this article, the connected component CNN simulation
problem is solved with different approach using fifth order
RK-Embedded Contra-Harmonic Mean.

2. STRUCTURE AND FUNCTIONS OF CELLULAR
NEURAL NETWORK

CNN is a hybrid of Cellular Automata and Neural Networks
and it shares the best features of both worlds. Like Neural
Networks, its continuous time feature allows real-time signal
processing, and like Cellular  Automata, its local
interconnection feature makes VLSI realization feasible. Its
grid-like structure is suitable for the solution of a high order
system of first order non-linear differential equations on-
line and in real-time. CNN is an analog nonlinear dynamic
processor array shown Figure, l(a). The following are the
features of CNN [12].

(i) Each analog processor is capable of processing
continuous signals, in either continuous-time or
discrete-time modes.

(ii) The processors are placed on a 3D geometric
cellular grid (several 2D layers) and are basically
similar.

(iii) Interaction among processors is local and mainly
translation invariant.

(iv) The mode of operation may be transient,
equilibrium, periodic, chaotic, or combined with
logic (without Analog to /Digital Conversion).

The general CNN architecture consists of M*N cells
placed in a rectangular array. The basic circuit unit of CNN
is called a cell denoted by C

ij
. It contains linear and nonlinear

circuit elements. Any cell, C
ij
, is connected only to its

neighbor cells (adjacent cells interact directly with each
other). This intuitive concept is called neighborhood and is
denoted by N

ij
 and its size determines the degree of

connectivity of the CNN. For most applications one restricts
N to nearest-neighbors (neighborhood radius 1), the
interaction with the nearby cells given by the spatially
invariant parameter set a

kl
, b

kl
, and I, hereafter called template

values. In this article, the capacitance c and the resistance R
are assumed to be normalized to 1, and all quantities are
dimensionless. The output y

ij 
of each cell is a piecewise linear

function of its state x
ij
, the function is called saturation

function shown in fig. 3. Values of –1 will be represented
by white cells, +1 by black cells. The total number of
parameters needed to specify a CNN with neighborhood
radius is at most 19, the templates A = {a

kl
} and B = {b

kl
}

are 3 × 3 matrices and by employing the following notation
to denote their corresponding entries.

1 2 3
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7 8 9

�
a a a

A a a a

a a a
 and 

1 2 3

4 5 6

7 8 9

�
b b b

B b b b

b b b

(1)

The center entry of the A-template a
5
 corresponds to

the self-coupling (self feedback) of a cell and is also denoted
by a

c
. The whole template a T = {A, B, I} consists of the

feedback parameters A, the control parameters B, and
bias I.

Cells not in the immediate neighborhood have indirect
effect because of the propagation effects of the dynamics of
the network. Three voltages describe the operation of the
network. Each cell has a state x

ij
(t) input u

ij
(t) and output

y
ij
(t) of the ijth cell. The dynamics of each cell is governed

Figure 1: CNN Structure and Block Diagram
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by the differential equation, which corresponds to the analog
circuit in Fig. 2.The state of each cell is bounded for all
time t > 0 and, after the transient has settled down, a cellular
neural network always approaches one of its stable
equilibrium points. This last fact is relevant because it implies
that the circuit will not oscillate. The dynamics of a CNN
has both output feedback (A) and input control (B)
mechanisms.

control and is known as the control operator. In particular,
the entry values of matrices A(.) and B(.) are dependent on
the application chosen by the user which are space invariant
and are referred as cloning templates. A current bias I and
cloning templates establishes the transient behavior of the
cellular nonlinear network. A continuous-time cell
implementation is shown in fig. 1(b) as an equivalent block
diagram. CNNs have as input a set of analog values and its
programmability is done via cloning templates. Thus,
programmability is one of the most attractive properties of
CNNs.

3. NUMERICAL INTEGRATION TECHNIQUES

The CNN is described by a system of nonlinear differential
equations. Therefore, it is necessary to discretize the
differential equation for performing behavioural simulation.
For computational purposes, a normalized time differential
equation describing CNN is used by Nossek et al.,[14]
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where � is the normalized time. For the purpose of solving
the initial-value problem, well established Single Step
methods of numerical integration techniques are used in [8,
9]. These methods can be derived using the definition of the
definite integral

1

(( 1) ) ( )) ( ( )) ( )
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n

n

ij ijx n x n f x n d n . (5)

3.1 Explicit Euler’s Algorithm

Euler’s method is the simplest of all algorithms for solving
ordinary differential equations. It is an explicit formula which
uses the Taylor-series expansion to calculate the
approximation.

(( 1) ) ( )) ( ( ))�� � � � � � �ij ijx n x n f x n (6)

3.2 RK-Gill Algorithm

The RK-Gill algorithm discussed by Oliveria [9] is an
explicit method which requires the computation of four
derivatives per time step. The increase of the state variable
xij

 
is stored in the constant kij

1. 
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iteration for evaluating kij
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Figure 2: A CNN Cell

Figure 3: Output Non-Linearity

The first order nonlinear differential equation defining
the dynamics of a cellular neural network cell can be written
as follows.
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and the output equation is given by,

� �1)(1)(
2

1
)( ���� txtxty ijijij ,

1 � i � M; 1 � j � N. (3)

where x
ij
 is the state of cell C(i, j), x

ij
(0) is the initial condition

of the cell, c is a linear capacitor, R is a linear resistor, I is
an independent current source, �(i, j; k, l)y

kl
 and �{i, j; k,

l)u
kl
 are voltage controlled current sources for all cells C(k,l)

in the neighborhood N(i,j) of cell C(i,j), and y
ij
 represents

the output equation.
From the equ. (1) it is observed that the summation

operators of each cell is affected by its neighboring cells.
A(.) represents on the output of neighboring cells and is
called as feedback operator, B(.) in turn affects the input
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Therefore, the final integration is a weighted sum of
the four calculated derivates is given below.
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3.3 Fifth Order RK-Algorithm

The Fifth Order Runge-Kutta algorithm is an explicit method
and discussed by Morris Badder [6,7]. It starts with a simple
Euler method. The increase of the state variable xij is stored
in the constant kij

1
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Therefore, the final integration is a weighted sum of

the five calculated derivatives which is given below.
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where f(.) is computed according to the given function.

3.4 RK-Embedded Contra-Harmonic Mean

The Fifth Order RK-Embedded Contra-Harmonic Mean [10]
is given by,
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Therefore, the final integration is a weighted sum of
the four calculated derivates is given below.
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4. DERIVATION AND ERROR ESTIMATE OF
RKGCOM(5,5) METHOD

The fifth order Geometric Mean (GM) formula [25] is given
by,
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and the fifth order Contraharmonic Mean (CoM) formula in
the form[10]
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Therefore, the final integration is a weighted sum of
the four calculated derivates is given below.
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is called RKGCoM(5,5). The difference between (15) and

(17) ,i.e., 1 1� ��GM CoM
n ny y provides an error estimate for the

approximation to the numerical solution. By applying the
same procedure as in the RK(4,4) technique, it is possible
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to obtain an error estimate for the five stage explicit GM-
CoM method of order five by implementing the local
truncation error for the fifth order Geomentric mean Runge-
Kutta method and the fifth order Contraharmonic mean
technique.

For the fifth order Geomentric mean Runge-Kutta
method we have

1� � �GM GM
n ny y LTE

and for the Contraharmonic mean method

1� � �CoM CoM
n ny y LTE

where 1�
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ny are the numerical approximations at
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mean methods respectively and 1�
GM
ny and 1�

CoM
ny are the local

truncation errors of the fifth order Geomentric mean Runge-
Kutta method and the fifth order Contraharmonic mean
methods.

The error estimate is obtained by taking the difference
between these two methods for the numerical approximations
at x

n+1
 by
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6 5 2 3

3 2 3 2

4 4

5 7

[ .0.00367007 0.00203894

0.0121412 0.00339055

0.00411231 0.0000951775

0.0000893556 ] ( )

� � �

� �

� �

� �

GM y y yy

y yy y yyy

yy yyy y yyyy

yyyyy

LTE h ff f f f

f f f f f f

f f f f f f

f f O h

(18)

Similar ly the local truncation error  for  the
Contraharmonic mean method is given by
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5. DERIVATION AND ERROR ESTIMATE OF
RKGHM(5,5) METHOD

The fifth order Geometric Mean (GM) formula [25] is given
by,
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and the fifth order Harmonic Mean (HM) formula in the form
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Therefore, the final integration is a weighted sum of
the four calculated derivates is given below.
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is called RKGHM(5,5). The difference between (15) and

(23) 1 1� ��GM HM
n ny y provides an error  estimate for  the

approximation to the numerical solution. By applying the
same procedure as in the RK(4, 4) technique, it is possible
to obtain an error estimate for the five stage explicit GM-
HM method of order five by implementing the local
truncation error for the fifth order Geomentric mean Runge-
Kutta method and the fifth order Harmonic mean technique.
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For the fifth order Geomentric mean Runge-Kutta
method we have

1� � �GM GM
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and for the Harmonic mean method
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Similarly the local truncation error for the Harmonic
mean method is given by
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Therefore the absolute difference between 1�
GM
ny and

1�
HM
ny is given by

GM HM 6 5
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By following an argument suggested by Lotkin [16], if
we assume that the following bounds for f and its partial
derivatives hold for x � [a, b] and y � (–�, �), we have
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where P and Q are positive constants and p is the order of
the method.

In this case p = 6. Hence using (29), we obtain
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From Eqs. (20) and (29) we obtain

LTE
GM

 –LTE
CoM

 � (0.0391 559342) P5 . Qh6 (31)

5 6
1 1 0.0391559342 .� �� �GM CoM

n ny y P Qh (32)

If we suppose that the tolerance TOL = 0.00001 than by

setting 1 1� �� �GM CoM
n ny y TOL  then the error control and step

size selection can be determined by Eq.(18) to give the
formula

0.0391559342 P5 Qh6 <TOL or

1/ 6

50.0391559342

� �
� � �
� �

TOL
h

P Q
(33)

Similarly from Eqs. (29) and (30) We obtain

LTE
GM

 –LTE
HM

 � (0.016429892) P5 . Qh6 (34)

5 6
1 1 0.016429892 .� �� �GM HM

n ny y P Qh (35)

If we suppose that the tolerance TOL = 0.00001 than by

setting 1 1� �� �GM HM
n ny y TOL then the error control and step

size selection can be determined by Eq.(26) to give the
formula
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P Q

(36)
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6. SIMULATION BEHAVIOR OF CONNECTED
COMPONENT DETECTOR

The behavior of the four algorithms are compared by
simulating the connected component detector is discussed
by Matsumoto et al. [20, 21].

6.1 Connected Component Detector (CCD)

Matsumoto et al. [20,21] discussed CCD which has a very
important applications in image processing, pattern
recognition, data compression and in many other important
features of transaction process. The initial pattern and
cloning template chosen for simulation is shown in fig.4
because the CCD state variables frequently change sign
during the transient time and is called as a “Worst case
network” from the viewpoint of ringing of the variables. The
obtained results are representative for many other simulations
with different initial patterns and templates.

The system starts converge even for very large step sizes,
but the transient behaviour of the state variables is
approximated roughly. If the computation time is compared
considerably then the performance of an algorithm depends
on the computational effort for a single time step as well as
on the maximum step size still leading to convergence. From
this it is ease to compare the time necessary for a single
iteration step divided by the maximum step size. The
normalized to the performance of the Modified other RK-
Embedded algorithms are shown in fig. 7.Figure 4: Initial Pattern and Cloning Template

Figure 5: Simulation Results for �t = 1 from t = 0 to t = 20

Fig. 5 shows the transient of the state variables of cell 6
obtained by the different algorithms. The reference function
is constructed by using Fifth order RK-Embedded Contra-
Harmonic algorithm with a much smaller step size (�tref =
0.01). The larger error term of other algorithm is due to “run
after characteristic”. The zero crossings are shifted to the
right and the extreme values are larger than in the original
system. But, the RK-Gill algorithm reduces extreme values
and the fifth order RK-Embedded Contra-Harmonic
algorithm approximates the state variable best due to
computational effort. If a step size value is exceeds 1.52
then the other RK-Embedded algorithms becomes unstable
and the state variables starts to oscillate. As a result, it is
desirable to know the maximum step size of all the algorithms
to speed up the simulations. The results are shown in Fig. 6.

Figure 6: Maximum Stepsize Still Leads to more Convergence

Figure 7: Performance Comparison for four Numerical Methods

The other RK-embedded algorithm fallout in the shortest
simulation time. Hence, it is useful for simulations where
high accuracy of the transient of the state variables is not
obtained. This is particularly true for templates where the
correct dynamics behaviour depends primarily on the sign
of the derivatives and on their values. As a final point, the
accuracy of the algorithm as a function of the stepsize Dt is
depicted in fig. 8. for this an error term � is defined as the
maximum deviation of a state variable xij from its reference

function ˆijx , by ˆmax ( ) ( )ij ij ij
k k

k
x t x t� � �

Fig. 8 shows that the other RK-embedded algorithms
are unsuitable for yielding low value of �. The error function
increases drastically even for a relative small size. Fifth order
RK-Embedded Contra–Harmonic Mean order algorithm
yield accuracy over a large range of the step size, however
if a “threshold” is exceeded the error term grows. The non-
monotonic behavior of � is caused by shifting the timing
instances at which the state variables are evaluated. Thus
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one can jump over” worst case time instances and achieve
locally a smaller � if the step size is increased.

6.2 Bifurcation Behavior

In second example Seller [22] discussed about, a parameter
dependent late is chosen and the system is simulated near a
bifurcation value. Considering the template and the initial
pattern in Fig. 10 the output of cell 3 white for a current
i = –3 and black for a current i = –2. The bifurcation value
between is determined by interval nesting in several
imulations. The results depicted in Fig. 9 shows the
bifurcation behaviour versus the stepsize �t. The accuracy
of i is with in 0.01 caused by the large error term the other
RK-Embedded algorithm results in an erroneous bifurcation
value. For large number of stepsize fifth order RK-Contra-
Harmonic Mean algorithm yields accurate.

Table 1
Comparison of LTE and Error Estimation for

RK-Fifth Order Embedded Means

Sl. RK-Embedded Local Truncation Error
No. Method Error [LTE] Estimation

1 RK- LTEGM – LTEHM � ERREST =
Embedded (0.016429892) |Y

GM
 – Y

HM
|

Harmonic P5 . Qh6 = 1 1
GM HM
n ny y� �� ×0.016429892

Mean [Present � 0.016429892
Paper] .P5 . Qh6

2 RK- LTE
GM

 – LTE
CoM

 � ERREST =
Embedded (0.031559342) |Y

GM
 – Y

GM
|

Contra- P5 . Qh6 = � 0.0391559342

Harmonic 1 1
M GM
n ny y� ��

Mean � 0.0391559342
[Present Paper] .P5 . Qh6

7. DISCUSSIONS AND CONCLUSION

The present article sheds some light on different numerical
integration algorithms on the simulation of cellular neural
network. It is pertinent to pin-point out here that using the
fifth order RK-Embedded Harmonic Mean algorithm
guarantees more accurate values compared to the other
methods. As there is a trade-off between speed and accuracy
of numerical integration techniques it is useful to implement
different algorithms in CNN-simulators. Euler or classical
RK-Fourth order algorithm is preferential for a very fast tool
if only the correct final state is of importance. But in contrast,
the unusual good convergence feature of this algorithm can
be explained by the fact that the desired behaviour of CNNs
depends primarily on the qualitative dynamics of the state
variables. If the end user is interested in the transient of the
state variables in detail the fifth order RK-Embedded
Harmonic Mean is well suitable if the chosen stepsize of
0.5 gives a good of the transient behaviour. For the
examination of bifurcation values only the fifth order RK-
Embedded Harmonic Mean algorithm is recommended
because of its high precision leading to reliable results in a
large range of the stepsize.
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