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A DOMINANT TRANSFER APPROXIMATION FOR
THE NONLINEAR WAVE-WAVE INTERACTIONS

IN WIND WAVE SPECTRA

Adhi Susilo & Will Perrie

ABSTRACT: The exact computation of nonlinear wave-wave interactions is time consuming because it includes
the nonlinear wave-wave interactions over all of wavenumber space. A more efficient method to do the computation
is developed in this study. Instead of using the entire spectrum, the new method uses only a specific wave
number which gives the dominant transfer and a scaling factor, F

d
, which we denote the ‘dominant factor’. In

other words we represent the nonlinear transfer as S
nl
 = F

d
 × S

nl
(k

d
, �). However, the new method is intended for

deep water waves only. This approach reduces the computation time and also gives a more accurate calculation
than methods based on the well-known discrete interaction approximation (DIA).
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1. INTRODUCTION

Wind-generated waves are described by the energy spectrum, E(f, �), which obeys an energy conservation
relation, whereby energy is input to the spectrum by wind and removed by wave-breaking dissipation,

.tot
dE

S
dt

� (1)

In deep water, Stot can be represented as:

Stot = Sinp + Swcap + Snl4 (2)

where Sinp is the energy input by wind, Swcap is the energy dissipation by white-capping and wave breaking, and
Snl4 represents the non-linear quadruplet wave-wave interactions.

The nonlinear interactions play an important role in the evolution of wind waves, representing a mechanism
for shifting wave energy to lower and higher frequencies within the spectrum. In deep water, the nonlinear
interactions describe the resonant exchange of energy, momentum, and action between four spectral components
with wave number vectors k1, k2, k3, and k4 and corresponding frequencies �1, �2, �3, and �4. Efficient
computation of the nonlinear term is hampered by the complexity of the functional form and its computation is
several orders of magnitude more expensive than all other terms in equation (2).

The basic equation describing Snl4 is the Boltzmann integral or kinetic equation, proposed by Hasselmann
(1962). Although Hasselmann and Hasselmann (1981) developed the pioneering systematic computation of
Snl4, their method is not practical for operational applications. Therefore Hasselmann et al. (1985) developed the
Discrete Interaction Approximation, DIA, which dramatically increases the computational speed. DIA enabled
the development of third generation wave prediction models such as WAM and SWAN. However, DIA has a
number of shortcomings (Van Vledder, 2000):

• DIA compares poorly with full integrations of Snl4 for many types of spectra.

• DIA’s estimated spectral width is too large compared with measurements and full integrations of Snl4.
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• DIA produces too much transfer towards higher frequencies (Fig. 3.6, Komen et al., 1984),
which has impact on the tuning that has to be imposed on the source terms for wind input and
dissipation.

Since DIA’s development, improvements to the nonlinear term computation method have been attempted,
consisting of two major approaches:

• More efficient calculation of the full Snl4 expression, for example

– Special grid and scaling symmetries utilized by Tracy and Resio (1982), Resio and Perrie (1991)

– Reduced interaction approximation by Lin and Perrie (1999)

– Neural network methodologies by Krasnopolsky, et al. (2002)

• Enhancement on DIA, for example

– Multiple DIA or MDIA by Hashimoto et al. (2002)

– Optimal multiple DIA by Polnikov (2003)

– DIA with four representative quadruplets by Tolman (2004).

The present study attempts to speed up the calculation of the full Snl4 expression using the Webb-Tracy-
Resio (WTR) formulation and selecting only the dominant transfer in the computation. Related papers such as
Van Vledder (2006) present detailed comparisons with other approaches mentioned above.

The basic methodology of the WTR formulation is described in Section 2. In Section 3, the principal
features of the new method are presented. Results and comparisons are presented in Section 4, and conclusions
in Section 5.

2. WTR METHOD

The Boltzmann integral describes the rate of change of action density at a particular wave number due to
resonant interactions between quadruplets of wave numbers. To interact, these wave numbers must satisfy the
following resonance conditions:

�1 + �2 = �3 + �4 (3)

k1 + k2 = k3 + k4 (4)

where �i is the radian frequency and ki is the wave number. The frequency and the wave number are related by
the dispersion relation:

�2 = gk tanh(kd) (5)

where g is the gravitational acceleration and d is the water depth. The rate of change of action density n1 at wave
number k1 due to all quadruplet interactions involving k1 is given by the following six-fold Boltzmann integral:

� � � �� � �1
1 2 3 4 1 3 4 2 2 4 3 1( , , )[ ( ) ( )]

dn
C n n n n n n n n

dt
k k k k (6)

�(k1 + k2 – k3 – k4) �(�1 + �2 – �3 – �4)dk2dk3dk4

where ni is the action density n(ki) at wave number ki, �i is the angular frequency at ki, the �(. . .) is the Dirac
delta function and the term C is the coupling coefficient, for which expressions have been given by Webb
(1978) and Tracy and Resio (1982). The delta functions in equation (6) reflect the resonance conditions in
equations (3)-(4).

Webb (1978) introduced a transfer function T(k1, k3)
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T d

dt
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where

1 3 1 2 3 4 1 3 4 2 2 4 3 1( , ) 2 ( , , )[ ( ) ( )]T C n n n n n n n n� � � �� �k k k k k k

�(k1 + k2 – k3 – k4)�(�1 + �2 – �3 – �4) (8)

�(|k1 – k4| – |k1 – k3|) dk2dk4

and

�(x) = 1     if x > 0

�(x) = 0     if x ��0 (9)

x = |k1 – k4| – |k1 – k3| .

The �(x) function reduces the domain of computation by half, because it is assumed that the spectrum is
symmetric around 0°. The delta function limits the wave number configuration to k1 + k2 = k3 + k4, so that the
four wave-number vectors form a parallelogram.

In order to evaluate the integral numerically, we must fix values for k1(x, y) and k3(x, y) and find k2(x, y) and
k4(x, y) that satisfy the resonance conditions (3) and (4). The set of solutions can be represented as an egg-
shaped two-dimensional locus in a Cartesian coordinate system in k2 space where k2x is the x-axis and k2y is the
y-axis. On this locus, n is the normal or radial direction and s is in the increasing � or tangential direction.

Defining a new vector, P = k1 – k3 and using a (s, n) coordinate system for W(k2), Tracy and Resio (1982)
stated the transfer integral, equation (8),  as:

1 3 1 3 4 2 2 4 3 1( , ) 2 [ ( ) ( )]T n n n n n n n n� � � �k k �

2 2

1
( ) ( )
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C x ds
W k k

� �
�

k (10)
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Px and Py are the rectangular components of P and x and y are the rectangular components of k2.

Finally, in polar coordinates, the nonlinear energy transfer, equation (7), can be written as:

21
1 3 3 3 30 0

( , ) .
dn

T k d dk
dt

� �
� �� � k k (14)
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3. FORMULATION OF THE MODEL

As seen in equation (10), to find the transfer function, T(k1, k3), we have to integrate along the loci, over a finite
number of points, which we represent as p. The nonlinear energy transfer must then be computed over the entire
spectrum, from the smallest k3 to the highest k3 and from � =  0 to � = 2� as shown on equation (14). A typical
wave model uses a spectral discretization of 30 wave number bins and 36 angular bins, where wn(1) = k0, wn(2)
= ��wn(1), wn(3) = � wn(2), and so on, where � is the incremental factor. Suppose there are 36 points on the
resonance locus. Therefore to compute one point of nonlinear interaction needs 30 × 36 × 36 or 38880 cycles.
The entire spectrum will require 38880 × 30 × 36 or more than 4x107 cycles.

In this study we show that certain sets of (k1, k3) give the dominant transfer. On those sets, the maximum
nonlinear interaction occurs, much greater than the nonlinear transfer from other contributions. Experimental
computations are conducted for wave conditions represented by snapshot JONSWAP spectra, including the
range of peakedness from � = 1 to � = 7. Figure 1 suggests that there is a set of (k1, k3) which gives the maximum
or dominant transfer in the nonlinear process in these cases. In terms of the polar coordinates, we use (k, �) with
wavenumbers spaced logarithmically in ‘rings’, ki+1 = � ki, where � is usually in the range about 1.05 to 1.21.
We find through numerical experiments that given wavenumbers k1(i) and k3(j), with polar ‘ring’ indices i and j
respectively, the ‘ring’ of dominant transfer can be stated as:

j = i + md (15)
and md is defined as:

1 if 1

nearest integer of if 1,d

m
m

m m

��
� �

��

0ln
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m
�

�
�

(16)

where � is an incremental factor of k and �0 is the � that is used in most applications of operational
third-generation wave models, which equals 1.21. See for example Tolman (1999). In this paper � = 1.21
also.

With this result, we propose a new method to approximate the Boltzmann integral, which we denote as the
Dominant Transfer Approximation (DTA). Rather than integrating over the entire spectral domain from k3 = 0
to k3 = �, we use only the value for k3 which gives maximum transfer as:

21
1 3 3 3 30

( , )
d d dd

dn
F T k k d

dt

�
� � �� k k (17)

where

( )
( )

all k
d

d k

Max Snl
F

Max Snl
�

�
� (18)

where Fd or the dominant factor is a scaling factor. In this approximation, Snlall-k is pre-computed from the entire
spectrum (see Eqn.(14)) and Snld–k is computed from the dominant set.

2
1 3 3 3 30

( , ) .
d d dd kSnl T k k d

�
� � � �� k k (19)

The method for finding Fd is presented in the next section. With equation (17), computing one point of
nonlinear transfer for one time step of the 30 × 36 spectral grid with 36 locus of resonance bins needs 1080
cycles only.
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4. FINDING FD

In this section, we are going to discuss Fd, the key to the DTA method. We want to see how Fd behaves if major
JONSWAP parameters change. Before we implement this method to a real wave model, we must do some
experiments to collect the data to find Fd. First we set up the grid that is common for the wave model. Then we
compute Snl4 with the WTR method, equation (14). Next, we compute the same case with equation (19). Finally,
we determine Fd based on the positive lobe of the nonlinear transfer, following equation (18), because this
drives the spectral downshifting during wave development (Komen et.al., 1994). Once we find Fd, we can use
it in a wave model to compute Snl4 with equation (17).

The results from the DTA method are compared to the results from the full integration method of Tracy and
Resio (1982) and Resio and Perrie (1991). Before doing comparisons between the DTA method and the WTR
method, we must examine the behaviour of Fd as a function of the key JONSWAP parameters. We consider a
variety of cases defined by prescribed JONSWAP input spectra, with Phillip’s � coefficient varying from 0.001
to 0.04, fp varying from 0.2 to 0.4 Hz, peakedness varying as � = 1, 3, 5, and 7 and spectral spreading factor =
f(cos2n�) where n = 1, 2 and 6, representing windsea as well as swell cases.

Figures 2 and 3a - 3b show that while Fd is a function of � and spectral spreading cos2n�, the Phillips’ �
coefficient and peak frequency, fp, have little influence on Fd. This result suggests that the Fd is function of � and
spreading factor only.

These tests assume a JONSWAP spectrum with parameters (unless otherwise varied) � = 0.01, peak spectral
width parameters �a = 0.07 and �b = 0.09, fp = 0.3 Hz and spectral spreading factor = f(cos2�) for differing
peakedness values � = 1, 3, 5, and 7 respectively.

The average time required to compute the 30x18x36 (wavenumber bins-half circle of directional bins-locus
of resonance bins) spectral grid is 12.163 seconds for the full integration method (Exact method). With a special
grid, the WTR method time is 4.864 seconds, compared to 0.624 seconds for the DTA program. However, DIA
only takes 0.001 seconds, which is comparatively much less, as shown in Fig. 4.

The two-dimensional and one-dimensional comparisons of DTA to the full integration following the Webb-
Tracy-Resio (WTR) formulation are given in Figs. 5-6. These figures show that the DTA results compare well
with the full integration WTR formulation.

5. CONCLUSION

We have shown that the nonlinear transfer due to 4-wave interactions can be approximated by the dominant
transfer related to selected wavenumbers and a scaling factor Fd. The latter is shown to follow a well-defined
variation, depending on wave maturity, as specified in terms of wave peakedness � and the spectral spreading
function and varies in the range 3.7 to its limit of 1.5 for old waves. For a variety of JONSWAP input spectra,
we show that this dominant transfer approximation (DTA) formulation compares well with the full integration
of the nonlinear transfer due to wave-wave interactions, and is competitive with DIA.

Once Fd is determined, we show that DTA represents an efficient approximate computation of the full
integration. In actual computations, the WTR method needs five loops to compute the entire spectral grid,
whereas the new DTA program requires four loops, and gives similar results. However, although DTA is 20
times faster than the original full integration method, it is still slower compared to DIA (about 600 times slower).
Further work is needed to find the angular dependence of the scaling factor Fd and to investigate possible
optimizations along the loci of resonance. Thus, we can optimize the computation.
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FIGURES
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Figure 1: Dominant transfer for certain set of k
1
 and k

3
, where ith

k1
 states the ith ring of wavenumber k

1
. Panel (e)

presents the corresponding S
nl4

.

Figure 2: F
d
 as function of  and spreading factor.
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Figure 3: F
d
 for different  and peak frequeny.

Figure 4: Comparisons of required computing time for each method.
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Figure 5: 2D Snl for different .
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Figure 6: ID Snl for different .
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